DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

LECTURE 17: DISCRETE CURVATURE II (VARIATIONAL VIEWPOINT)

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

A Unified Picture of Discrete Curvature

- Goal: obtain a unified picture of many different perspectives on discrete curvature by connecting smooth & discrete pictures
- Last time, took <u>integral</u> approach:
 - vector-valued quantities—<u>integrate</u> "curvature" normals" over vertex neighborhood
 - scalar quantities—<u>integrate</u> curvatures on smoothed or "mollified" surface
- This time, take *variational* approach (derivatives)
 - Will see that our vector quantities actually just describe the change in our scalar quantities!

Recap: Vector Curvatures

nean (HNdA)	Gauss (KNdA
$\frac{1}{2} df \wedge dN$	$\frac{1}{2} dN \wedge dN$
$\cot \alpha_{ij} + \cot \beta_{ij})(f_i - f_j)$	$\frac{1}{2} \sum_{ij \in \text{St}(i)} \frac{\varphi_{ij}}{\ell_{ij}} (f_j - f_i)$

Recap: Scalar Curvatures

Aside: Principal Curvatures

Gaussian: $K = \kappa_1 \kappa_2$ mean: $H = \frac{\kappa_1 + \kappa_2}{2}$

principal: $\kappa_1 = H - \sqrt{H^2 - K}$ $\kappa_2 = H + \sqrt{H^2 - K}$

discrete principal curvatures:

vertex mean curvature

Scalar Curvatures – Visualized

maximum

minimum

Geometric Differentiation

- Many geometric problems/algorithms involve taking derivatives of functions involving lengths, angles, areas, ...
- *E.g.*, how does the area of a triangle change as we move one of its vertices?
- More generally: *how does one geometric quantity* change with respect to another?
- <u>Don't</u> just grind out partial derivatives!
- <u>**Do</u>** follow a simple geometric recipe:</u>
 - 1. First, in which **direction** does the quantity change quickest?
 - 2. Second, what's the **magnitude** of this change?
 - 3. Together, direction & magnitude give us the gradient vector

Dangers of Naïve Differentiation

- Why not just take derivatives *"the usual way?"*
- Usually takes way more work!
- can lead to expressions that are
 - inefficient
 - numerically unstable
 - hard to understand
- Example: gradient of angle between two segments (\breve{b},a) , (c,a)w.r.t. coordinates of point *a*

$$\begin{split} & ||6||6|| = a = (a1, a2, a3); \\ & b = (b1, b2, b3); \\ & c = (c1, c2, c3); \\ & \theta = \arccos \left[\frac{(a-b) \cdot (c-b)}{\sqrt{(a-b) \cdot (a-b)}} \sqrt{(c-b) \cdot (c-b)} \right]; \\ & FullSimplify [(\partial_{a1} \theta, \partial_{a2} \theta, \partial_{a3} \theta)] \\ & Du(|e|| = \left\{ (a1 b2^2 + a1 b3^2 - a2 b2 (a1 + b1 - 2 c1) - a3 b3 (a1 + b1 - 2 c1) + a2^2 (b1 - c1) + a3^2 (b1 - c) \right\} - b2 \\ & b3^2 c1 + a2 (a1 - b1) c2 - a1 b2 c2 + b1 b2 c2 + a3 (a1 - b1) c3 - a1 b3 c3 + b1 b3 c3) \\ & \int \left((a1 - b1)^2 + (a2 - b2)^2 + (a3 - b3)^2 \right)^{3/2} \sqrt{(b1 - c1)^2 + (b2 - c2)^2 + (b3 - c3)^2} \\ & \sqrt{1 - \frac{((a1 - b1) (-b1 + c1) + (a2 - b2) (-b2 + c2) + (a3 - b3) (-b3 + c3))^2}{((a1 - b1)^2 + (a2 - b2)^2 + (a3 - b3)^2) ((b1 - c1)^2 + (b2 - c2)^2 + (b3 - c3)^2)} \\ & (a3^2 b2 - a3 b2 b3 + b1 b2 c1 + a1^2 (b2 - c2) - a3^2 c2 - b1^2 c2 + 2 a3 b3 c2 - b3^2 c2 - a1 (a2 (b1 - c1) + b2 (b1 + c1) - 2 b1 c2) + a2 (b1 (b1 - c1) - (a3 - b3) (b3 - c3)) - a3 b2 c3 + b2 b3 c3) \\ & \sqrt{1 - \frac{((a1 - b1) (-b1 + c1) + (a2 - b2) (-b2 + c2) + (a3 - b3) (-b3 + c3))^2}{((a1 - b1)^2 + (a2 - b2)^2 + (a3 - b3)^2) ((b1 - c1)^2 + (b2 - c2)^2 + (b3 - c3)^2)} \\ & \sqrt{1 - \frac{((a1 - b1) (-b1 + c1) + (a2 - b2) (-b2 + c2) + (a3 - b3) (-b3 + c3))^2}{((a1 - b1)^2 + (a2 - b2)^2 + (a3 - b3)^2) ((b1 - c1)^2 + (b2 - c2)^2 + (b3 - c3)^2)} \\ & \sqrt{1 - \frac{((a1 - b1) (-b1 + c1) + (a2 - b2) (-b2 + c2) + (a3 - b3) (-b3 + c3))^2}{((a1 - c1)^2 + (b2 - c2)^2 + (b3 - c3)^2)}} \\ & \int (b3 (b1 c1 + (a2 - b2) (a2 - c2)) + a3 (b1 (b1 - c1) - (a2 - b2) (b2 - c2)) + a1^2 (b3 - c3) - (b1^2 + (a2 - b2)^2) c3 - a1 (a3 (b1 - c1) + b3 (b1 + c1) - 2 b1 c3) \right) \\ & \int ((a1 - b1)^2 + (a2 - b2)^2 + (a3 - b3)^2)^{3/2} \sqrt{(b1 - c1)^2 + (b2 - c2)^2 + (b3 - c3)^2} \\ & \sqrt{1 - \frac{((a1 - b1) (-b1 + c1) + (a2 - b2) (-b2 + c2) + (a3 - b3) (-b3 + c3)^2}{((b1 - c1)^2 + (b2 - c2)^2 + (b3 - c3)^2}} \\ & \sqrt{1 - \frac{((a1 - b1) (-b1 + c1) + (a2 - b2) (-b2 + c2) + (a3 - b3) (-b3 + c3)^2}{((a1 - b1)^2 + (a2 - b2)^2 + (a3 - b3)^2)^2 ((b1 - c1)^2 + (b2 - c2)^2 + (b3 - c3)^2}} \\ & \sqrt{1 - \frac{((a1 - b1) (-b1 + c1) + (a2 - b2) (-b2 + c2) + (a3 - b3) (-b3 + c3)^2}{((b1 - c1)^2 + (b2 - c2)^2 + (b3 -$$

Geometric Derivation of Angle Derivative

- Instead of taking partial derivatives, let's break this calculation into two pieces:
 - 1. (Direction) What direction can we move the point *a* to most quickly increase the angle θ ?

A: Orthogonal to the segment ab.

2. (Magnitude) How much does the angle change if we move in this direction?

A: Moving around a whole circle changes the angle by 2π over a distance $2\pi r$. Hence, the instantaneous change is 1/|b-a|.

3. Multiplying the unit direction by the magnitude yields the final gradient expression.

Gradient of Triangle Area

Q: What's the gradient of triangle area with respect to one of its vertices *p*? **A:** Can express via its unit normal *N* and vector *e* along edge opposite *p*:

Geometric Derivation

• In general, can lead to some pretty nice expressions (give it a try!)

(See also Appendix A of the course notes.)

Differentiation Strategies

Often have to differentiate complicated function built up from these "little pieces" several common strategies for automating this process:

closed-form differentiation

Work it out by hand, write custom code

PROS: final code is fast and accurate

CONS: very time consuming, hard to change energy, easy to make mistakes

automatic differentiation

differentiate each line of code; use chain rule to obtain overall derivative ("backpropagation")

PROS: accurate, almost as fast as closed-form, no work "by hand"

CONS: must modify existing code / doesn't work in "black box" scenario

numerical differentiation

perturb each input by ε , measure change in energy

PROS: works directly with existing code / "black box" routines

CONS: expensive, inaccurate, hard to pick ε

symbolic differentiation

perform transformation of symbolic expression tree

PROS: accurate, only have to take derivative once

CONS: must modify existing code, can lead to (very) large expressions

Also: no use of domain-specific knowledge.

Curvature Variations

For a smooth surface $f: M \longrightarrow R^3$ (without boundary), let volume $(f) := \frac{1}{3} \int_{M} N \cdot f \, dA$ ſ

$$\operatorname{area}(f) := \int_M dA$$

- <u>**O.**</u> What motion of the surface changes each of these quantities as quickly as possible? <u>**A.</u> Remarkably enough...</u>** δ volume(f) = 2N $\delta \operatorname{area}(f) = 2HN$ $\delta \operatorname{mean}(f) = 2KN$

 - $\delta \operatorname{Gauss}(f) = 0$

(Smooth)

$$\mathrm{mean}(f) := \int_M H \, dA$$

$$Gauss(f) := \int_M K \, dA = 2\pi \chi$$

Volume Enclosed by a Smooth Surface

- What's the volume enclosed by a *smooth* surface f(M)?
- One way: pick any point *p*, integrate volume of "infinitesimal pyramids" over the surface
- For a pyramid with base area *b* and height *h*, the volume is V = bh/3 (for a base of any shape)
- For our infinitesimal pyramid, the height *h* is the distance from the surface *f* to the point *p* along the normal direction:

$$h = (f - p) \cdot N$$

• The area of the base is just the infinitesimal surface area dA. Now we just integrate...

Notice: final expression doesn't depend on choice of point *p*!

Volume Enclosed by a Discrete Surface

- What's the volume enclosed by a *discrete* surface?
- Simply apply the smooth formula!
 - integrate $f \cdot N$ over each triangle
- **Exercise.** Show that the volume enclosed by a simplicial surface can be expressed as

$$\operatorname{volume}(f) = \frac{1}{6} \sum_{ijk \in F} f_i \cdot (f_j)$$

Discrete Volume Gradient

• Taking the gradient of enclosed volume with respect to the position f_i of some vertex *i* should now give us a notion of vertex normal:

$$\nabla_{f_i} \text{volume}(f) = \frac{1}{6} \nabla_{f_i} \sum_{ijk \in F} f_i \cdot (f_j \times f_k) = \frac{1}{6} \sum_{ijk \in F} f_j \times f_k = \int_{C_i} N \, dA$$

But wait—this is the discrete vector area!
Key observation: the gradient of discrete volume gives

- Key observation: the gradient of discrete volume gives exactly the same thing as <u>integrating the normal</u>
- Captures the first expression in our sequence of variations:

 $\delta \text{volume}(f) = N$

Vertex Normals via Volume Variation

- The relationship δ volume = N justifies our use of the area vector as (one possible) definition for vertex normals.
- Another way to derive this formula (exercise):
 - write down volume of discrete surface as sum of signed tetrahedron volumes
 - use geometric reasoning to derive an expression for tet volume gradient
- In this case, all paths lead to the *same* expression

Total Area of a Discrete Surface

$$\operatorname{area}(f) := \sum_{ijk\in F} A_{ijk}$$

• Total area of a discrete surface is simply the sum of the triangle areas:

Discrete Area Gradient

• Recall that the gradient of triangle area with respect to position *p* of a vertex is just half the normal cross the opposite edge:

$$\nabla_p A = \frac{1}{2}N \times e$$

- Gradient of surface area with respect to position f_i of vertex *i* is sum of these per-triangle gradients
- Can write this sum via the *cotan formula*

$$\nabla_{f_i} \operatorname{area}(f) = \sum_{ij \in E} \frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij})$$

 $(\beta_{ii})(f_i - f_i)$

Discrete Area Gradient

• Recall that the gradient of triangle area with respect to position *p* of a vertex is just half the normal cross the opposite edge:

$$\nabla_p A = \frac{1}{2}N \times e$$

- Gradient of surface area with respect to position f_i of vertex *i* is sum of these per-triangle gradients
- Can write this sum via the *cotan formula* $\nabla_{f_i} \operatorname{area}(f) = \int_{C_i} HN \, dA$
- Agrees with second expression in our sequence:

$$\delta \operatorname{area}(f) = HN$$

Total Mean Curvature of a Discrete Surface

• According to our Steiner expansion, we know the total mean curvature of a discrete surface is

$$\operatorname{mean}(f) = \frac{1}{2} \sum_{ij \in E} \ell_{ij} \varphi_{ij}$$

φij

Schläfli Formula

Theorem. Consider a closed polyhedron in R^3 with edge lengths l_{ij} and dihedral angles φ_{ij} . Then for *any* motion of the vertices,

 $\left|\sum_{ij\in E} \ell_{ij} \frac{d}{dt} \varphi_{ij} = 0\right|$

Discrete Mean Curvature Gradient

• What's the gradient of total mean curvature with respect to the location *f_i* of vertex *i*?

$$\nabla_{f_i} \operatorname{mean}(f) = \frac{1}{2} \sum_{ij \in E} \nabla_{f_i}(\ell_i)$$
$$\frac{1}{2} \sum_{ij \in E} (\nabla_{f_i} \ell_i)$$
$$\int_{C_i} KN \, dA = \frac{1}{2} \sum_{ij \in E} \frac{\varphi_{ij}}{\ell_{ij}} (f_i)$$

• Agrees with third expression in our sequence: $\delta \text{mean}(f) = KN$

 $\varphi_{ij}\varphi_{ij}) =$ $g_{ij} \varphi_{ij} + \ell_{ij} (\nabla_{f_i} \varphi_{ij}) = 0$ (Schläfli) $-f_j)$ $V_{f_i}\ell_{ij}$ JV

Total Gauss Curvature

• Total Gauss curvature of a discrete surface is the sum of angle defects

$$Gauss(f) = \sum_{i \in V} \left(2\pi - \sum_{ijk} \theta_i^{j} \right)$$

- From (discrete) Gauss-Bonnet theorem, we know this sum is always equal to just $2\pi\chi = 2\pi(V-E+F)$
- Gradient with respect to motion of any vertex is therefore *zero*—sequence ends here!

Summary—Scalar vs. Vector Curvature

curvature vectors

volume $\xrightarrow{\delta f}$ area $\xrightarrow{\delta f}$ mean $\xrightarrow{\delta f}$ Gauss $\xrightarrow{\delta f}$ 0

Discrete Curvature—Panoramic View

- In the end, all these pieces fit together nicely:
- Scalar curvatures
 - smooth out polyhedron and integrate (Steiner)
- Curvature vectors
 - integrate $df \wedge df$, $df \wedge dN$, $dN \wedge dN$ over dual cells
- Gradient of scalar curvatures also gives curvature vectors (making use of Gauss-Bonnet & Schläfli)
- Likewise, differentiating Steiner polynomial for volume gives scalar curvatures
- This "weaker" perspective generalizes to *n*-dimensions, piecewise-smooth surfaces, non-planar regions, ... much further than "classic" definitions!
- *Easily implementable via simple formulas*

Curvature Flow

Curvature Flow

- Can use *curvature flow* to process surfaces
- Common task: smooth out surface / remove noise
- Basic strategy:
 - compute some function of curvature at each vertex
 - move in normal direction w / speed proportional to curvature
 - repeat

_

-

_

-

1

Curvature Flow – Variational Perspective

Key idea: many curvature flows can be viewed as minimization of some energy

Curvature Flow—Numerical Integration

- Consider an energy *E* that assigns a "score" to any immersed surface *f*
- Can reduce energy via gradient descent: "wiggle" surface in a way that decreases energy as quickly as possible
- **Smooth picture:** time derivative of the immersion *f* is equal to (minus) the first-order variation of energy with respect to *f*
- **Discrete picture:** replace time derivative with *difference* in time (time step τ)
 - evaluating energy gradient at current time step *k* gives "forward Euler" update

 $\min_{f} E(f)$

$E(f) = \int_{M} dA$ $\delta E = 2HNdA$

 $E(f) = \int_{M} H \, dA$ $\delta E = KN \, dA$

Willmore Flow

 $E = \int_M H^2 \, dA$

Curvature Flow Algorithms—Further Reading

Brakke, "The Surface Evolver" (1992)

Kazhdan et al, "Can Mean-Curvature Flow be Modified to be Non-singular?" (2012)

Crane et al, "Robust Fairing via *Conformal Curvature Flow*" (2013)

Desbrun et al, "Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow" (1999)

Schumacher, "On H2 Gradient Flows for the Willmore Energy" (2017)

Wardetzky et al, "Discrete Quadratic *Curvature Energies*" (2007)

Bobenko & Schröder, *"Discrete Willmore Flow"* (2005)

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

