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Curvature — Querview

e Intuitively, describes “how much a shape bends”
— Extrinsic: how quickly does the tangent plane /normal change?

— Intrinsic: how much do quantities differ from flat case?




Curvature — Querview

e Driving force behind wide variety of physical phenomena

— Objects want to reduce—or restore—their curvature

— Even space and time are driven by curvature...




Curvature — Querview

e Gives a coordinate-invariant description of shape
— fundamental theorems of plane curves, space curves, surfaces, ...
* Amazing fact: curvature gives you information about global topology!

— “local-global theorems”: turning number, Gauss-Bonnet, ...
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Curvature — Querview

e Geometric algorithms: shape analysis, local descriptors, smoothing, ...
e Numerical simulation: elastic rods/shells, surface tension, ...

e Image processing algorithms: denoising, feature / contour detection, ...
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vature of Curves




Review: Curvature of a Plane Curve

e Informally, curvature describes “how much a curve bends”

e More formally, the curvature of an arc-length parameterized plane
curve can be expressed as the rate of change in the tangent

k(s) == (N(s), £ T(s))

= (N(s), L9(s))
d N6

Equivalently: ;
K(s) = %9(5)

Here the angle brackets denote the usual dot product, i.e., ((a,b), (x,v)) := ax + by.



Review: Curvature and Torsion of a Space Curve

eFor a plane curve, curvature captured the notion of “bending”

eFor a space curve we also have torsion, which captures “twisting”

Intuition: torsion 1s
“out of plane bending” ————————————— [1C1eASING 075101 =}



Review: Fundamental Theorem of Space Curves

e The fundamental theorem of space curves tells that given the
curvature ¥ and torsion 7 of an arc-length parameterized
space curve, we can recover the curve (up to rigid motion)

e Formally: integrate the Frenet-Serret equations; intuitively:
start drawing a curve, bend & twist at prescribed rate.
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Curvature of a Curve in a Surface

e Earlier, broke the “bending” of a space (10,L]) C f(M '
curve into curvature (k) and torsion (T)

e For a curve 1 a surface, can instead break
into normal and geodesic curvature

Ky = <NM, s >

Kgl

e T is still tangent of the curve; but / 57(5)
unlike the Frenet frame, Nyis the

normal of the surface and By :=T x Ny

large xq; large xy;
Q: Why no third curvature (T, % T)? small %, small x,
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Gauss Map

e The Gauss map N is a continuous
map taking each point on the
surface to a unit normal vector

e Can visualize Gauss map as a map
from the domain to the unit sphere




Weingarten Map

The Weingarten map dN is the
differential of the Gauss map N

At any point, dN(X) gives the
change in the normal vector
along a given direction X

Since change in unit normal
cannot have any component in

the normal direction, dN(X) is
always tangent to the surface

Can also think of dN(X) as a

vector tangent to the unit
sphere 52




Weingarten Map & Principal Curvatures |

* In general, a tiny ball around a s S N
point will map to an ellipse on the AN (X;)
unit sphere ’g‘dN (X1) Y

* Principal directions.
Axes of this ellipse X; and X> <Xz
describe the direction along - X
which the normal changes the

most/least

* Principal curvatures.
Corresponding radii of these
ellipses, k1 and x> describe the N\
biggest/smallest rates of change

Q: Why is dN(Y) “flipped”?



Weingarten Map — Example

e Recall that for the sphere, N = -f. Hence, Weingarten map dN is just -df :

f := (cos(u)sin(v),sin(u) sin(v), cos(v))

~ ( —sin(u)sin(v), cos(u)sin(v),
if = ( cos(u)cos(v), cos(v)sin(u),

sin(u) sin(v), — cos(u)sin(v),

_ (
N = (—cos(u) cos(v), —cos(v)sin(u), si

Key idea: computing the Weingarten map is no different
from computing the differential of a surface.




Normal Curvature

e For curves, curvature was the rate of change of the tangent; for immersed surfaces,
we'll instead consider how quickly the normal is changing.*

* In particular, normal curvature is rate at
which normal is bending along a given A df (X)
tangent direction: -

(f (X),dN(X))
df (X))

e Equivalent to intersecting surface with
normal-tangent plane and measuring the
usual curvature of a plane curve

KN(X) s

*For plane curves, what would happen if we instead considered change in N?



Normal Curvature — Example

Consider a parameterized cylinder:
f(u,v) := (cos(u),sin(u),v)

df = (—sin(u),cos(u),0)du+ (0,0,1)do 1

N = (—sin(u),cos(u),0) x (0,0,1)
= (cos(u),sin(u),0) 3
AN = (—sin(u), cos(u),0)du 0 T

o\ <df(%)/ dN(% > _ (—=sin(u),cos(u),0)-(—sin(u),cos(u),0)
KN(@) _ |df(%)|2 - |(— sin(u),cos(1),0)|? =1

Jd\ _ _
kN(55) = - =0 Q: Does this result make sense geometrically?



Principal Curvature

e Among all directions X, there are two principal directions X;, X> where
normal curvature has minimum /maximum value (respectively)

e Corresponding normal curvatures are the principal curvatures

e Two critical facts™:

1. g(Xl,Xz) — ()

2. dN(X;) = x;df (X;)

Where do these relationships come from?



Shape Operator

e The change in the normal N is always tangent to the surface

e Must therefore be some linear map S from tangent vectors to tangent
vectors, called the shape operator, such that

df (SX) = dN(X)
e Principal directions are the eigenvectors of S

* Principal curvatures are eigenvalues ot S

* Note: S 1s not a symmetric matrix! Hence, eigenvectors are not
orthogonal in R%; only orthogonal with respect to induced metric g.



Shape Operator —Example

Consider a nonstandard parameterization of the cylinder (sheared along z):

f(u,v) := (cos(u),sin(u), u + v) df = (—sin(u),cos(u),1)du + (0,0,1)dv
N = (cos(u),sin(u),0) dN = (—sin(u),cos(u),0)du
df oS =dN
- —sin(u) 0 | | - | —sin(u) 0
cos(u) 0 gll gu — cos(u) 0 df(XZ) ar(x ‘4
1 1 e B 0 f(X1)
A‘

W

K2:1

df(Xl) — (O, 0,1) K1 =0 L X2<Xl
df (Xp) = (sin(u), — cos(u),0) ’ }f\

Key observation: principal directions orthogonal only in R3.




Umbilic Points

e Points where principal curvatures are equal are called umbilic points

e Principal directions are not uniquely determined here

e What happens to the shape operator S?

e May still have full rank!

e Just have repeated eigenvalues, 2-dim. eigenspace

' ' 1
lir 0 K1 = Kp = — VX, SX:%X

"=l 0 1/ r

Could still of course choose (arbitrarily) an orthonormal pair X1, X»...



Principal Curvature Nets

e Walking along principal direction field yields principal curvature lines

e Collection of all such lines is called the principal curvature network
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Separatrices and Spirals

e If we keep walking along a principal curvature line, where do we end up?

e Sometimes, a curvature line terminates at an umbilic point in both directions; these so-
called separatrices (can) split network into regular patches.

e Other times, we make a closed loop. More often, however, behavior is not so nice!




Application —Quad Remeshing

e Recent approach to quad meshing: construct net roughly aligned
with principal curvature (but in a way that avoids spirals!)

from Knoppel, Crane, Pinkall, Schréder, “Stripe Patterns on Surfaces”



Gaussian and Mean Curvature

Gaussian and mean curvature also fully describe local bending:

Gaussian K := kK>
mean* H := 5(x; + k)

—

“S5)

“convex” K >0 “developable” K = 0 K <0
H #0 H #0 “minimal” H = 0

*Warning: another common convention is to omit the factor of 1/2



Gaussian Curvature — Intrinsic Definition

 Originally defined Gaussian curvature as product of principal curvatures

e Can also view it as “failure” of balls to behave like Euclidean balls

Roughly speaking,

More precisely:

B (1, €)| = By (p,0)] (1- 136 +0())




Gauss-Bonnet Theorem

e Recall that the total curvature of a
closed plane curve was always
equal to 27t times turning number k

* O: Can we make an analogous
statement about surfaces?

e A: Yes! Gauss-Bonnet theorem says
total Gaussian curvature is always
27t times Euler characteristic x

e For (closed, compact, orientable)
surface of genus g, Euler
characteristic given by

X :=2—29

Curves

L
/ K ds = 27tk
0

Surfaces

/ K dA = 271y
M




Gauss-Bonnet Theorem with Boundary

Can easily generalize to surfaces with boundary: X=2—-29—Db

/ KdA+/ Ko ds = 27T
M oM

M M M

\ /aM \ /BM L\/MAQ

Key idea: neither changing a surface nor its boundary affects total curvature.




Example: Planar Disk

Q: What does Gauss-Bonnet tell us for a disk in the plane?

A: Total curvature of boundary is equal to 27t (turning number theorem)

p-
84

N
/KdA+/ Kgds:?_m( / KgdS:.?.ﬂ
M oM oM




Total Mean Curvature?

Theorem. (Minkowski): for a convex surface,

/ HdA > VarA
M

Q: When do we get equality?

A: For a sphere.

Note: not a topological invariant; just an inequality.




Topological Invariance of Umbilic Count

Can classify regions around (isolated) umbilic points into three types based on
behavior of principal network:

'

CRL
LS 3555
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lemon (k1) star (k») monstar (k3)

Fact. If k1, k2, k3 are number of umbilics of each type, then

K1 — Ky + K3 = 2%




First & Second Fundamental Form

e First fundamental form I(X,Y) is another I(X,Y) := (df (X),df (Y))
name for the Riemannian metric ¢(X,Y)
[I(X,Y) := (dN(X),df(Y))

* Second fundamental form is closely related
to normal curvature xn

e Second fundamental form also describes
the change in first fundamental form
under motion in normal direction

e Why “fundamental?”First & second
fundamental forms play role in

df(X),dN(X)) II(X, X)

important theorem... kN (X) =

df(X)2 I(X,X)



Fundamental Theorem of Surfaces

* Theorem. Two surtfaces in R3 are identical up to rigid motions it
and only if they have the same first and second fundamental
forms.

— However, not every pair of bilinear forms I, II describes a
valid surface—must satisfy the Gauss Codazzi equations

e Analogous to fundamental theorem of plane curves:
determined up to rigid motion by curvature

— However, for closed curves not every curvature function is
valid (e.¢., must integrate to 2km)



Fundamental Theorem of Discrete Surfaces

e Fact. Up to rigid motions, can recover a .
discrete surtace trom its dihedral angles and ‘
edge lengths.

=D .
aq

e Fairly natural analogue of Gauss-Codazzi;
data is split into edge lengths (encoding I)
and dihedral angles (encoding II)

e Basic idea: construct each triangle from its
edge lengths; use dihedral angles to
globally glue triangles together

from Wang, Liu, and Tong,
“Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle Meshes”



Other Descriptions of Surfaces?

* Classic question in differential geometry:

“What data 1s sufficient to completely determine a surface in space?”

 Many possibilities...
— first & second fundamental form (Gauss-Codazzi)
— mean curvature and metric (up to “Bonnet pairs”)
— convex surfaces: metric alone is enough (Alexandrov/Pogorolev)
— Gauss curvature essentially determines metric (Kazdan-Warner)

e ...in general, still a surprisingly murky question!



Open Challenges in Shape Recovery

e What other discrete quantities determine a 45(( s _fgf@ _
f 0 "~ \\ R Curvature ~\‘;-‘\.
S ur ace ° - ‘ estimation & \ o,
Original model Principal curvatures
e ...and how can we (efficiently) recover a @gﬁgﬁé
surface from this data?

e Lengths + dihedral angles work in general
(fundamental theorem of discrete surfaces);
lengths alone are sufficient for convex
surfaces. What about just dihedral angles?

e Next lecture: will have a variety of discrete
curvatures. Which are sufficient to describe
which classes of surfaces?

Original

o Why bother? Ofters new & different ways to

analyze, process, edit, transmit, ... curved
surfaces digitally.

"

Kio2 — 15 Ky — =Ky

from Eigensatz & Pauly, “Curvature Domain Shape Processing”
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