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Curves, Surfaces, and Volumes
•In general, differential geometry studies n-dimensional manifolds; we’ll focus 

mostly on low dimensions: curves (n=1), surfaces (n=2), and volumes (n=3)
•Why? Geometry we encounter in “every day life” (Common in applications!)
•Low-dimensional manifolds are not baby stuff! :-)

•n=1: unknot recognition (open as of July 2017)
•n=2: Willmore conjecture (2012 for genus 1)
•n=3: Geometrization conjecture (2003, $1 million)

•Serious intuition gained by studying low-dimensional manifolds
•Conversely, problems involving very high-dimensional manifolds (e.g., statistics/

machine learning) involve less "deep" geometry than you might imagine!
• fiber bundles, Lie groups, curvature flows, spinors, symplectic structure, ...

•Moreover... curves and surfaces are beautiful! (And sometimes boring for large n…)



Curves & Surfaces
•Much of the geometry we encounter in life well-described by curves and surfaces*

*Or solids… but the boundary of a solid is a surface!

(Curves)

(Surfaces)



•Many ways to express the geometry of a curve or surface:

•height function over tangent plane

•local parameterization

•Christoffel symbols — coordinates/indices

•differential forms — “coordinate free”

•moving frames — change in adapted frame

•Riemann surfaces (local); Quaternionic functions (global)

•People can get very religious about these different “dialects”... best to be multilingual!

•We'll dive deep into one description (differential forms) and touch on others

Smooth Descriptions of Curves & Surfaces



•Also many ways to discretize a surface
•For instance:

•implicit — e.g., zero set of scalar function on a grid
•good for changing topology, high accuracy
•expensive to store/adaptivity is harder
•hard to solve sophisticated equations on surface

•explicit — e.g., polygonal surface mesh
•changing topology, high-order continuity is harder
•cheaper to store / adaptivity is much easier
•more mature tools for equations on surfaces

•Don’t be “religious”; use the right tool for the job!

Discrete Descriptions of Curves & Surfaces

explicit implicit



•Goal: understand curves & surfaces from complementary smooth and discrete points 
of view.

•Smooth setting:

•express geometry via differential forms

•will first need to think about vector-valued forms

•Discrete setting:

•use explicit mesh as domain

•express geometry via discrete differential forms

•Payoff: will become very easy to switch back & forth between smooth setting 
(scribbling in a notebook) and discrete setting (running algorithms on real data!)

Curves & Surfaces—Overview



Discrete Curves



Discrete Curves in the Plane
• We’ll define a discrete curve as a piecewise linear parameterized curve, 

i.e., a sequence of points connected by straight line segments:

Shorthand:



Discrete Curves in the Plane—Example
• A simple example is a curve comprised of two segments:



Discrete Curves and Discrete Differential Forms
•Equivalently, a discrete curve 

is determined by a discrete, 
Rn-valued 0-form on a 
manifold simplicial 1-complex

•The 0-form values give the 
location of the vertices; 
interpolation by Whitney 
bases (hat functions) gives the 
map from each edge to Rn

K = { (v0,v1), (v1,v2), (v2,v3), 
(v0), (v1), (v2), (v3), ø }



Differential of a Discrete Curve
•We can now directly translate statements about smooth curves 

expressed via smooth exterior calculus into statements about discrete 
curves expressed using discrete exterior calculus

•Simple example: the differential just becomes the edge vectors:



Discrete Tangent
•As in smooth setting, can simply normalize differential to obtain 

tangents, yielding a vector per edge*

*And no definition of the tangent at vertices!



Discrete Normal
•As in the smooth setting, we can express the (discrete) normals of a 

planar curve as a 90-degree rotation of the (discrete) tangent:



Regular Discrete Curve / Discrete Immersion
•Recall that a smooth curve is regular if its 

differential is nonzero; this condition helps 
avoid “bad behavior” like sharp cusps

•For a discrete curve, a nonzero differential 
merely prevents zero edge lengths; need 
something stronger to get “nice” curves

•In particular, a regular discrete curve or 
discrete immersion is a discrete curve that is 
a locally injective map

•Rules out zero edge lengths and zero angles

regular

not regular



Discrete Curvature
•For a regular discrete curve, discrete curvature has several definitions



Fundamental Theorem of Discrete Plane Curves
Fact. Up to rigid motions, a regular discrete plane curve is uniquely 
determined by its edge lengths and turning angles.

Q: Given only this data, how can we recover the curve?

A: Mimic the procedure from the smooth setting:

Evaluate unit tangents:

Sum tangents to get curve:

Sum curvatures to get angles:

Q: Rigid motions?



Discrete Whitney Graustein
• If we adopt the definition of a discrete regular curve 

as one that is locally injective, then there is a discrete 
version of Whitney-Graustein that exactly mirrors 
the smooth one

• Has been carefully studied from several 
perspectives:

• Constructive algorithm (case analysis) by 
Mehlhorn & Yap (1991)

• Much simpler argument by Pinkall in terms of 
convex polyhedron: https://bit.ly/2BFtywA 

• Both use powerful idea from (discrete) differential 
geometry: to find a “path” connecting two objects, 
find path from both objects to a canonical one, then 
compose… (uniformization, Delaunay, …)

https://bit.ly/2BFtywA


Curvature Flow



Curvature Flow on Curves
•A curvature flow is a time evolution 

of a curve (or surface) driven by 
some function of its curvature.

•Such flows model physical elastic 
rods, can be used to find shortest 
curves (geodesics) on surfaces, or 
might be used to smooth noisy data 
(e.g., image contours).

•Two common examples: length-
shortening flow and elastic flow.



Discretizing a Gradient Flow
•Two possible paths for discretizing 

any gradient flow:

1. First derive the gradient of the 
objective in the smooth setting, 
then discretize the resulting 
evolution equation.

2. First discretize the objective 
itself, then take the gradient of 
the resulting discrete objective.

•In general, will not lead to the same 
numerical scheme/algorithm!

SMOOTH
OBJECTIVE

DISCRETE
OBJECTIVE

SMOOTH
FLOW

DISCRETE
FLOW

discretize

discretize
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t
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t

(Does NOT commute in general.)



Length Shortening Flow
•The objective for length shortening 

flow is simply the total length of the 
curve; the flow is then the (L2) 
gradient flow.

•For closed curves, several interesting 
features (Gage-Grayson-Hamilton):

•Center of mass is preserved

•Curves flow to “round points”

•Embedded curves remain embedded
credit: Sigurd Angenent



Length Shortening Flow



Length Shortening Flow—Forward Euler
•At each moment in time, move 

curve in normal direction with 
speed proportional to curvature

•“Smooths out” curve (e.g., noise), 
eventually becoming circular

•Discretize by replacing time 
derivative with difference in time; 
smooth curvature with one (of 
many) curvatures

•Repeatedly add a little bit of 𝜅N 
(“forward Euler method”)

smooth discrete



Elastic Flow
•Basic idea: rather than shrinking 

length, try to reduce bending 
(curvature)

•Objective is integral of squared 
curvature; elastic flow is then 
gradient flow on this objective

•Minimizers are called elastic curves

•More interesting w/ constraints 
(e.g., endpoint positions & a 
tangents)

http://brickisland.net/cs177fa12/?p=320

http://brickisland.net/cs177fa12/?p=320


Isometric Elastic Flow
•Different way to smooth out a curve 

is to directly “shrink” curvature

•Discrete case: “scale down” turning 
angles, then use the fundamental 
theorem of discrete plane curves to 
reconstruct

•Extremely stable numerically; 
exactly preserves edge lengths

•Challenge: how do we make sure 
closed curves remain closed?

From Crane et al, “Robust Fairing via Conformal Curvature Flow”



Elastic Rods
•For space curve, can also try to 

minimize both curvature and 
torsion

•Both in some sense measure 
“non-straightness” of curve

•Provides rich model of elastic 
rods

•Lots of interesting applications 
(simulating hair, laying cable, …) From Bergou et al, “Discrete Elastic Rods”



Untangling Knots
•Is a given curve “knotted?”
•Minimize elastic energy and penalize self-collision
• Might go to smoothest curve in same isotopy class

Credit: Henrik Schumacher

Möbius energy



Thanks!
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