
DISCRETE DIFFERENTIAL 
GEOMETRY:

AN APPLIED INTRODUCTION
Keenan Crane • CMU 15-458/858



Keenan Crane • CMU 15-458/858

DISCRETE DIFFERENTIAL 
GEOMETRY:

AN APPLIED INTRODUCTION

LECTURE 17:
DISCRETE CURVATURE II

(VARIATIONAL VIEWPOINT)



A Unified Picture of Discrete Curvature
• Goal: obtain a unified picture of many different 

perspectives on discrete curvature by connecting 
smooth & discrete pictures

• Last time, took integral approach:

• vector-valued quantities—integrate “curvature 
normals” over vertex neighborhood

• scalar quantities—integrate curvatures on 
smoothed or “mollified” surface

• This time, take variational approach (derivatives)

• Will see that our vector quantities actually just 
describe the change in our scalar quantities!



Recap: Vector Curvatures
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Recap: Scalar Curvatures
Gaussian curvature mean curvature
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Aside: Principal Curvatures

vertex mean curvatureGaussian:

mean:

principal:

discrete principal curvatures:



Scalar Curvatures—Visualized
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Geometric Differentiation



Geometric Differentiation

• E.g., how does the area of a triangle change as 
we move one of its vertices?

• More generally: how does one geometric quantity 
change with respect to another?

• Don’t just grind out partial derivatives!

• Do follow a simple geometric recipe:

1. First, in which direction does the quantity change quickest?
2. Second, what’s the magnitude of this change?
3. Together, direction & magnitude give us the gradient vector

• Many geometric problems/algorithms involve taking derivatives of functions 
involving lengths, angles, areas, …



Dangers of Naïve Differentiation
• Why not just take derivatives 

“the usual way?”
• Usually takes way more work!
• can lead to expressions that are

– inefficient
– numerically unstable
– hard to understand

• Example: gradient of angle 
between two segments (b,a), (c,a) 
w.r.t. coordinates of point a
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Geometric Derivation of Angle Derivative
• Instead of taking partial derivatives, let’s 

break this calculation into two pieces:
1. (Direction) What direction can we move the 
point  a to most quickly increase the angle 𝜃?

A: Orthogonal to the segment ab.
2. (Magnitude) How much does the angle 
change if we move in this direction?

A: Moving around a whole circle changes the 
angle by 2π over a distance 2πr. Hence, the 
instantaneous change is 1/|b-a|.

3. Multiplying the unit direction by the 
magnitude yields the final gradient expression.
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Gradient of Triangle Area
Q: What’s the gradient of triangle area with respect to one of its vertices p?

A: Can express via its unit normal N and vector e along edge opposite p:

p

N

e



Geometric Derivation
• In general, can lead to some pretty nice expressions (give it a try!)

(See also Appendix A of the course notes.)



Differentiation Strategies
Often have to differentiate complicated function built up from these “little pieces”—
several common strategies for automating this process:

closed-form differentiation

Work it out by hand, write custom code

PROS: final code is fast and accurate

CONS: very time consuming, hard to change energy, 
easy to make mistakes

automatic differentiation
differentiate each line of code; use chain rule to 
obtain overall derivative (“backpropagation”)

PROS: accurate, almost as fast as closed-form, no 
work “by hand”

CONS: must modify existing code / doesn’t work in 
“black box” scenario

numerical differentiation

perturb each input by ε, measure change in energy

PROS: works directly with existing code / “black 
box” routines

CONS: expensive, inaccurate, hard to pick ε

symbolic differentiation

perform transformation of symbolic expression tree

PROS: accurate, only have to take derivative once

CONS: must modify existing code, can lead to (very) 
large expressions

Also: no use of domain-specific knowledge.



Curvature Variations



Sequence of Variations (Smooth)
For a smooth surface f : M ⟶ R3 (without boundary), let

Q. What motion of the surface changes each of these quantities as quickly as possible?
A. Remarkably enough…



Volume Enclosed by a Smooth Surface
• What’s the volume enclosed by a smooth surface f (M) ?

• One way: pick any point p, integrate volume of 
“infinitesimal pyramids” over the surface

• For a pyramid with base area b and height h, the 
volume is V = bh/3 (for a base of any shape)

• For our infinitesimal pyramid, the height h is the 
distance from the surface f to the point p along the 
normal direction:

Notice: final expression doesn’t depend on choice of point p!

• The area of the base is just the infinitesimal surface 
area dA.  Now we just integrate…



Volume Enclosed by a Discrete Surface
• What’s the volume enclosed by a discrete surface?

• Simply apply the smooth formula!

– integrate f  N over each triangle

• Exercise. Show that the volume enclosed by a 
simplicial surface can be expressed as

⋅ fi

fj

fk



Discrete Volume Gradient
• Taking the gradient of enclosed volume with respect to the position fi of 

some vertex i should now give us a notion of vertex normal:

• But wait—this is the discrete vector area!

• Key observation: the gradient of discrete volume gives 
exactly the same thing as integrating the normal

• Captures the first expression in our sequence of variations:

Ci



Vertex Normals via Volume Variation
• The relationship δvolume = N justifies our use of 

the area vector as (one possible) definition for 
vertex normals.

• Another way to derive this formula (exercise):

– write down volume of discrete surface as sum 
of signed tetrahedron volumes

– use geometric reasoning to derive an expression 
for tet volume gradient

• In this case, all paths lead to the same expression

?



Total Area of a Discrete Surface
• Total area of a discrete surface is simply the sum of the triangle areas:
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Discrete Area Gradient
• Recall that the gradient of triangle area with respect to position 

p of a vertex is just half the normal cross the opposite edge:

• Gradient of surface area with respect to position fi 
of vertex i is sum of these per-triangle gradients

• Can write this sum via the cotan formula

p

N
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Discrete Area Gradient
• Recall that the gradient of triangle area with respect to position 

p of a vertex is just half the normal cross the opposite edge:

• Gradient of surface area with respect to position fi 
of vertex i is sum of these per-triangle gradients

• Can write this sum via the cotan formula

• Agrees with second expression in our sequence:

p

N



Total Mean Curvature of a Discrete Surface
• According to our Steiner expansion, we know the 

total mean curvature of a discrete surface is



Schläfli Formula
Theorem. Consider a closed polyhedron in R3 with edge lengths lij 
and dihedral angles 𝜑ij.  Then for any motion of the vertices,



Discrete Mean Curvature Gradient
• What’s the gradient of total mean curvature with respect to 

the location fi  of vertex i?

• Agrees with third expression in our sequence:

i



Total Gauss Curvature
• Total Gauss curvature of a discrete surface 

is the sum of angle defects

• From (discrete) Gauss-Bonnet theorem, we know 
this sum is always equal to just 2πχ = 2π(V-E+F)

• Gradient with respect to motion of any vertex is 
therefore zero—sequence ends here! j

k



Summary



scalar curvatures

curvature vectors

Summary—Scalar vs. Vector Curvature

i

volume area mean Gauss



Discrete Curvature—Panoramic View
• In the end, all these pieces fit together nicely:
• Scalar curvatures

– smooth out polyhedron and integrate (Steiner)
• Curvature vectors

– integrate df ∧ df, df ∧ dN, dN ∧ dN over dual cells
• Gradient of scalar curvatures also gives curvature 

vectors (making use of Gauss-Bonnet & Schläfli)
• Likewise, differentiating Steiner polynomial for 

volume gives scalar curvatures
• This “weaker” perspective generalizes to n-

dimensions, piecewise-smooth surfaces, non-planar 
regions, … much further than “classic” definitions!

• Easily implementable via simple formulas



Curvature Flow



Curvature Flow
• Can use curvature flow to process surfaces

• Common task: smooth out surface / 
remove noise

• Basic strategy:

– compute some function of curvature at 
each vertex

– move in normal direction w/ speed 
proportional to curvature

– repeat



Curvature Flow—Variational Perspective

E( f )

Key idea: many curvature flows can be viewed as minimization of some energy
f

energy
(area, volume, total 
mean curvature, …)

shape of 
surface



Curvature Flow—Numerical Integration
• Consider an energy E that assigns a “score” to 

any immersed surface f

• Can reduce energy via gradient descent: 
“wiggle” surface in a way that decreases 
energy as quickly as possible

• Smooth picture: time derivative of the 
immersion f is equal to (minus) the first-order 
variation of energy with respect to f

• Discrete picture: replace time derivative with 
difference in time (time step τ)

– evaluating energy gradient at current time 
step k gives “forward Euler” update



Normal Flow



Mean Curvature Flow



Mean Curvature Flow

Plateau problem: find surface of smallest area with given boundary (“minimal surface”)



Gauss Curvature Flow



Willmore Flow



Curvature Flow Algorithms—Further Reading

Wardetzky et al, “Discrete Quadratic 
Curvature Energies” (2007)

Bobenko & Schröder,
“Discrete Willmore Flow” (2005)

Desbrun et al, “Implicit Fairing of 
Irregular Meshes using Diffusion 
and Curvature Flow” (1999)

Crane et al, “Robust Fairing via 
Conformal Curvature Flow” (2013)

Brakke, “The Surface Evolver” (1992)

Schumacher, “On H2 Gradient Flows 
for the Willmore Energy” (2017)

Kazhdan et al, “Can Mean-Curvature Flow 
be Modified to be Non-singular?” (2012)
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