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k-Vectors and k-Forms — Querview

® [.ast time: wedge
product

e Exterior algebra—"little volumes” (k-vectors)

o Where we’re headed: /\
e Exterior calculus—how do lengths, areas, *

volumes change over curved surfaces? Hodge

e Essential language for geometry & physics star

* Today:

e Focus on how to measure little volumes

e Key idea: volumes are measured by other
volumes!

e Will call such volumes “k-forms” /



Measurement and Duality

* Interesting observation: measurement devices have
the same dimension as the thing they’re measuring:

e t0 measure length, use something one-dimensional
(ruler, string, etc.)

e t0 measure volume, use something three-
dimensional (e.g., liquid measure)

® cfc.

e Same idea shows up in linear algebra:

* a vector can be “paired” with another vector to get
a measurement (inner product)

e Exterior calculus will generalize this idea:

¢ a k-dimensional volume gets “paired” with a dual
k-dimensional volume to get a measurement




Motivation: Measurement in Curved Spaces

 For simplicity, we will first study exterior
calculus in flat spaces (IR")

e May seem like much ado about nothing:
e.g., pairing vectors and dual vectors will
look no different from inner product

e On curved spaces things get more
interesting—e.¢., “bending” the plane gives
a different inner product at each point
(Riemmanian metric)

e Exterior calculus will help us incorporate
the Riemannian metric into our
calculations in a systematic way




Covectors

OrS




Vector-Covector Duality

e Duality is a pervasive idea in mathematics—two
sets of objects that are in one-to-one
correspondence, but play complementary roles.

e Important duality in ditferential geometry and
exterior calculus: vectors vs. covectors.

* [ .oosely speaking: vector (yin)

e covectors are objects that “measure”
e vectors are objects that “get measured”

e Just as wedging together vectors yields k-vectors,
wedging together covectors will yield k-forms,
which are dual to k-vectors.

/ covector (yang)



Analogy: Row & Column Vectors

In matrix algebra, we make a distinction between row vectors and column vectors:

w1 ap ag || U

Q: Why do we make the distinction? What does it mean geometrically?
What does it mean as a linear map? Is this distinction useful?



Vectors and Covectors

n — covector with unit magnitude
u — vector of any magnitude

Key idea: a covector measures length of vector along a particular direction



Dual Space & Covectors

Definition. Let V be any real vector space. Its dual space V* is the collection of
all linear functions « : V' — R together with the operations of addition

(a4 B)(u) := alu) + p(u)

and scalar multiplication
(cae)(u) := c(a(u))

foralla,B € V', u € V,and c € R.

Definition. An element of a dual vector space is called a dual vector or a covector.

(Note: unrelated to Hodge dual!)



Covectors — Example (R>)

e As a concrete example, let’s consider the vector space V = R”

e Recall that a map fis linear if for all vectors u, v and scalars a, we have

fu+v)=f) +f(v) and  f(au) =af(u)

e Q: What's an example of a linear map from R* to IR? ;
e Suppose we express our vectors in coordinates u = (x,y,z) R
vector
* A: One of many possible examples: f (x,y,z) = x + 2y + 3z
* Q: What are all the possibilities? | ao b toC |
covector

* A: They all just look like f(x,y,z) = ax + by + cz for constants a,b,c

* In other words in Euclidean R3, a covector looks like just another 3-vector!



Covectors — Example (Functions)

e[f covectors are just the same as vectors, why even bother?

e Here’s a more interesting example:

Example. Let V be the set of integrable functions f : |0,1] — IR, and consider maps

o cp:V%IR;foolf(x)dx

e 6:V > R;f+— f(0) f(x)\/\

[s V a vector space? Are ¢ and é covectors? \

0 1

Key idea: the difference between primal & dual vectors is not merely superficial!



Sharp and Flat

U1 01 01
T
U vy | ——— | uy upy uz || v
us 03 03
)
U, v —_—> ”b(v)
f
x, B — > a(B)

Analogy: transpose
(Why use musical symbols? Will see a bit later...)



Sharp and Flat w/ Inner Product

Mi1 M1y My U1
up up us | | Mip My Mo %,
M1z Moz Msz3 U3

W (v) =u'Mu = () = (u,-)

w(B) =aM B’ = (f, ) = a()

Basic idea: applying the flat of a vector is the same as taking the inner product;
taking the inner product w/ the sharp is same as applying the original covector.






Covectors, Meet Exterior Algebra

* 50 far we've studied two distinct concepts

primal dual
e Starting with an ordinary vector space...
. : p , linear
o exterior algebra—build up “volumes” from vectors vectors | covectors
algebra
* covectors—linear maps from vectors to scalars .
exterior
, , k-vectors | k-forms
* Combine to get an exterior algebra of covectors algebra

e Will call these objects k-forms

e Just as a covector measures vectors, a k-form will measure k-vectors

¢ In particular, measurements will be multilinear, i.e., linear in each 1-vector



Measurement of Vectors

Geometrically, what does it mean to take a linear measurement of a single vector?

Observation: only thing we can measure is extent along some direction.



Computing the Projected Length

e Concretely, how do we compute projected length of one vector along another?
e [f @ has unit norm, then we can just take the usual dot product

e Since we think of u as the vector “getting measured” and « as the (co)vector
“doing the measurement”, we’ll write this as a function application a(u):

U

n o
a(u) =y o
1=1




1-form

We can of course apply this same function when a does not have unit length:

(x(u) L= sziui

Interpretation?

Projected length gets scaled by magnitude of a.



Review: Determinants & Signed Volume

¢ The determinant of a square matrix is often

SR

-

e When you hear the word “determinant”
you should instead think “volume”

* more precisely: signed volume
e sign flips with orientation
eE.g., 2D signed area given by cross product

* More generally, the determinant of a \

. . : Ay A A
introduced via some formula or al 24 orithm. | Al bt

collection of vectors vy, ..., vy is the signed A = | v; v

volume of the parallelepiped defined by N
these vectors

__ //7

-

03

A1 A Az

Az1 Az Aszz |

det(A) = vol(vq, vy, v3)

e/

p area(u,v) = U102 — U201

O1U> — O2U1

12
Ary1 Apx

113
Ans

—deg. A3z

v, ———— —




Measurement of 2-Vectors

Geometrically, what does it mean to take a multilinear measurement of a 2-vector?

/

Intuition: size of “shadow” of one parallelogram on another.



Computing the Projected Area

e How do we compute projected area of a parallelogram (u,v) onto a plane?
—pick any orthonormal basis a,f for the plane
— project vectors onto plane

—then apply standard formula for area (cross product)

Projection

u— (a(u), B(u))

v (a(v),B(0)) plu),
Area IX(UT

a(u)p(v) —a(v)p(u)



2-form
We can of course apply this same expression when a,f are not orthonormal:

(@A B)(u,v) i= a(u)p(v) — a(v)B(u)

Defines application of 2-form to two vectors.

p

/ X

U

Interpretation?

Projected area of u,v gets scaled by area of parallelogram with edges «a,8.



Antisymmetry of 2-Forms

Notice that exchanging the arguments of a 2-form reverses sign:

(aNB)(v,u) = a(v)p(u) —alu)B(v)
—(a(u)B(v) —a(v)p(u))
—(a A B)(u,0)

Q: What does this antisymmetry mean geometrically?

A: It means we care about the relative orientation of the two parallelograms.



Antisymmetry of 2-Forms

Recall that exchanging the arguments to a wedge product also reverses sign:

(BAw)(u,0) pu)a(v) — p(v)a(u)
—(a(u)p(v) —a(v)p(u))
—(a A B)(u,v)

Q: What does this other antisymmetry mean geometrically?

A: It accounts for the orientation of the 2-vector (“what do we want to measure?”)



Measurement of 3-Vectors

Geometrically, what does it mean to take a multilinear measurement of a 3-vector?

"~
~
~
~
~
~

Observation: in IR”, all 3-vectors have same “direction.” Can only measure magnitude.

—



Computing the Projected Volume

e Concretely, how do we compute the volume of a parallelepiped w/ edges u,v,w?
e Suppose (a,f,7) ,is any orthonormal basis
e Project vectors u,v,w onto this basis

* Then apply standard formula for volume (determinant)

Projection u +— (a(u),B(u), v(u))
v (a(v), B(v),7(v))
w i (a(w), p(w), v(w))

Volume “(u) Dé(U) a(w)

p(u) B(v) B(w)

y(u) (@) y(w)
— (1) B(0) 7 (w) + &(0)B(w) 7 (1) + &(w)B(u)Y(0)
—a(u)B(w)y(v) —a(w)p(v)y(u) — a(v)p(u)y(w)




3-form

We can of course apply this same expression when a,f3,y are not orthonormal:

(@ ANBAY)(w,0,w) = a(u)p(v)y(w) +a(v)p(w)y(u) + a(w)p(u)y(o)
— a(u)p(w)y(v) — a(w)B(v)y(u) — a(v)p(u)y(w)

Interpretation (in R3)?

Volume of u,v,w gets scaled by volume of «,8,y.




k-Form

* More generally, k-torm is a fully antisymmetric, multilinear measurement of a k-vector.
e Typically think of this as a map from k vectors to a scalar:

x:Vx---V—=1R
A,—/

k times
e Multilinear means “linear in each argument.” E.gq., for a 2-form:

a(au + bu, w) an(u, w) + ba(v, w)
a(u,av+bw) = aa(u,v)+ ba(u,w) vi,o,w e V,a,b € R

 Fully antisymmetric means exchanging two arguments reverses sign. E.g., 3-form:

a(u,v,w) =a(v,w,u) =a(w,u,v) =

—a(u,w,v) = —a(w,o,u) = —ua(v, U, w)



k-Forms and Determinants

e For 3-forms, saw that we could express application of a k-form via a determinant
e Captures the fact that k-forms are measurements of volume
e How does this work more generally?

e Conceptually: “project” onto k-dimensional space and measure volume there

aq(uy) - g (ug)
(g A ANag)(uq, ..., ug) = . .
ap(ur) - g (ug)
k=1: k=2:

det (| aq(uq1) |) = aq(uq) det(_ ap(ur) g (up) )

ap(uq)  ao(u2)
(Determinant of a 1x1 matrix is - -
just the one entry of that matrix!) = oy (uq)an(uz) — o (uz)az(uy)




A Note on Notation

* A k-form effectively measures a k-vector
e For whatever reason, nobody writes the argument k-vector using a wedge

e Instead, the convention is to write a list of vectors:

(At least type can be inferred from notation: if there’s a wedge, it’s a k-form!)



O-Forms

e What's a 0-form?

* In general, a k-form takes k vectors and produces a scalar
* 50 a 0-form must take 0 vectors and produce a scalar
*l.e, a0-formis a scalar!

e Basically looks like this:

Note: still has magnitude, even though it has only one possible “direction.”



k-Forms in Coordinates



Measurement in Coordinates

* [dea of measurement becomes very concrete __
once you have a coordinate system -

13
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e L.q., for a vector: b orer + s
*just measure along each coordinate axis h

e use these measurements to take a weighted .
linear combination of bases
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Let’s see how this works for k-forms... LRI



Dual Basis

In an n-dimensional vector space V, can express vectors v in a basis ey, ..., éx:

VECTORS

U = vlel -+ vzez

’Z]:’Z]lgl_|__|_'0nen €

The scalar values v are the coordinates of v. v

We can also write covectors « in a so-called dual basis €1, ..., e:

e
1 n 1 1
x=wre + -+ age v
These bases have a special relationship, namely: 24 COVECTORS
| 1 =i
e'(ej) =9 ) / w | 4= me +ae”

0, otherwise

(Q: What does ¢: mean, geometrically?)



1-form — Example in Coordinates

e Some simple calculations in coordinates help to solidify understanding of k-forms.

o Let’s start with a vector v and a 1-form a in the plane:

v = 2e1 + 26> i
= —2¢! + 3¢? /
n(v) = (—2e' +3e?)(2e1 + 2e)
— —2¢! (261 + 2er) + 38 (261 + 282 :

_ 1—4/M+6M+6M

— —4 1+ 6 (ustlike a dot product!)
— 2 e




2-form — Example in Coordinates

Consider the following vectors and covectors: 24

u = 2eq + 2e» x = e' + 3¢

v = —2e1 + 265 B =2e' + ¢ ‘« U
We then have: \/
(A B)(u,v) = a(u)p(v) —a(v)p(u) ’

= (e AN B)(u,v) =8-(—2) —4-6 = —40.

Q: What does this value mean, geometrically? Why is it negative?




Einstein Summation Notation

Why are some indices “up” and others “down”?

Bemerkungzur Vereinfachungder Schreibweiseder Ausdritcke. EanauEs A Eee
Ein Blick auf die Gleichungen dieses Paragraphen zeigt, () < ) me s ) A

daB tiber Indizes, die.zweilnal unter einem Summenzeichen anmr

auftreten [z. B. der Index % in (5)], stets suramiert wird, Ziatii st

und zwar nur iber zweimal auftretende Indizes. Es ist des- imneapeinets

halb méglich ; ohne die Klarheit zu beeintriichtigen, die e

Summenzeichen wegzulassen. Dafiir fithren wir die Vorschrift

ein: Tritt ein Index in einem Term eines Ausdruckes zwelmal

auf, so ist fiber ihn stets zu summieren, wenn nicht ausdrick-

lich das Gegenteil bemerkt ist,

o el

B LIS 207 37 RSB0 X

':',_ ..t EALES AT
i trns | o

— Einstein, “Die Grundlage der allgemeinen Relativititstheorie” (1916)



Einstein Summation Notation

Key idea: sum over repeated indices. | x'y; := Z x'y;

NOTE ON A SIMPLIFIED WAY OF WRITING EXPRESSIONS

A look at the equations of this paragraph show that there is
always a summation over indices which occur twice, and
only for twice-repeated indices. It is therefore possible,
without detracting from clarity, to omit the sum sign. For
this we introduce a rule: if an index in an expression
appears twice, then a sum is implicitly taken over this
index, unless specifically noted to the contrary.

— Einstein, “The Basis of General Relativity” (1916)
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Sharp and Flat in Coordinates

Q: What do sharp and flat do on a musical staff?

V® o

>, &
e

(raise pitch) (lower pitch)

Likewise, sharp and flat raise and lower indices of coefficients for 1-forms/vectors.

Suppose for instance that u# = « and a” = u. Then

u=tue +---+u'e,

f

—

& = et + -+ e b
<

(Sometimes called the musical isomorphisms.)



Coming Up: Differential Forms

e Often useful to attach a vector to each point to obtain a vector field (fluid flow, gradient, ...)

e Next time we will likewise attach a k-form to each point to obtain a differential k-form

oo

CIEEE
BERNEY

LI

&
i
L

vector vector field k-form differential k-form



Thanks!
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