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Laplace Beltrami—Overview
• Laplace-Beltrami operator—or just “Laplacian”— 

generalizes ordinary Laplacian to curved domains

– denote by capital delta (or nabla squared…)
• Shows up shockingly often in geometry & physics

• Discrete Laplacians ubiquitous in algorithms:

– physical simulation
– graph theory/networks
– machine learning
– geometry processing
– …

• Why? Reduces problems to sparse linear algebra
– fast, lots of existing code/algorithms, …

Laplacian Laplacian
Hessian

Pierre-Simon
Laplace



Laplacian in Physics

Laplace equation heat equation wave equation

Provides basic model for wide variety of physical behavior:

Build on top of basic equations to model many systems (elasticity, Schrödinger, …)



Laplacian in Geometry

curvature isometry invariance

We will see many more properties/examples/applications as we progress…

Also ubiquitous in differential geometry, mesh processing:

frequency decomposition



Review: Laplacian in Rn

(twice differentiable)

In 2D:

Basic definition: Laplacian gives sum of 2nd derivatives along coordinate axes



Laplacian in Rn—Examples
Example. u1(x,y)

u2(x,y)Example.

Question: what does the Laplacian mean?



Second Derivative—Convexity



Second Derivative—Curvature



Review: Graph
• Useful discrete analogy for 

understanding Laplace-Beltrami: 
graph Laplacian

• Recall that a graph G = (V,E) is a 
collection of vertices V connected 
by edges E

• Example: each vertex represents 
a person in a social network; two 
people are connected by an edge 
if they are friends.



Graph Laplacian
• Suppose we store a value ui on each 

vertex i

• Graph Laplacian L gives deviation from 
average value of all neighbors j

• E.g., if values encode the intelligence 
of each person in the network, then 
Laplacian says whether, on average, 
you’re more or less intelligent than 
your friends.

i

j

Key idea: Laplacian is deviation from local average



Second Derivative—Deviation from Average



Second Derivative—Deviation from Average



Laplacian—Deviation from Average
In general, can think of the 
Laplacian of a function u as 
difference between value at a 
point x0, and the average value 
over a small sphere (or ball) 
around x0.

sphere
area

integral over
sphere

value at
center

u(x) u(x0)



Heat Equation
• Averaging perspective provides intuition 

for basic physical equations

• E.g., heat equation says change in function 
value is equal to Laplacian of function

• Intuitively: at each point in time, value 
moves toward average of nearby values

• Eventually, all values become the same 
(constant)

Key idea: concave bumps get “pushed down” / convex bumps get “pushed up”

heat equation



Laplace equation
• Suppose we keep boundary values fixed, 

and run the heat equation for a very long 
time…

• Eventually, value at each point will equal 
the average value in a small neighborhood

• Resulting function is called “harmonic,” 
solution to Laplace equation

Key idea: each value is equal to average of its neighbors
Laplace equation

• Graph analogy: 
everybody in a social 
network is, on average, 
just as intelligent as all 
their friends



Wave Equation
• Wave equation instead says that change in 

velocity is equal to Laplacian of displacement

• I.e., if a point is above the local average height, it 
will experience a downward force; if below, an 
upward force

wave equation

Question: how can we generalize to curved domains?



Definitions & Basic Properties



Many Definitions
In the smooth setting, there are many equivalent ways to express the Laplacian:

Most of these apply directly to curved domains (Laplace-Beltrami)…

sum of partial derivatives

Brownian motion (random walks)

differential forms
deviation from local average

divergence of gradient

trace of Hessian Hessian of Dirichlet energy



Sum of Partial Derivatives

Euclidean case (2D):

Laplace-Beltrami operator

Note: rarely used as a starting point for numerics/algorithms…

Riemannian metric



Review: Hessian
• In Rn, Hessian ∇2u of a function u is matrix of 

second partial derivatives

• Provides “best quadratic approximation” of u 
around a point



Review: Hessian
• In Rn, Hessian ∇2u of a function u is matrix of 

second partial derivatives

• Provides “best quadratic approximation” of u 
around a point



Laplacian via Hessian
• Laplacian is the trace of the Hessian

– In Rn: just the sum of diagonal elements

• Can also express Hessian as directional 
derivative of gradient

• Similar idea on a curved surface:

– first take the exterior derivative of the 
function (instead of the gradient)

– then take the covariant derivative* of the 
resulting 1-form to get the Hessian

– Laplacian is again the trace of the Hessian

Euclidean:

Curved surface:

*Will define covariant derivative later on…



Laplacian via Divergence of Gradient
• Another common way to express the Hessian: 

divergence of the gradient

• Gradient of any function u gives vector field that 
points in direction of “steepest ascent”

– maxima become sinks; minima become sources

• Divergence of any vector field X measures how 
much it locally behaves like a sink/source

• Laplacian will therefore be positive near minima, 
negative near maxima

• Can generalize to manifolds using our grad/div 
operators for curved domains…

u

–

+

0



Laplacian via Exterior Calculus
• To express grad, div, and curl 

on curved domains, we used 
the exterior derivative d & 
Hodge star ＊

• By composing these operators 
and simplifying, we get 
another nice expression for 
the Laplacian

• For surfaces, nicely splits up 
geometric aspects of operator

• Bonus: easy to implement 
numerically via discrete 
exterior calculus

grad div

Laplace-Beltrami

0-form Hodge star
(area form)

1-form Hodge star
(conformal structure)



Laplacian via Random Walks
• Deep connection between Laplacian 

and random walks—formally: 
Brownian motion Xt

• Average location of many random 
walks approaches heat kernel kt(x,y)

– heat diffused from x to y after time t

• Heat kernel is “fundamental solution” 
to heat equation

• Laplacian of function is hence change 
in average value seen by a random 
walker over time (“infinitesimal 
generator”)

heat kernelBrownian motion

Intuition: ∆u is difference 
between function and “blurred 
version” of function.



Laplacian via Dirichlet Energy
• Finally, can understand Laplacian in terms of 

the Dirichlet energy

• Common notion of regularity / “smoothness” 
arising in geometry, physics, & algorithms

• Natural starting point for discretization, e.g., 
finite element methods

• Can use Laplacian to express Dirichlet energy 
as a quadratic form:

Dirichlet energy

• Will take a closer look later, via a basic 
interpolation problem



Some Basic Properties
• Constant functions in the kernel

– in Rn: linear functions in the kernel
• Invariant to rigid motions
• In fact, invariant to isometries

– e.g., f and η ○ f give same induced metric

• Self-adjoint (analogy: symmetric)
• Elliptic (loose analogy: positive definite)

– both xTAx and -⟨∆u,u⟩ are convex/“bowl shaped”

– have a unique minimizer (up to constants)

Key idea: Laplacian behaves like an (almost invertible) positive-semidefinite matrix.

self-adjoint



Spectral Properties
• Review: spectral theorem.                                               

Real symmetric matrix A has
– real eigenvalues λ1, …, λn

– orthogonal eigenvectors e1, …, en

• Likewise, self-adjoint elliptic operator L on a 
compact domain has:

– a discrete set of eigenvalues λ1, λ2, …
– orthogonal eigenfunctions φ1, φ2, …

• E.g., 2nd derivative operator on circle
– basis for Fourier analysis/signal processing

Example: 2nd derivative on S1=[0,2π)



Spectral Properties
• Review: spectral theorem.                                               

Real symmetric matrix A has
– real eigenvalues λ1, …, λn

– orthogonal eigenvectors e1, …, en

• Likewise, self-adjoint elliptic operator L on a 
compact domain has:

– a discrete set of eigenvalues λ1, λ2, …
– orthogonal eigenfunctions φ1, φ2, …

• E.g., 2nd derivative operator on circle
– basis for Fourier analysis/signal processing

• Laplacian: “frequencies” on any shape
– Basis for spectral geometry processing see: Lévy & Zhang, “Spectral Mesh Processing”



Dirichlet Energy & Harmonic Functions

adapted from: Crane, Solomon, Vouga, “Laplace-Beltrami: The Swiss Army Knife of Geometry Processing”



• Given a few data points, or values on 
the boundary, how should rest of the 
function look?

• Statistics: scattered data interpolation 
(“thin plate spline”)

• Machine learning: semi-supervised 
learning (“Laplacian learning”)

• Physics: steady-state solution (e.g., heat 
flow, elasticity, soap bubbles, …)

• Geometry processing: shape editing, 
surface parameterization, …

• …

Interpolation



Interpolation Problem
• Given:

– a region
– boundary values

• Goal: find a function u that
– is equal to g on the boundary
– fills in the interior “as smoothly 

as possible”

Question: what does “as smoothly as possible” mean?



Interpolation Problem—Piecewise Constant
• Smoothest possible function, 

perhaps, is one that is constant
– but no constant function u(x) = c 

can interpolate both boundary 
values g = +1 and g = -1.

– piecewise constant function has 
big “jump”—not very smooth

• Idea: look for function that 
matches boundary data and is 
“as close to constant as possible”



Interpolation Problem—Dirichlet Energy
• Dirichlet energy ED measures failure 

of a function to be constant
– zero for constant functions
– integrand will be large in regions 

with rapid change in value
• To find a good interpolating 

function, minimize Dirichlet energy
– (among functions with given 

boundary data)

0-1 +1

u

0 max



Dirichlet’s Principle
• Q: How do we minimize ED(u)?
• A: As with an ordinary function, find argument u* for 

which 1st derivative (gradient) is equal to zero
– will be a global minimizer because ED is convex

• Exercise: show that
1. Dirichlet energy can be written in terms of Laplacian
2. Minimizing function has Laplacian equal to zero

A function minimizes Dirichlet energy if and only if it solves Laplace equation.

0-1 +1



Aside: History of Dirichlet’s Principle

from Morris Kline, “Mathematical thought from ancient to modern times”, vol 3 (1972)



Harmonic Functions
• Minimizer of Dirichlet energy is a harmonic function
• Play a key role throughout geometry, physics, …

• Physical interpretation: temperature at steady state
• Mean value property: equal to average over any ball

• Maximum principle:

– no extrema at interior points
– max/min must be found on boundary

harmonic function

x



u

Harmonic Functions on a Surface
• Analogous problem on curved domains:

– fix function values on some region A ⊂ M
– solve Laplace equation (now using Laplace-Beltrami)



Poisson Equation
• Recall that Laplace equation is stationary 

solution to heat equation

• What if we have a heat source inside the 
domain?

– and still have fixed boundary values 
(e.g., heat sink)

• After a long time, get a stationary 
solution—Poisson equation

Poisson equation

g = -1

f

Ω
min

max



Harmonic Green’s Function
• Can also think about what Poisson 

equation does for a single “spike” on 
the right-hand side (Dirac delta)

• Solution falls off smoothly, called a 
harmonic Green’s function

• Since equation is linear, get the 
solution for multiple spikes by 
summing Green’s functions

• More generally, can convolve right-
hand side with Green’s function to get 
solution

Key idea: solving a linear PDE is equivalent to convolving with its fundamental solution



Poisson Equation—Variational Perspective
• Like Laplace equation, Poisson 

equations also arise naturally from 
energy minimization

• Example. Given vector field X, 
find scalar potential u that “best 
explains” X

• If X actually comes from the 
gradient of a function u, Poisson 
equation will recover this function

Key idea: Poisson equation can be used to “integrate” a vector field.



Boundary Conditions



Boundary Conditions
• Get a sense from examples that boundary 

conditions are very important
– e.g., for harmonic functions, minimal 

surfaces, completely determine solution
• Often trickiest/most painful part—easy to 

get wrong!
• What kinds of boundary conditions can we 

have?
– Dirichlet — fixed values
– Neumann — fixed derivatives
– Robin — mix of values & derivatives
– …

Q: When can boundary conditions be satisfied?



Dirichlet Boundary Conditions
On interval [0,1], many possible functions w/ values u0, u1 at endpoints:

Key idea: “Dirichlet” just means boundary values are fixed.



Dirichlet Boundary Conditions
Likewise many possible functions w/ slope v0, v1 at endpoints:

Key idea: “Neumann” just means boundary derivatives are fixed.



Mixed Dirichlet & Neumann
Can also prescribe some values, some derivatives:

But what if we also have conditions on the interior?



Laplace w/ Dirichlet Boundary Conditions (1D)
For a 1D Laplace equation, can we always satisfy Dirichlet conditions?

Yes: a line can interpolate any two points.

1D Laplace:

Solutions:



Laplace w/ Neumann Boundary Conditions (1D)
What about Neumann—can we prescribe the derivative at both ends?

No! A line can have only one slope.

1D Laplace:

Solutions:



Laplace w/ Dirichlet Boundary Conditions (2D)
• Let’s now consider a Laplace equation in 2D
• Can we always satisfy Dirichlet boundary 

conditions?
• Yes*: Laplace is steady-state solution to heat 

flow—just let it run for a long time…
– Dirichlet data is “heat” along boundary

*Subject to very mild/reasonable conditions on boundary geometry, boundary data



Laplace w/ Neumann Boundary Conditions (2D)
• Suppose instead we prescribe the normal 

derivative along the boundary

• Can we always find a solution to the 
Laplace equation?

• Well, consider the divergence theorem
—“what goes in, must come out!”

Important: in general, a PDE may not have solutions 
for given boundary conditions

• Can only solve if Neumann data h 
integrates to zero over the boundary



Summary



Laplace-Beltrami—Summary
• Fundamental object throughout geometry, physics, 

computer science

• Many different definitions in smooth setting

• Most basic idea: measures deviation from average

• Also closely connected to Dirichlet energy—
measurement of “smoothness”

– minimized by harmonic function (long-time heat flow)

• Must think carefully about boundary conditions—
solution will not always exist!

– major source of mistakes/bugs…

• Next time: discretize!



Thanks!
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