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Curvature—Overview
• Intuitively, describes “how much a shape bends”

– Extrinsic: how quickly does the tangent plane/normal change?

– Intrinsic: how much do quantities differ from flat case?
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Curvature—Overview
• Driving force behind wide variety of physical phenomena

– Objects want to reduce—or restore—their curvature

– Even space and time are driven by curvature…



Curvature—Overview
• Gives a coordinate-invariant description of shape

– fundamental theorems of plane curves, space curves, surfaces, …

• Amazing fact: curvature gives you information about global topology!

– “local-global theorems”: turning number, Gauss-Bonnet, …



Curvature—Overview
• Geometric algorithms: shape analysis, local descriptors, smoothing, …

• Numerical simulation: elastic rods/shells, surface tension, …

• Image processing algorithms: denoising, feature/contour detection, …

Grinspun et al 2003

Thürey et al 2010

Gaser et al
Kass et al 1987



Curvature of Curves



Review: Curvature of a Plane Curve
• Informally, curvature describes “how much a curve bends”

• More formally, the curvature of an arc-length parameterized plane 
curve can be expressed as the rate of change in the tangent

Here the angle brackets denote the usual dot product, i.e.,                                            .

Equivalently:



Review: Curvature and Torsion of a Space Curve
•For a plane curve, curvature captured the notion of “bending”
•For a space curve we also have torsion, which captures “twisting”

increasing torsion
Intuition: torsion is 
“out of plane bending”



Review: Fundamental Theorem of Space Curves
•The fundamental theorem of space curves tells that given the 

curvature κ  and torsion τ of an arc-length parameterized 
space curve, we can recover the curve (up to rigid motion)

•Formally: integrate the Frenet-Serret equations; intuitively: 
start drawing a curve, bend & twist at prescribed rate.
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Curvature of a Curve in a Surface
• Earlier, broke the “bending” of a space 

curve into curvature (κ) and torsion (τ)

• For a curve in a surface, can instead break 
into normal and geodesic curvature

• T is still tangent of the curve; but 
unlike the  Frenet frame, NM is the 
normal of the surface and BM := T × NM



Curvature of Surfaces



Gauss Map
• The Gauss map N is a continuous 

map taking each point on the 
surface to a unit normal vector

• Can visualize Gauss map as a map 
from the domain to the unit sphere



Weingarten Map
• The Weingarten map dN is the 

differential of the Gauss map N

• At any point, dN(X) gives the 
change in the normal vector 
along a given direction X

• Since change in unit normal 
cannot have any component in 
the normal direction, dN(X) is 
always tangent to the surface

• Can also think of dN(X) as a 
vector tangent to the unit 
sphere S2



Weingarten Map & Principal Curvatures
• In general, a tiny ball around a 

point will map to an ellipse on the 
unit sphere

• Principal directions.                
Axes of this ellipse X1 and X2 
describe the direction along 
which the normal changes the 
most/least

• Principal curvatures. 
Corresponding radii of these 
ellipses, κ1 and κ2 describe the 
biggest/smallest rates of change

Y

dN(Y)

Q: Why is dN(Y) “flipped”?



Weingarten Map—Example
• Recall that for the sphere, N = -f.  Hence, Weingarten map dN is just -df :

Key idea: computing the Weingarten map is no different 
from computing the differential of a surface.



Normal Curvature
• For curves, curvature was the rate of change of the tangent; for immersed surfaces, 

we’ll instead consider how quickly the normal is changing.*

*For plane curves, what would happen if we instead considered change in N?

• In particular, normal curvature is rate at 
which normal is bending along a given 
tangent direction:

• Equivalent to intersecting surface with 
normal-tangent plane and measuring the 
usual curvature of a plane curve



Normal Curvature—Example
Consider a parameterized cylinder:

Q: Does this result make sense geometrically?



Principal Curvature
• Among all directions X, there are two principal directions X1, X2 where 

normal curvature has minimum/maximum value (respectively)

• Corresponding normal curvatures are the principal curvatures

• Two critical facts*:

N

N
N

X1

X2

X2 X1

Where do these relationships come from?



Shape Operator
• The change in the normal N is always tangent to the surface

• Must therefore be some linear map S from tangent vectors to tangent 
vectors, called the shape operator, such that

• Principal directions are the eigenvectors of S

• Principal curvatures are eigenvalues of S

• Note: S is not a symmetric matrix!  Hence, eigenvectors are not 
orthogonal in R2; only orthogonal with respect to induced metric g.



Shape Operator—Example
Consider a nonstandard parameterization of the cylinder (sheared along z):

Key observation: principal directions orthogonal only in R3.



Umbilic Points
• Points where principal curvatures are equal are called umbilic points

• Principal directions are not uniquely determined here

• What happens to the shape operator S?

• May still have full rank!

• Just have repeated eigenvalues, 2-dim. eigenspace

r

Could still of course choose (arbitrarily) an orthonormal pair X1, X2…



Principal Curvature Nets
• Walking along principal direction field yields principal curvature lines

• Collection of all such lines is called the principal curvature network



Separatrices and Spirals
• If we keep walking along a principal curvature line, where do we end up?
• Sometimes, a curvature line terminates at an umbilic point in both directions; these so-

called separatrices (can) split network into regular patches.
• Other times, we make a closed loop.  More often, however, behavior is not so nice!



Application—Quad Remeshing
• Recent approach to quad meshing: construct net roughly aligned 

with principal curvature (but in a way that avoids spirals!)

from Knöppel, Crane, Pinkall, Schröder, “Stripe Patterns on Surfaces”



Gaussian and Mean Curvature
Gaussian and mean curvature also fully describe local bending:

*Warning: another common convention is to omit the factor of 1/2

“developable”

“minimal”

“convex”



Gaussian Curvature—Intrinsic Definition
• Originally defined Gaussian curvature as product of principal curvatures

• Can also view it as “failure” of balls to behave like Euclidean balls

Roughly speaking,

More precisely:



Gauss-Bonnet Theorem
• Recall that the total curvature of a 

closed plane curve was always 
equal to 2π times turning number k

• Q: Can we make an analogous 
statement about surfaces?

• A: Yes!  Gauss-Bonnet theorem says 
total Gaussian curvature is always 
2π times Euler characteristic χ

• For (closed, compact, orientable) 
surface of genus g, Euler 
characteristic given by

k=1 k=2 k=3

g=0 g=1 g=2 g=3

Curves Surfaces



Gauss-Bonnet Theorem with Boundary
Can easily generalize to surfaces with boundary:

Key idea: neither changing a surface nor its boundary affects total curvature.



Example: Planar Disk
Q: What does Gauss-Bonnet tell us for a disk in the plane?
A: Total curvature of boundary is equal to 2π (turning number theorem)



Total Mean Curvature?
Theorem. (Minkowski): for a convex surface,

Q: When do we get equality?
A: For a sphere.

Note: not a topological invariant; just an inequality.



Topological Invariance of Umbilic Count
Can classify regions around (isolated) umbilic points into three types based on 
behavior of principal network:

lemon (k1) star (k2) monstar (k3)

Fact. If k1, k2, k3 are number of umbilics of each type, then



First & Second Fundamental Form
• First fundamental form I(X,Y) is another 

name for the Riemannian metric g(X,Y)

• Second fundamental form is closely related 
to normal curvature κN

• Second fundamental form also describes 
the change in first fundamental form 
under motion in normal direction

• Why “fundamental?”First & second 
fundamental forms play role in 
important theorem…



Fundamental Theorem of Surfaces
• Theorem. Two surfaces in R3 are identical up to rigid motions if 

and only if they have the same first and second fundamental 
forms.

– However, not every pair of bilinear forms I, II describes a 
valid surface—must satisfy the Gauss Codazzi equations

• Analogous to fundamental theorem of plane curves: 
determined up to rigid motion by curvature

– However, for closed curves not every curvature function is 
valid (e.g., must integrate to 2kπ)



Fundamental Theorem of Discrete Surfaces
• Fact. Up to rigid motions, can recover a 

discrete surface from its dihedral angles and 
edge lengths.

• Fairly natural analogue of Gauss-Codazzi; 
data is split into edge lengths (encoding I) 
and dihedral angles (encoding II)

• Basic idea: construct each triangle from its 
edge lengths; use dihedral angles to 
globally glue triangles together

from Wang, Liu, and Tong,
“Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle Meshes”



Other Descriptions of Surfaces?
• Classic question in differential geometry:

• Many possibilities…

– first & second fundamental form (Gauss-Codazzi)

– mean curvature and metric (up to “Bonnet pairs”)

– convex surfaces: metric alone is enough (Alexandrov/Pogorolev)

– Gauss curvature essentially determines metric (Kazdan-Warner)

• …in general, still a surprisingly murky question!

“What data is sufficient to completely determine a surface in space?”



Open Challenges in Shape Recovery
• What other discrete quantities determine a 

surface?

• …and how can we (efficiently) recover a 
surface from this data?

• Lengths + dihedral angles work in general 
(fundamental theorem of discrete surfaces); 
lengths alone are sufficient for convex 
surfaces.  What about just dihedral angles?

• Next lecture: will have a variety of discrete 
curvatures.  Which are sufficient to describe 
which classes of surfaces?

• Why bother?  Offers new & different ways to 
analyze, process, edit, transmit, … curved 
surfaces digitally.

from Eigensatz & Pauly, “Curvature Domain Shape Processing”



Thanks!
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