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A Unified Picture of Discrete Curvature
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Recap: Vector Curvatures

area (NdA) mean (HNdJA) Gauss (KNdA)
smooth > df A df Ldf AdN LAN A dN
discrete | s 2 Ji % f 7 2 (cotayj + cot Byy) (fi — ;) % Z.(zﬁp_f](f]’ = fi)

1jESt(i)




Recap: Scalar Curvatures

Gaussian curvature mean curvature area
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Aside: Principal Curvatures

Gaussian: K = k1>
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Scalar Curvatures — Visualized
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Geometric Differentiation



Geometric Differentiation

e Many geometric problems/algorithms involve taking derivatives of functions
involving lengths, angles, areas, ...

e E.¢., how does the area of a triangle change as
we move one of its vertices?

* More generally: how does one geometric quantity
change with respect to another?

 Don'tjust grind out partial derivatives!

* Do follow a simple geometric recipe:

1. First, in which direction does the quantity change quickest?
2. Second, what's the magnitude of this change?

3. Together, direction & magnitude give us the gradient vector



Dangers of Naive Differentiation

e Why not just take derivatives
“the usual way?”

e Usually takes way more work!
e can lead to expressions that are
— inetficient
— numerically unstable
— hard to understand

e Example: gradient of angle
between two segments (b,a), (c,a)
w.r.t. coordinates of point a

ns8:= a = {al, a2, a3};
b= {bl, b2, b3};
¢=fel, €2, e3):
(a-b).(c-Db) ]
4

V(a-b).(a-b) V(c-b).(c-b)
FullSimplify[{0.10, 020, 0.361}] a

e = ArcCos[

Out[62}= {(al b2% +alb3®-a2b2 (al+bl-2cl) -a3b3 (al +bl -2cl) +a2® (bl -cl) +a3% (bl -cf) -b2%cl -

b3?2cl+a2 (al -bl)c2-alb2c2 +blb2c2 +a3 (al—bl)c3—a1b303+b1b303)/

((al-b1)? + (a2 -b2)? + (a3—b3)2)3/2\/(b1—cl)2+ (b2 -c2)2 + (b3 -c3)?

z ((al -bl) (-bl +cl) + (a2 -b2) (-b2 +¢c2) + (a3 -b3) (-b3 +c3))?2
((al-b1)2 + (a2-b2)2 + (a3 -b3)2) ((bl-cl)?+ (b2-c2)2 + (b3 -c3)2) '

(a3 b2 -a3b2b3 +blb2cl +al” (b2-c2) -a3’c2-bl’c2+2a3b3c2-b3’c2-
al (a2 (bl-cl) +b2 (bl+cl) -2blc2) +a2 (bl (bl-cl) - (a3-b3) (b3-¢c3)) -a3b2c3+

b2 b3 c3)/

; ( tal - BL) {(-bl #+¢l) + (a2 -b2) (-b2 + &2) + (a3 -b3) (-b3 +&3) )2
((al-bl)2 + (a2 -b2)2+ (a3-b3)2) ((bl-cl)2+ (b2-c2)2+ (b3 -c3)2)

[ (al=bl}*+ (a2 -B2)? 4 (a3—b3)2)3/2\/(b1—c1)2 + (b2 -c2)% + (b3 -c3)?

4

(b3 (blcl+ (a2 -b2) (a2-c2)) +a3 (bl (bl-cl) - (a2 -b2) (b2-c2)) +al® (b3 -c3) -

(b1% + (a2 -b2)?) 3 - al (a3 (bl -cl) +b3 (bl +cl) —2blc3))/

((al-b1)? + (a2 -b2)? + (a3—b3)2)3/2\/(b1—c1)2+ (b2 -c2)2 + (b3 -c3)?

" ( (al-bly (-bl +¢l) + (a2 -b2) (-b2 +c2) + (a3-b3) (-b3 +c3))? }
((al-b1)2 + (a2-b2)2 + (a3 -b3)2) ((bl-cl)?+ (b2-c2)2 + (b3 -c3)2)



Geometric Derivation of Angle Derivative

* Instead of taking partial derivatives, let’s
break this calculation into two pieces:

1. (Direction) What direction can we move the
point a to most quickly increase the angle 67?

A: Orthogonal to the segment ab.

2. (Magnitude) How much does the angle
change if we move in this direction?

A: Moving around a whole circle changes the
angle by 27t over a distance 27tr. Hence, the
instantaneous change is 1/ 1b-al .

3. Multiplying the unit direction by the

magnitude yields the final gradient expression.

-1 J — 90-degree rotation




Gradient of Triangle Area

Q: What's the gradient of triangle area with respect to one of its vertices p?

A: Can express via its unit normal N and vector e along edge opposite p:

\ X ¢




(Geometric Derivation

* In general, can lead to some pretty nice expressions (give it a try!)

-,
d e
(N, X)

N(X) = -—7—¢ x N (0,0 —a)(

2A du(v) =
u(v) \b—aP

(See also Appendix A of the course notes.)



Differentiation Strategies

Often have to differentiate complicated function built up from these “little pieces”—
several common strategies for automating this process:

closed-form differentiation

numerical differentiation

Work it out by hand, write custom code
PROS: final code is fast and accurate

CONS: very time consuming, hard to change energy;,
easy to make mistakes

perturb each input by &, measure change in energy

PRrROS: works directly with existing code / “black
box” routines

CONS: expensive, inaccurate, hard to pick ¢

automatic differentiation

symbolic differentiation

differentiate each line of code; use chain rule to
obtain overall derivative (“backpropagation”)

PROS: accurate, almost as fast as closed-form, no
work “by hand”

CoNs: must modify existing code / doesn’t work in
“black box” scenario

perform transformation of symbolic expression tree
PROS: accurate, only have to take derivative once

CoNs: must modify existing code, can lead to (very)
large expressions

Also: no use of domain-specific knowledge.




ature Variations




Sequence of Variations (Smooth)

For a smooth surface f: M — R3 (without boundary), let

volume( f / N-fdA mean(f) := /M HdA
area(f) := / dA Gauss(f) := / KdA =2mx
Q. What motion of the surface changes each of these quantities as quickly as possible?
A. Remarkably enough... 5 volume(f) = 2N
0area(f) =2HN
o0 mean(f) = 2KN
0 Gauss(f) =0
volume i area % mean & Gauss i 0




Volume Enclosed by a Smooth Surface

e What's the volume enclosed by a smooth surface f (M) ?

* One way: pick any point p, integrate volume of
“infinitesimal pyramids” over the surface

e For a pyramid with base area b and height 1, the
volume is V = bh/ 3 (for a base of any shape)

e For our infinitesimal pyramid, the height / is the
distance from the surface f to the point p along the
normal direction: 3

h=(f—-p)-N

e The area of the base is just the infinitesimal surface
area dA. Now we just integrate...

Notice: final expression doesn’t depend on choice of point p!




Volume Enclosed by a Discrete Surface

e What's the volume enclosed by a discrete surface? fi

e Simply apply the smooth formula!
— integrate f - N over each triangle f;

e Exercise. Show that the volume enclosed by a

simplicial surface can be expressed as

volume(f) = % Z fi- (fi % fi)

ijkeF




Discrete Volume Gradient

e Taking the gradient of enclosed volume with respect to the position f; of
some vertex i should now give us a notion of vertex normal:

Vivolume(f) = Ve Y fi-(fixfi) = ¢ Y. fi X f

ifkeF z]kEF

e But wait—this is the discrete vector area!

e Key observation: the gradient of discrete volume gives
exactly the same thing as integrating the normal

e Captures the first expression in our sequence of variations:

ovolume(f) = N



Vertex Normals via Volume Variation

?

 The relationship dvolume = N justifies our use of
the area vector as (one possible) definition for
vertex normals.

e Another way to derive this formula (exercise):

— write down volume of discrete surface as sum

of signed tetrahedron volumes

— use geometric reasoning to derive an expression
for tet volume gradient

e In this case, all paths lead to the same expression




Total Area of a Discrete Surface

e Total area of a discrete surface is simply the sum of the triangle areas:

]

area(f) := Z Ajjk i




Discrete Area Gradient

e Recall that the gradient of triangle area with respect to position p
p of a vertex is just half the normal cross the opposite edge:

e Gradient of surface area with respect to position f;
of vertex i is sum of these per-triangle gradients

e Can write this sum via the cotan formula

Vfiarea(f) — Z %(cot aji + cot ,Bi]-)(fi — f])

1]€E




Discrete Area Gradient

e Recall that the gradient of triangle area with respect to position p
p of a vertex is just half the normal cross the opposite edge:
_ 1
VP A = 5 N X e .
e Gradient of surface area with respect to position f; é N
of vertex i is sum of these per-triangle gradients -

e Can write this sum via the cotan formula

Vyarea(f) = /C HN dA

e Agrees with second expression in our sequence:

darea(f) = HN



Total Mean Curvature of a Discrete Surface

e According to our Steiner expansion, we know the
total mean curvature of a discrete surface is

i
mean(f) — % Z ZZ]QDZ]
1j€E
K-/

Qi




Schlafli Formula

Theorem. Consider a closed polyhedron in R° with edge lengths I;;
and dihedral angles ;.. Then for any motion of the vertices,

Y Lijar@ij =0
1]€E




Discrete Mean Curvature Gradient

e What's the gradient of total mean curvature with respect to
the location f; of vertex i?

Vimean(f) = § YV (typy) =

3:

/\ , 0 (Schlatli)
,v 2 2 (Vilip) @i + L (V5) =
1j€E
Pij

/c- KNdA =3}, 7. “(fi— fi) \Y2%

ijeE "1

e Agrees with third expression in our sequence:

dmean(f) = KN




Total Gauss Curvature

e Total Gauss curvature of a discrete surface ‘\
is the sum of angle defects

Gauss(f) = Y (27{ — Zégk)

icV ik

J
e From (discrete) Gauss-Bonnet theorem, we know
this sum is always equal to just 2ty = 2mt(V-E+F)

e Gradient with respect to motion of any vertex is
therefore zero—sequence ends here!







Summary — Scalar vs. Vector Curvature

) ) ) )
volume %f area Hf mean Hf (Gauss Hf 0

scalar curvatures

volume area mean Gauss

/CiNdA /CiHNdA /CiKNdA 0

curvature vectors



Discrete Curvature — Panoramic View

e In the end, all these pieces fit together nicely:
* Scalar curvatures

— smooth out polyhedron and integrate (Steiner)
* Curvature vectors

— integrate df A df, df ANdN, dN A dN over dual cells

e Gradient of scalar curvatures also gives curvature
vectors (making use of Gauss-Bonnet & Schlifli)

o |ikewise, differentiating Steiner polynomial for
volume gives scalar curvatures

e This “weaker” perspective generalizes to n-
dimensions, piecewise-smooth surfaces, non-planar
regions, ... much further than “classic” definitions!

o FEasily implementable via simple formulas

Smooth

vol(M)

S,
‘-\
- A.

Discrete Algebraic
y 0
- Y Voijk < r P(r)
itke F (Steiner)
o
Iy, d
g ZA)N/ dr
iEN (i)
) J
- ) Ak < 20 P/(r)
ijkeF
v[
fv, 1 . d
> 5 ) _(cota;; + cot B;; ) (f; — fi) =
JeN (1)
A J
-2 Oijlij < L P"(r)
iicE
v[
by, 1 Oij ¢ ¢ ' d
(Schlafl) | 2 Z € i — fi) dr
jeN (i)

> ) v (27T — LijkeF 4’5}() — =20

(Gauss-Bonnet) Vj
éf d
v dr
0



uroature Flow



Curvature Flow

e Can use curvature flow to process surtaces

¢ Common task: smooth out surface /
remove noise

e Basic strategy:

— compute some function of curvature at
each vertex

— move in normal direction w/ speed
proportional to curvature

— repeat




Curvature Flow— Variational Perspective
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mean curvature, ...)

shape of
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Key idea: many curvature flows can be viewed as minimization of some energy




Curvature Flow— Numerical Integration

Consider an energy E that assigns a “score” to
any immersed surface f

Can reduce energy via gradient descent:
“wiggle” surface in a way that decreases

energy as quickly as possible

Smooth picture: time derivative of the
immersion fis equal to (minus) the first-order
variation of energy with respect to f

Discrete picture: replace time derivative with
difference in time (time step 7)

— evaluating energy gradient at current time
step k gives “forward Euler” update

min E(f)

1 _ ok
el vE
ka fz _vakE(f )



Normal Flow Yy mean s Gauss s 0
E(f) = volume(f) it =f-E) f] X f
OE = NdA ikeSt(i)




— /M dA f‘k+1 = ff QZ COt“z] COt,BZ])<f fz)
O0E = 2HNdA 4




Mean Curvature Flow volume Z|area s mean| s Gauss - 0

Plateau problem: find surface of smallest area with given boundary (“minimal surface”)

U



Gauss Curvature Flow volume

0 0
L, area L

k+1 k
fi+ :fi




Egdiscrete = Z(HN)ZZ/AZ
eV




Curvature Flow Algorithms — Further Reading

_=

Desbrun et al, “Implicit Fairing of ~ Wardetzky et al, “Discrete Quadratic

Irreqular Meshes using Diffusion Curvature Energies” (2007)
and Curvature Flow” (1999)

Kazhdan et al, “Can Mean-Curvature Flow
be Modified to be Non-singular?” (2012)

Schumacher, “On H2 Gradient Flows Bobenko & Schréder

Crane et al, “Robust Fairing via .
Conformal Curvature Flow” (2013) for the Willmore Energy” (2017) “Discrete Willmore Flow” (2005)
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