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Laplace Beltrami— Ouverview

* Laplace-Beltrami operator —or just “Laplacian” — ﬁ v 2

generalizes ordinary Laplacian to curved domains

— denote by capital delta (or nabla squared...)
e Shows up shockingly often in geometry & physics

e Discrete Laplacians ubiquitous in algorithms:

— physical simulation
— graph theory/networks

N\ Pierre-Simon
— machine learning Laplace
— geometry processing

e Why? Reduces problems to sparse linear algebra

— fast, lots of existing code/algorithms, ...



Laplacian in Physics

Provides basic model for wide variety of physical behavior:

Laplace equation heat equation wave equation
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Build on top of basic equations to model many systems (elasticity, Schrodinger, ...)



Laplacian in Geometry

Also ubiquitous in differential geometry, mesh processing:

curvature isometry invariance frequency decomposition
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We will see many more properties/examples/applications as we progress...



Review: Laplacian in R”

u:R" - R (twice differentiable)

In 2D):

1 01
AM(X,;V) o axz (X,;V) + ayz

(X, y)

Basic definition: Laplacian gives sum of 2nd derivatives along coordinate axes



Laplacian in R"— Examples

Example.
uy(x,y) = —x* — 2y
Ay = %(—x2 — 2y°) 4 0~ (—x? —2y°) =
—2—4 = —6
Example.
uy (x,y) = x° — 3xy?
Auy = aajz (x> — 3xy?) - ?/ (x° —3xy?) =
ox —6x = 0

X
Question: what does the Laplacian mean? Y \/
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Second Derivative —Convexity

M(X) \
2 Au(x
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Review: Graph

e Useful discrete analogy for
understanding Laplace-Beltrami:
graph Laplacian

e Recall that a graph G=(V,E)is a
collection of vertices V connected

by edges E

e Example: each vertex represents
a person in a social network; two
people are connected by an edge
if they are friends.




Graph Laplacian

e Suppose we store a value u; on each
vertex 1

o Graph Laplacian L gives deviation from
average value of all neighbors j

e E.¢., if values encode the intelligence
of each person in the network, then ]
Laplacian says whether, on average,

you're more or less intelligent than (Lu); = Z u: | — u;
your friends. deg ik

Key idea: Laplacian is deviation from local average






Second Derivative— Deviation from Average
u(x)



Laplacian — Deviation from Average

Laplacian of a function u as
difference between value at a
point xy, and the average value
over a small sphere (or ball)
around xo.

In general, can think of the ‘ u(x)

1 1
Aulxo) o< lith 2 (\Se(xoﬂ sutuy O ”("”)>



Heat Equation

* Averaging perspective provides intuition

. . . heat equation
for basic physical equations

e E.g., heat equation says change in function
value is equal to Laplacian of function

e Intuitively: at each point in time, value
moves toward average of nearby values

e Eventually, all values become the same

(constant) TS

d ., , _
%M—AM

Key idea: concave bumps get “pushed down” / convex bumps get “pushed up”



Laplace equation

e Suppose we keep boundary values fixed, dy — Ay y _
and run the heat equation for a very long dt ’ ‘8 Q=38
time...

e Eventually, value at each point will equal
the average value in a small neighborhood

e Resulting function is called “harmonic,”
solution to Laplace equation

e Graph analogy:
everybody in a social ==
network is, on average,
just as intelligent as all —
their friends Au =0

Laplace equation

Key idea: each value is equal to average of its neighbors



Wave Equation

e Wave equation instead says that change in wave equation
velocity is equal to Laplacian of displacement

2
j?u:Au

e [e., if a point is above the local average height, it
will experience a downward force; if below, an
upward force

Question: how can we generalize to curved domains?



Definitions & Basic Properties



Many Definitions

In the smooth setting, there are many equivalent ways to express the Laplacian:

Au = lin% glz (4 — meang_(u)) Au = *dx*du
E—

deviation from local average

differential forms

Au = & / Vul?dVv
Ay — — 2y Au = tr(V-u) M Vu
— axZZ trace of Hessian Hessian of Dirichlet energy
] —
sum of partial derivatives q
Au=V - -Vu Au = 7 t_O]E[”(Xt)]

divergence of gradient

Brownian motion (random walks)

Most of these apply directly to curved domains (Laplace-Beltrami)...



Sum of Partial Derivatives

Riemannian metric Laplace-Beltrami operator

T, M x T,M — IR n_n 0 0
ST =3 Y Taa ax (Jdeug)(gl)--u

Euclidean case (2D):
. [1 0°

§=8 =19 1 det(g) = 1
n aZ
> Au =
PRl

Note: rarely used as a starting point for numerics/algorithms...



Review: Hessian

n . 2 . . .
® In R, Hessian V u of a function u is matrix of
second partial derivatives

* Provides “best quadratic approximation” of u
around a point

u(x) (x)

u:R* — R
?u  Pu
0x2 0x9Yy
o’u %u
dyox  Jy?




Review: Hessian

* InR" Hessian Vu of a function u is matrix of u:R* — R
second partial derivatives 2, 2T

e Provides “best quadrati imation” 2 dx2  0xdy

quadratic approximation” of u Vu = o 2

around a point WoxE o




Laplacian via Hessian

e Laplacian is the trace of the Hessian

— In R": just the sum of diagonal elements

e Can also express Hessian as directional
derivative of gradient

e Similar idea on a curved surface:

— first take the exterior derivative of the
function (instead of the gradient)

— then take the covariant derivative™ of the
resulting 1-form to get the Hessian

— Laplacian is again the trace of the Hessian

*Will define covariant derivative later on...

u:R? = R
0% 02
2.\ — |
tr(Veu) = L 8y2u
Euclidean:

(V*u)(X,Y) = (DxVu,Y)

Curved surface:

V%(,YM — (deu)(Y)
Au = tr(Vu) = tr(Vdu)



Laplacian via Divergence of Gradient

e Another common way to express the Hessian:
divergence of the gradient

e Gradient of any function u gives vector field that
points in direction of “steepest ascent”

— maxima become sinks; minima become sources

e Divergence of any vector field X measures how
much it locally behaves like a sink /source

e Laplacian will therefore be positive near minima,
negative near maxima

e Can generalize to manifolds using our grad/div
operators for curved domains...




Laplacian via Exterior Calculus

* To express grad, div, and curl ad div
on curved domains, we used grad div

the exterior derivative d & Vu = (du)jj V-X=xdxX
Hodge star *

e By composing these operators
and simplitying, we get
another nice expression for
the Laplacian

Au = V-Vu:>|<d>x<((di/t)ﬁ)b = xdxdu

Lap_lace-Beltrami

e For surfaces, nicely splits up

geometric aspects of operator — * (%
* Bonus: easy to implement / \
numerically via discrete 0-form Hodge star 1-form Hodge star

exterior calculus (area form) (conformal structure)



Laplacian via Random Walks

* Deep connection between Laplacian Brownian motion X; heat kernel k;(x, y)

and random walks—formally:
Brownian motion X;

* Average location of many random
walks approaches heat kernel ki(x,y)

— heat diffused from x to y after time ¢

e Heat kernel is “fundamental solution”
to heat equation

e Laplacian of function is hence change _gt u = Au /
. —  u(t,x) = | ki(x, d
{ (£, ) (5, y)9(y) dy

in average value seen by a random u| .
walker over time (“infinitesimal t=0 = ¢ N— ——

generator”) E[p(X:)]

Intuition: Au is difference

between function and “blurred AP = lim 1 (u(t) — M(O)) AP = % ‘t:()]E[(P(Xt)]

b 77 o t
version” of function. t—0



Laplacian via Dirichlet Enerqy

* Finally, can understand Laplacian in terms of

the Dirichlet enerqy Dirichlet Cnergy
e Common notion of regularity / “smoothness” 2
arising in geometry, physics, & algorithms /M v u d V

e Natural starting point for discretization, e.g.,
finite element methods

e Can use Laplacian to express Dirichlet energy
as a quadratic form:

(Au,u)) = /M ulAu dV

e Will take a closer look later, via a basic

interpolation problem

U V|



Some Basic Properties

e Constant functions in the kernel Au=0, u(x)=celR

— in R" linear functions in the kernel
self-adjoint

/ uAv:/ vA\u
M M

* |nvariant to rigid motions

e In fact, invariant to isometries

— e.g., fand n o f give same induced metric 8
e Self-adjoint (analogy: symmetric) :
e Elliptic (loose analogy: positive definite) oA =Aol

— both xTAx and -(Au,u) are convex | “bowl shaped”

— have a unique minimizer (up to constants) x*

Key idea: Laplacian behaves like an (almost invertible) positive-semidefinite matrix.



Spectral Properties

* Review: spectral theorem. -
Real symmetric matrix Ahas | A" = A

Aei — Aiei

— real eigenvalues Ay, ..., A,

— orthogonal eigenvectors ey, ..., e,

e Likewise, self-adjoint elliptic operator L on a

compact domain has:
— a discrete set of eigenvalues A1, A, ...
— orthogonal eigenfunctions ¢1, ¢, ...

e [.9.,2nd derivative operator on circle

— basis for Fourier analysis/signal processing

Example: 2nd derivative on 5'=[0,2)

/ o' dx = —/ u'v’ dx:/ u''v dx
Sl Sl Sl

% cos(nx) = —n* cos(nx)
% sin(nx) = —n? sin(nx)



Spectral Properties

o Review: spectral theorem. -
Real symmetric matrix Ahas | A" = A

Aei — Aiei

— real eigenvalues Ay, ..., A,

— orthogonal eigenvectorsej, ..., e,

o [ikewise, self-adjoint elliptic operator L on a
compact domain has:

— a discrete set of eigenvalues Ay, A, ...
— orthogonal eigenfunctions ¢1, ¢, ...
e L.q.,2nd derivative operator on circle

— basis for Fourier analysis/signal processing

e Laplacian: “frequencies” on any shape

— Basis for P ectral geamdry processing see: Lévy & Zhang, “Spectral Mesh Processing”



Dirichlet Energy & Harmonic Functions



Interpolation

e Given a few data points, or values on
the boundary, how should rest of the
function look?

 Statistics: scattered data interpolation
(“thin plate spline”)

* Machine learning: semi-supervised
learning (“Laplacian learning”)

e Physics: steady-state solution (e.g., heat
flow, elasticity, soap bubbles, ...)

o Geometry processing: shape editing,
surface parameterization, ...

u(x)]




Interpolation Problem

* Given:

— aregion Q) C RR?

— boundary values ¢ : 9() — R g=—1
e Goal: find a function u that

— is equal to g on the boundary

— fills in the interior “as smoothly
as possible”

Question: what does “as smoothly as possible” mean?



Interpolation Problem — Piecewise Constant

e Smoothest possible function,
perhaps, is one that is constant

— but no constant function u(x) =c
can interpolate both boundary g=—1
values ¢ =+1 and ¢ =-1.

— piecewise constant function has
big “jump”—mnot very smooth

e Idea: look for function that
matches boundary data and is
“as close to constant as possible”



Interpolation Problem — Dirichlet Enerqy

» Dirichlet enerqy Ep measures failure o 2
of a function to be constant Ep(u) := 2 /Q Vu|=dA

— zero for constant functions

U V|

/ [

— integrand will be large in regions
with rapid change in value

* To find a good interpolating
tunction, minimize Dirichlet energy

— (among functions with given

boundary data) \

0 max



Dirichlet’s Principle

e Q: How do we minimize Ep(u)?

e A: Aswith an ordinary function, find argument u* for
which 1st derivative (gradient) is equal to zero

— will be a global minimizer because Ep is convex
e Exercise: show that
1. Dirichlet energy can be written in terms of Laplacian

2. Minimizing function has Laplacian equal to zero

Au
U

0 on ()
¢ on 9d()

Ep(u) = /QuAu dA

A function minimizes Dirichlet energy if and only if it solves Laplace equation.




Aside: History of Dirichlet’s Principle

from Morris Kline, “Mathematical thought from ancient to modern times”, vol 3 (1972)



Harmonic Functions

e Minimizer of Dirichlet energy is a harmonic function harmonic function

e Play a key role throughout geometry, physics, ... Au =0
e Physical interpretation: temperature at steady state
* Mean value property: equal to average over any ball
e Maximum principle:

— no extrema at interior points

— max/min must be found on boundary

e
7CE Bg(x



Harmonic Functions on a Surface

* Analogous problem on curved domains: Au=0 on M\ A
— fix function values on some region A C M

u=g on A

— solve Laplace equation (now using Laplace-Beltrami)
g=—1 U Vul®

) .




Poisson Equation

e Recall that Laplace equation is stationary d
solution to heat equation

= Au+f on ()
on d()

=
=
|

=
|
09

e What if we have a heat source inside the
domain?

— and still have fixed boundary values
(e.¢., heat sink)

o After along time, get a stationary f
solution—~Poisson equation

(limt—mo)

—-f on () Q
¢ on 0dQ) g=-1

Poisson equation

Au
u




Harmonic Green’s Function

e Can also think about what Poisson | h@
equation does for a single “spike” on ¢, | AGy = Oy j Gy
the right-hand side (Dirac delta) ! | _* ‘

e Solution falls off smoothly, called a
harmonic Green’s function

e Since equation is linear, get the
solution for multiple spikes by
summing Green’s functions

e More generally, can convolve right- Au = Z CiOy, = u(x) = Z CiGy, (x)
hand side with Green’s function to get Z Z
colution n=f =)= [ Gy dy

Key idea: solving a linear PDE is equivalent to convolving with its fundamental solution



Poisson Equation — Variational Perspective

e Like Laplace equation, Poisson min / Vu — X|2
equations also arise naturally from u JM

energy minimization

o Example. Given vector field X,
find scalar potential u that “best
explains” X

e If X actually comes from the
gradient of a function u, Poisson
equation will recover this function

Key idea: Poisson equation can be used to “integrate” a vector field.



Boundary Conditions



Boundary Conditions

e Get a sense from examples that boundary
conditions are very important

— e.9., for harmonic functions, minimal
surfaces, completely determine solution

e Often trickiest/ most painful part—easy to
get wrong!

d()

e What kinds of boundary conditions can we
have?

— Dirichlet — tixed values
— Neumann — tixed derivatives ¢=—1

— Robin — mix of values & derivatives

Q: When can boundary conditions be satisfied?



Dirichlet Boundary Conditions

On interval [0,1], many possible functions w/ values uy, u; at endpoints:

u(x)

Ll():

— X

0 1

Key idea: “Dirichlet” just means boundary values are fixed.




Dirichlet Boundary Conditions

Likewise many possible functions w/ slope vy, v1 at endpoints:

Key idea: “Neumann” just means boundary derivatives are fixed.



Can also prescribe some values, some derivatives:

But what if we also have conditions on the interior?



Laplace w/ Dirichlet Boundary Conditions (1D)

For a 1D Laplace equation, can we always satisfy Dirichlet conditions?

1D Laplace:
0%
0% x

=\

Solutions:

u(x) =ax—+>b

Yes: a line can interpolate any two points.



Laplace w/ Neumann Boundary Conditions (1D)

What about Neumann—can we prescribe the derivative at both ends?

1D Laplace:
0%
0% x

=\

Solutions:

u(x) =ax—+>b

No! A line can have only one slope.



Laplace w/ Dirichlet Boundary Conditions (2D)

e Let’s now consider a Laplace equation in 2D

d()

e Can we always satisfy Dirichlet boundary
conditions?

e Yes™: Laplace is steady-state solution to heat
flow—just let it run for a long time...

— Dirichlet data is “heat” along boundary

Au
U

0 on ()
¢ on d()

*Subject to very mild / reasonable conditions on boundary geometry, boundary data



Laplace w/ Neumann Boundary Conditions (2D)

Important: in general, a PDE may not have solutions
for given boundary conditions

* Suppose instead ﬁve prescribe the normal Au =0 on ()
dertvative along the boundary ou
+ Can we always find a solution to th on = 1 o0 o0
an we always find a solution to the .
Laplace equation? (h:0Q) = R)
e Well, consider the divergence theorem 3,
—"“what goes in, must come out!” NN on L
N S S SR U SR S N YA T
| SRR bt TN
[oda [ audaa= | V-vuda=[ n-vuda Y3
N vl (L
du/on ,///;¢};m
. ~ - fo
e Can only solve if Neumann data h v i LA
integrates to zero over the boundary BN
DI
RN
N







Laplace-Beltrami— Summary

e Fundamental object throughout geometry, physics,

computer science

tr(V2u)

V -

e Many different definitions in smooth setting

* Most basic idea: measures deviation from average / Vi |2 A
M

* Also closely connected to Dirichlet energy—
measurement of “smoothness”

— minimized by harmonic function (long-time heat flow)

e Must think carefully about boundary conditions—
solution will not always exist!

— major source of mistakes/bugs...

e Next time: discretize!




N * Thanks!
\ %
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