

GEOMETRY:

An Applied Introduction
Keenan Crane • CMU 15-458/858

LECTURE 8:

DISCRETE DIFFERENTIAL FORMS

DISCRETE DIFFERENTIAL
GEOMETRY:
An Applied Introduction
Keenan Crane • CMU 15-458/858

Review-Exterior Calculus

- Last lecture we saw exterior calculus (differentiation \& integration of forms)
- As a review, let's try solving an equation involving differential forms

Given: the 2-form $\omega:=d x \wedge d y$ on \mathbb{R}^{2}
Find: a 1-form α such that $d \alpha=\omega$.
Well, any 1-form on \mathbb{R}^{2} can be expressed as $\alpha=u d x+v d y$ for some pair of coordinate functions $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

We therefore want to find u, v such that $d u \wedge d x+d v \wedge d y=d x \wedge d y$.
Recalling that $d x \wedge d y=-d y \wedge d x$, we must have $v=\frac{1}{2} x$ and $u=-\frac{1}{2} y$.
In other words, $\alpha=\frac{1}{2}(x d y-y d x)$.

Discrete Exterior Calculus - Motivation

- Solving even very easy differential equations by hand can be hard!
- If equations involve data, forget about solving them by hand!
- Instead, need way to approximate solutions via computation

- Basic idea:
- replace domain with mesh
- replace differential forms with values on mesh
- replace differential operators with matrices

Discrete Exterior Calculus - Basic Operations

- In smooth exterior calculus, we saw many operations (wedge product, Hodge star, exterior derivative, sharp, flat, ...)
- For solving equations on meshes, the most basic operations are typically the discrete exterior derivative (d) and the discrete Hodge star (\star), which we'll ultimately encode as sparse matrices.

$$
d \phi=\frac{\partial \phi}{\partial x^{i}} d x^{i}
$$

$$
\star\left(\alpha_{1} d x^{1}+\alpha_{2} d x^{2}\right)=-\alpha_{2} d x^{1}+\alpha_{1} d x^{2}
$$

$$
\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
1 & 0 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4}
\end{array}\right]
$$

$\left[\begin{array}{ccccc}w_{1} & 0 & 0 & 0 & 0 \\ 0 & w_{2} & 0 & 0 & 0 \\ 0 & 0 & w_{3} & 0 & 0 \\ 0 & 0 & 0 & w_{4} & 0 \\ 0 & 0 & 0 & 0 & w_{5}\end{array}\right]\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \\ \alpha_{5}\end{array}\right]$

Composition of Operators

- By composing matrices, we can easily solve equations involving operators like those from vector calculus (grad, curl, div, Laplacian...) but in much greater generality (e.g., curved surfaces, k-forms...) and on complicated domains (meshes)

$$
\text { grad } \longrightarrow d_{0} \quad \text { curl } \longrightarrow \star_{2} d_{1}
$$

$$
\operatorname{div} \longrightarrow \star_{0}^{-1} d_{0}^{T} \star_{1}
$$

$$
\Delta \longrightarrow \star_{0}^{-1} d_{0}^{T} \star_{1} d_{0}
$$

$$
\Delta_{k} \longrightarrow d_{k-1} \star_{k-1}^{-1} d_{k-1}^{T} \star_{k}+\star_{k}^{-1} d_{k}^{T} \star_{k+1} d_{k}
$$

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.

Discretization \& Interpolation

- Two basic operations needed to translate between smooth \& discrete quantities:
- Discretization - given a continuous object, how do I turn it into a finite (or discrete) collection of measurements?
- Interpolation - given a discrete object (representing a finite collection of measurements), how do I come up with a continuous object that agrees with (or interpolates) it?

CONTINUOUS

Discrete

Discretization \& Interpolation - Differential Forms

- In the particular case of a differential k form:
- Discretization happens via integration over oriented k-simplices (known as the de Rham map)
- Interpolation is performed by taking linear combinations of continuous functions associated with k-simplices (known as Whitney interpolation)
- With these operations, becomes easy to translate some pretty sophisticated
 equations into algorithms!

Discretization

Discretization - Basic Idea

Given a continuous differential form, how can we approximate it on a mesh?

Basic idea: integrate k-forms over k-simplices.
Doesn't tell us everything about the form... but enough to solve interesting equations!

Discretization of Forms (de Rham Map)

Let K be an oriented simplicial complex on \mathbb{R}^{n}, and let ω be a differential k form on \mathbb{R}^{n}. For each simplex $\sigma \in K$, the corresponding value of the discrete k-form $\hat{\omega}$ is given by

$$
\hat{\omega}_{\sigma}:=\int_{\sigma} \omega
$$

The map from continuous forms to discrete forms is called the discretization map, or sometimes the de Rham map.

Key idea: discretization just means "integrate a k-form over k-simplices." Result is just a list of values.

Integrating a 0-form over Vertices

- Suppose we have a 0 -form ϕ
-What does it mean to integrate it over a vertex v ?
- Easy: just take the value of the function at the location p of the vertex!

Example:

$$
\begin{aligned}
& \phi(x, y):=x^{2}+y^{2}+\cos (4(x+y)) \\
& p=(1,-1) \\
& \int_{v} \phi=\phi(p)=1+1+\cos (0)=3
\end{aligned}
$$

Key idea: integrating a 0 -form at vertices of a mesh just "samples" the function

Integrating a 1-form over an Edge

- Suppose we have a 1 -form α in the plane
- How do we integrate it over an edge e ?
- Basic recipe:
- Compute unit tangent T
- Apply α to T, yielding function $\alpha(T)$
- Integrate this scalar function over edge
- Result gives "total circulation"

$$
\hat{\alpha}_{e}:=\int_{e} \alpha=\int_{0}^{L} \alpha(T) d s
$$

- Can use numerical quadrature for tough integrals
- In practice, rare to actually integrate!

$$
\int_{e} \alpha \approx \operatorname{length}(e)\left(\frac{1}{N} \sum_{i=1}^{N} \alpha_{p_{i}}(T)\right)
$$

- More often, discrete 1-form values come from, e.g., operations on discrete 0-form

Integrating a 1-Form over an Edge - Example

In \mathbb{R}^{2}, consider a 1-form $\alpha:=x y d x-x^{2} d y$ and an edge e with endpoints $p_{0}:=(-1,2)$

$$
p_{1}:=(3,1)
$$

Q: What is $\int_{e} \alpha$?
A: Let's first compute the edge length L and unit tangent T :

$$
L:=\left|p_{1}-p_{0}\right|=\sqrt{17} \quad T:=\left(p_{1}-p_{0}\right) / L=(4,-1) / \sqrt{17}
$$

Hence, $\alpha(T)=\left(4 x y+x^{2}\right) / \sqrt{17}$.

An arc-length parameterization of the edge is given by

$$
p(s):=p_{0}+\frac{s}{L}\left(p_{1}-p_{0}\right), \quad s \in[0, L]
$$

By plugging in all these expressions/values, our integral simplifies to

$$
\int_{0}^{L} \alpha(T)_{p(s)} d s=\frac{7}{17 L} \int_{0}^{L} 4 s-L d s=\frac{7}{\sqrt{17}}
$$

Orientation \mathcal{E} Integration

Mt. Washington

Point State Park
Point State Park

$$
\int_{a}^{b} \frac{\partial \phi}{\partial x} d x=\phi(b)-\phi(a)=-(\phi(a)-\phi(b))=-\int_{b}^{a} \frac{\partial \phi}{\partial x} d x
$$

Discretizing a 1-form-Example

Example. Let M be the unit square $[0,1]^{2}$ with a complex K embedded as shown on the right. Using x, y to denote coordinates on M, the 1 -form $\omega:=2 d x$ is discretized by integrating over each edge:

$$
\begin{aligned}
\widehat{\omega}_{1} & =\int_{e_{1}} \omega=\int_{0}^{1} \omega\left(\frac{\partial}{\partial x}\right) d \ell=\int_{0}^{1} 2 d \ell=2 \\
\widehat{\omega}_{2} & =\int_{e_{2}} \omega=\int_{0}^{1} \omega\left(\frac{\partial}{\partial y}\right) d \ell=\int_{0}^{1} 0 d \ell=0 \\
\widehat{\omega}_{3} & =\int_{e_{3}} \omega=\int_{0}^{\sqrt{2}} \omega\left(\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)\right) d \ell=\int_{0}^{\sqrt{2}} \frac{2}{\sqrt{2}} d \ell=2 \\
\cdots & =\cdots
\end{aligned}
$$

Question: Why does $\widehat{\omega}_{1}=\widehat{\omega}_{3}$?

Integrating a 2-form Over a Triangle

- Suppose we have a 2 -form ω in R^{3}
- How do we integrate it over a triangle t ?
- Similar recipe to 1 -form:
- Compute orthonormal basis T_{1}, T_{2} for triangle
- Apply ω to T_{1}, T_{2}, yielding a function $\omega\left(T_{1}, T_{2}\right)$
- Integrate this scalar function over triangle
- Value encodes how well triangle is "lined up" with 2 -form on average, times area of triangle

- Again, rare to actually integrate explicitly!

Q: Here, what determines the orientation of t ?

$$
\int_{t} \omega \approx \operatorname{area}(t)\left(\frac{1}{N} \sum_{i=1}^{N} \omega_{p_{i}}\left(T_{1}, T_{2}\right)\right)
$$

Orientation and Integration

- In general, reversing the orientation of a simplex will reverse the sign of the integral.
\bullet E.g., suppose we have a discrete 1 -form α. Then for each edge $i j$,

$$
\alpha_{i j}=-\alpha_{j i}
$$

- Q: Suppose we have a 2-form β. What do you think the relationship is between...

$$
\beta_{i j k}=\beta_{j k i} \quad \beta_{j i k}=-\beta_{k i j}
$$

- Q: What's the rule in general?

- A: Discrete k-form values change sign under odd permutation. (Sound familiar? :-))

Discrete Differential Forms

Discrete Differential k-Form

- Abstractly, a discrete differential k-form is just any assignment of a value to each oriented k-simplex.
- For instance, in 2D:

- values at vertices encode a discrete 0-form
- values at edges encode a discrete 1-form
- values at faces encode a discrete 2-form
- Conceptually, values represent integrated k-forms

- In practice, almost never comes from direct integration!
- More typically, values start at vertices (samples of some function); 1-forms, 2 -forms, etc., arise from applying
 operators like the (discrete) exterior derivative

Matrix Encoding of Discrete Differential k-Forms

- We can encode a discrete k-form as a column vector with one entry for every k-simplex.
- To do so, we need to first assign a unique index to each k-simplex
- The order of these indices can be completely arbitrary
- We just need some way to put elements of our mesh into correspondence with entries of the vector
- Simplest example: a discrete 0 -form can be encoded as a vector with $|V|$ entries

$$
\phi=\left[\begin{array}{lll}
\phi_{1} & \cdots & \phi_{|V|}
\end{array}\right]
$$

Matrix Encoding of Discrete Differential 1-Form

- A discrete differential 1-form is a value per edge of an oriented simplicial complex.
- To encode these values as a column vector, we must first assign a unique index to each edge of our complex.
- If we then have values on edges,

$$
\alpha=\left[\begin{array}{llllll}
-8.7 & -1.1 & 0.89 & 1.2 & 0.5 & 9.4
\end{array}\right]^{\top}
$$ discrete 1-form.

Careful that if we ever change the orientation of an edge, we must also negate the value in our row vector!

Matrix Encoding of Discrete Differential 2-Form

- Same idea for encoding a discrete differential 2 -form as a column vector
- Assign indices to each 2-simplex; now we know which values go in which entries

$$
\omega=\left[\begin{array}{lllll}
.41 & .22 & .35 & .41 & .57
\end{array}\right]
$$

Chains \mathcal{E} Cochains

In the discrete setting, duality between "things that get measured" (k-vectors) and "things that measure" (k-forms) is captured by notion of chains and cochains.

Simplicial Chain

- Suppose we think of each k-simplex as its own basis vector
- Can specify some region of a mesh via a linear combination of simplices.

Example.

0

$$
\sigma_{3}+\sigma_{4}+\sigma_{6}+\sigma_{7}+\sigma_{9}
$$

$$
\sigma_{3}+3 \sigma_{5}+\sigma_{8}
$$

Q: What does it means when we have a coefficient other than 0 or 1? (Or negative?) A: Roughly speaking, " n copies" of that simplex. (Or opposite orientation.)
(Formally: chain group C_{k} is the free abelian group generated by the k-simplices.)

Arithmetic on Simplicial Chains

$$
\begin{aligned}
& c_{1}=e_{3}-e_{12}+e_{18}-e_{15}+e_{6}-e_{1} \\
& c_{2}=e_{15}+e_{19}-e_{17}-e_{8}-e_{2}-e_{6} \\
& \begin{array}{c}
c_{1}+c_{2}=e_{3}-e_{12}+e_{18}-e_{15}+e_{6}-e_{1}+e_{15}+e_{19}-e_{17}-e_{8}-e_{2}-e_{6} \\
\quad=e_{3}-e_{12}+e_{18}-e_{1}+e_{19}-e_{17}-e_{8}-e_{2}=: c_{3}
\end{array}
\end{aligned}
$$

Boundary Operator on Simplices

Definition. Let $\sigma:=\left(v_{i_{0}}, \ldots, v_{i_{k}}\right)$ be an oriented k-simplex. Its boundary is the oriented k - 1-chain

$$
\partial \sigma:=\sum_{p=0}^{k}(-1)^{p}\left(v_{i_{0}}, \ldots, v_{i_{p}}, \ldots, v_{i_{k}}\right)
$$

where $v_{/ p}$ indicates that the p th vertex has been omitted.
Example. Consider the 2 -simplex $\sigma:=\left(v_{0}, v_{1}, v_{3}\right)$. Its boundary is the 1-chain $\left(v_{0}, v_{1}\right)+\left(v_{1}, v_{3}\right)+\left(v_{3}, v_{0}\right)$. Example. Consider the 1-simplex $e:=\left(v_{0}, v_{1}\right)$. Its boundary is the 0 -chain $\partial e=v_{1}-v_{0}$.

Example. Consider the 0 -simplex $\left(v_{1}\right)$. Its boundary is the empty set.

Boundary Operator on Simplicial Chains

The boundary operator can be extended to any chain by linearity, i.e.,

$$
\partial \sum_{i} c_{i} \sigma_{i}=\sum_{i} c_{i} \partial_{i} \sigma_{i}
$$

Note: boundary of boundary is always empty!

Coboundary Operator on Simplices

The coboundary of an oriented k-simplex σ is the collection of all oriented $(k+1)$ simplices that contain σ, and which have the same relative orientation.

Example.

(Orientation?)

(Analogy: simplicial star)

Simplicial Cochain

A simplicial k-cochain is basically any linear map from a simplicial k-chain to a number.

$$
\alpha\left(c_{1} \sigma_{1}+\cdots+c_{n} \sigma_{n}\right)=\sum_{i=1}^{n} \alpha_{i} c_{i}
$$

Example.

$\forall i, \alpha\left(\sigma_{i}\right)=1$

$\sigma_{3}+3 \sigma_{5}+\sigma_{8}$
$\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 3 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]=1+3+1=5$
(Formally: cochain group is group of homomorphisms from cochains to reals.)

Simplicial Cochains \& Discrete Differential Forms

Suppose a simplicial k-cochain is given by the integrated values from a discrete k-form
Q: What does it mean (geometrically) when we apply it to a simplicial k-chain?
A: Our discrete k-form values come from integrating a smooth k-form over each k simplex. So, we just get the integral over the region specified by the chain:

$$
\hat{\alpha}(c)=\hat{\alpha}_{3}+\hat{\alpha}_{4}+\hat{\alpha}_{7}+\hat{\alpha}_{8}
$$

$$
=\int_{\sigma_{3} \cup \sigma_{4} \cup \sigma_{7} \cup \sigma_{8}}
$$

$$
\hat{\alpha}_{i}:=\int_{\sigma} \alpha
$$

Discrete Differential Form

Definition. Let M be a manifold simplicial complex. A (primal) discrete differential k-form is a simplicial k-cochain on M. We will use Ω_{k} to denote the set of k-forms.

Interpolation

Interpolation-0-Forms

On any simplicial complex K, the hat function a.k.a. Lagrange basis ϕ_{i} is a real-valued function that is linear over each simplex and satisfies

$$
\phi_{i}\left(v_{j}\right)=\delta_{i j}
$$

for each vertex v_{j}, i.e., it equals 1 at vertex i and 0 at vertex j. Given a (primal) discrete 0 -form $u: V \rightarrow \mathbb{R}$, we can construct an interpolating 1-form via

$$
\sum_{i} u_{i} \phi_{i}
$$

i.e., we simply weight the hat functions by values at vertices.

Note: result is a continuous 0-form.

Barycentric Coordinates - Revisited

- Recall that any point in a k-simplex can be expressed as a weighted combination of the vertices, where the weights sum to 1 .
- The weights t_{i} are called the barycentric coordinates.

- The Lagrange basis for a vertex i is given explicitly by the barycentric coordinates of i in each triangle containing i.

$$
\sigma=\left\{\sum_{i=0}^{k} t_{i} p_{i} \mid \sum_{i=0}^{k} t_{i}=1, t_{i} \geq 0 \forall i\right\}
$$

Interpolation-k-Forms (Whitney Map)

Definition. Let ϕ_{i} be the hat functions on a simplicial complex. The Whitney 1-forms are differential 1-forms associated with each oriented edge $i j$, given by

$$
\phi_{i j}:=\phi_{i} d \phi_{j}-\phi_{j} d \phi_{i}
$$

(Note that $\phi_{i j}=-\phi_{j i}$). The Whitney 1-forms can be used to interpolate a discrete 1-form $\widehat{\omega}$ (value per edge) via

$$
\sum_{i j} \widehat{\omega}_{i j} \phi_{i j} .
$$

More generally, the Whitney k-form associated with an oriented k-simplex $\left(i_{0}, \ldots, i_{k}\right)$ is given by

$$
\sum_{p=0}^{k}(-1)^{p} \phi_{i_{p}} d \phi_{i_{0}} \wedge \cdots \wedge d \phi_{i_{p}} \wedge \cdots \wedge d \phi_{i_{k}}
$$

Discretization \& Interpolation

- Fact: Suppose we have a discrete differential k-form. If we interpolate by Whitney bases, then discretize via the de Rham map (i.e., by integration), then we recover the exact same discrete k-form.

Q: What about the other direction? If we discretize a continuous k-form then interpolate, will we always recover the same continuous k-form?

Discrete Differential Forms - Summary

- A discrete differential k-form amounts to a value stored on each oriented k-simplex
- Discretization: given a smooth differential k-form, can approximate by a discrete differential k-form by integrating over each k-simplex
- Interpolation: given a discrete differential k-form, construct a continuous one by taking a weighted sum of basis k-forms
- In practice, almost never comes from direct integration. More typically, values start at vertices (samples of some function); 1-forms, 2-forms, etc., arise from applying operators like the (discrete) exterior derivative.
- Next lecture: develop these operators!

Discrete Differential Geometry AN APPLIED INTRODUCTION

