## Assignment 1 (Coding): Exterior Calculus (Due 2/26)

For the coding portion of your first assignment, you will implement the discrete exterior calculus (DEC) operators $\star_0, \star_1, \star_2, d_0$ and $d_1$. Once implemented, you will be able to apply these operators to a scalar function (as depicted above) by pressing the “$\star$” and “$d$” button in the viewer. The diagram shown above will be updated to indicate what kind of differential k-form is currently displayed. These basic operations will be the starting point for many of the algorithms we will implement throughout the rest of the class; the visualization (and implementation!) should help you build further intuition about what these operators mean and how they work

Getting Started

• For this assignment, you need to implement the following routines:
1. in core/geometry.js
1. cotan
2. barycentricDualArea
2. in core/discrete-exterior-calculus.js
1. buildHodgeStar0Form
2. buildHodgeStar1Form
3. buildHodgeStar2Form
4. buildExteriorDerivative0Form
5. buildExteriorDerivative1Form

In practice, a simple and efficient way to compute the cotangent of the angle $\theta$ between two vectors $u$ and $v$ is to use the cross product and the dot product rather than calling any trigonometric functions directly; we ask that you implement your solution this way. (Hint: how are the dot and cross product of two vectors related to the cosine and sine of the angle between them?)

In case we have not yet covered it in class, the barycentric dual area associated with a vertex $i$ is equal to one-third the area of all triangles $ijk$ touching $i$.

EDIT: You can compute the ratio of dual edge lengths to primal edge lengths using the cotan formula, which can be found on Slide 28 of the Discrete Exterior Calculus lecture, or in exercise 36 of the notes (you don’t have to do the exercise for this homework).

Submission Instructions

Please rename your geometry.js and discrete-exterior-calculus.js files to geometry.txt and discrete-exterior-calculus.txt (respectively) and submit them in a single zip file called solution.zip by email to Geometry.Collective@gmail.com.

## Assignment 1 (Written): Exterior Calculus (Due 2/26)

The written portion of assignment 1 is now available (below), which covers some of the fundamental tools we’ll be using in our class. Initially this assignment may look a bit intimidating, but keep a few things in mind:

• The homework is not as long as it might seem: all the text in the big gray blocks contains supplementary, formal definitions that you do not need to know in order to complete the assignments.
• Moreover, note that you are required to complete only three problems from each section.

Finally, don’t be shy about asking us questions here in the comments, via email, or during office hours.  We want to help you succeed on this assignment, so that you can enjoy all the adventures yet to come…

This assignment is due on Tuesday, February 26.

## Assignment 0 (Written): Combinatorial Surfaces — due 2/7

For the written part of your first homework you will do some exercises that will help familiarize you with basic descriptions and representations of combinatorial surfaces (simplicial surfaces, adjacency matrices, halfedge meshes), which will help prepare you to work with such surfaces as we continue through the course. (If any of this stuff seems abstract right now, don’t worry: we’ll use it over and over again to implement “real” algorithms starting in just a couple weeks!)

You must complete 8 out of 15 exercises in the Written Exercises section of Chapter 2 of the course notes. You may choose any set of 8 exercises you like, but if you do more than 8, please mark clearly on your submission which ones you would like us to grade.

The assignment is due on February 7, 2019 at 5:59:59pm Eastern (not at midnight!). Further hand-in instructions can be found on this page.

## Assignment 0 (Coding): Combinatorial Surfaces — due 2/7

For the coding portion of your first assignment, you will implement some operations on simplicial complexes which were discussed in class and in Chapter 2 of the course notes. Once implemented, you will be able to select simplices and apply these operations to them by clicking the appropriate buttons in the viewer (shown above).

Getting Started

• Please download or clone the files in this repository. It contains a fast and flexible framework for 3D geometry processing implemented in Javascript. Over the course of the semester, you will implement all of your coding assignments here.
• For this assignment, you will need to implement the following routines in projects/simplicial-complex-operators/simplicial-complex-operators.js:
• assignElementIndices
• buildVertexVector
• buildEdgeVector
• buildFaceVector
• star
• closure
• isComplex
• isPureComplex
• boundary

Notes

• This assignment comes with a viewer projects/simplicial-complex-operators/index.html which lets you apply your operators to simplices of meshes and visualize the results.
• Selecting simplices will not work until you fill in the assignElementIndices function.
• The assignment also comes with a test script tests/simplicial-complex-operators/text.html which you can use to verify the correctness of your operators.
• The code framework is implemented in Javascript, which means no compilation or installation is necessary on any platform. You can simply get started by opening the index.html file in projects/discrete-exterior-calculus/ in a web browser. We recommend using Chrome or Firefox. Safari has poor WebGL performance.
• If you do not have prior experience with Javascript, do not worry! You should be able to get a handle on Javascript syntax by reading through some of the code in the framework (a good place to start might be core/geometry.js). The framework also contains extensive documentation (see docs/index.html).
• All browsers come with tools for debugging (for instance the JavaScript Console in Chrome).

Submission Instructions

Please rename your simplicial-complex-operators.js file to simplicial-complex-operators.txt and submit it in a zip file called solution.zip to Geometry.Collective@gmail.com.