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k-Vectors and k-Forms—Overview
• Last time:

•Exterior algebra—“little volumes” (k-vectors)

• Where we’re headed:

•Exterior calculus—how do lengths, areas, 
volumes change over curved surfaces?

•Essential language for geometry & physics

• Today:

•Focus on how to measure little volumes

•Key idea: volumes are measured by other 
volumes!

•Will call such volumes “k-forms”
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Measurement and Duality
•Interesting observation: measurement devices have 

the same dimension as the thing they’re measuring:
•to measure length, use something one-dimensional 

(ruler, string, etc.)
•to measure volume, use something three-

dimensional (e.g., liquid measure)
• etc.

•Same idea shows up in linear algebra:
•a vector can be “paired” with another vector to get 

a measurement (inner product)
•Exterior calculus will generalize this idea:

•a k-dimensional volume gets “paired” with a dual 
k-dimensional volume to get a measurement



Motivation: Measurement in Curved Spaces
•For simplicity, we will first study exterior 

calculus in flat spaces ( )

•May seem like much ado about nothing: 
e.g., pairing vectors and dual vectors will 
look no different from inner product

•On curved spaces things get more 
interesting—e.g., “bending” the plane gives 
a different inner product at each point 
(Riemmanian metric)

•Exterior calculus will help us incorporate 
the Riemannian metric into our 
calculations in a systematic way



Vectors & Covectors



Vector-Covector Duality
•Duality is a pervasive idea in mathematics—two 

sets of objects that are in one-to-one 
correspondence, but play complementary roles.

•Important duality in differential geometry and 
exterior calculus: vectors vs. covectors.

•Loosely speaking:

•covectors are objects that “measure”

•vectors are objects that “get measured”

•Just as wedging together vectors yields k-vectors, 
wedging together covectors will yield k-forms, 
which are dual to k-vectors.

vector (yin)
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Analogy: Row & Column Vectors
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Q: Why do we make the distinction?  What does it mean geometrically?
What does it mean as a linear map?  Is this distinction useful?

In matrix algebra, we make a distinction between row vectors and column vectors:



Vectors and Covectors

a(u)

Key idea: a covector measures length of vector along a particular direction

u



Dual Space & Covectors

(Note: unrelated to Hodge dual!)



Covectors—Example ( )
•As a concrete example, let’s consider the vector space V = 

•Recall that a map f is linear if for all vectors u, v and scalars a, we have

•Q: What’s an example of a linear map from  to ?

•Suppose we express our vectors in coordinates u = (x,y,z)

•A: One of many possible examples: f (x,y,z) = x + 2y + 3z

•Q: What are all the possibilities?

•A: They all just look like f(x,y,z) = ax + by + cz for constants a,b,c

•In other words in Euclidean  R3, a covector looks like just another 3-vector!
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Covectors—Example (Functions)

Key idea: the difference between primal & dual vectors is not merely superficial!

•If covectors are just the same as vectors, why even bother?
•Here’s a more interesting example:



Sharp and Flat

Analogy: transpose

2

4
u1
u2
u3

3

5

2

4
v1
v2
v3

3

5 ⇥
u1 u2 u3

⇤
2

4
v1
v2
v3

3

5T

u[(v)u, v

a, b a(b])

[

]

(Why use musical symbols?  Will see a bit later…)



a(b]) =

Sharp and Flat w/ Inner Product

Basic idea: applying the flat of a vector is the same as taking the inner product;
taking the inner product w/ the sharp is same as applying the original covector.
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k-Forms



•So far we’ve studied two distinct concepts

•Starting with an ordinary vector space…

•exterior algebra—build up “volumes” from vectors

•covectors—linear maps from vectors to scalars

•Combine to get an exterior algebra of covectors

•Will call these objects k-forms

•Just as a covector measures vectors, a k-form will measure k-vectors

•In particular, measurements will be multilinear, i.e., linear in each 1-vector

k-forms

Covectors, Meet Exterior Algebra

linear
algebra vectors

exterior 
algebra k-vectors

primal dual

covectors



Measurement of Vectors
Geometrically, what does it mean to take a linear measurement of a single vector?

Observation: only thing we can measure is extent along some direction.

a

u



Computing the Projected Length
•Concretely, how do we compute projected length of one vector along another?

•If α has unit norm, then we can just take the usual dot product

•Since we think of u as the vector “getting measured” and α as the (co)vector 
“doing the measurement”, we’ll write this as a function application α(u):
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1-form

Interpretation?

We can of course apply this same function when α does not have unit length:

Projected length gets scaled by magnitude of α.



Review: Determinants & Signed Volume
•The determinant of a square matrix is often 

introduced via some formula or algorithm.

•When you hear the word “determinant” 
you should instead think “volume”

•more precisely: signed volume

•sign flips with orientation

•E.g., 2D signed area given by cross product

•More generally, the determinant of a 
collection of vectors v1, …, vn is the signed 
volume of the parallelepiped defined by 
these vectors
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Measurement of 2-Vectors

Intuition: size of “shadow” of one parallelogram on another.

Geometrically, what does it mean to take a multilinear measurement of a 2-vector?



•How do we compute projected area of a parallelogram (u,v) onto a plane?

– pick any orthonormal basis α,β for the plane

– project vectors onto plane

– then apply standard formula for area (cross product)

Computing the Projected Area

Projection

Area
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v



2-form

Interpretation?

We can of course apply this same expression when α,β are not orthonormal:

Projected area of u,v gets scaled by area of parallelogram with edges α,β.
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Defines application of 2-form to two vectors.



Antisymmetry of 2-Forms
Notice that exchanging the arguments of a 2-form reverses sign:

Q: What does this antisymmetry mean geometrically?

A: It means we care about the relative orientation of the two parallelograms.



Antisymmetry of 2-Forms
Recall that exchanging the arguments to a wedge product also reverses sign:

Q: What does this other antisymmetry mean geometrically?

A: It accounts for the orientation of the 2-vector (“what do we want to measure?”)



Measurement of 3-Vectors

Observation: in , all 3-vectors have same “direction.”  Can only measure magnitude.

Geometrically, what does it mean to take a multilinear measurement of a 3-vector?



Computing the Projected Volume

Projection

Volume α
β

γ

•Concretely, how do we compute the volume of a parallelepiped w/ edges u,v,w?
•Suppose (α,β,γ) ,is any orthonormal basis
•Project vectors u,v,w onto this basis
•Then apply standard formula for volume (determinant)
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3-form

Interpretation (in )?

We can of course apply this same expression when α,β,γ are not orthonormal:

Volume of u,v,w gets scaled by volume of α,β,γ.
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k-Form
•More generally, k-form is a fully antisymmetric, multilinear measurement of a k-vector.

•Typically think of this as a map from k vectors to a scalar:

•Multilinear means “linear in each argument.” E.g., for a 2-form:

•Fully antisymmetric means exchanging two arguments reverses sign.  E.g., 3-form:



k-Forms and Determinants
•For 3-forms, saw that we could express application of a k-form via a determinant

•Captures the fact that k-forms are measurements of volume

•How does this work more generally?

•Conceptually: “project” onto k-dimensional space and measure volume there

k=2:k=1:

(Determinant of a 1x1 matrix is 
just the one entry of that matrix!)



A Note on Notation
•A k-form effectively measures a k-vector

•For whatever reason, nobody writes the argument k-vector using a wedge

•Instead, the convention is to write a list of vectors:

(At least type can be inferred from notation: if there’s a wedge, it’s a k-form!)



0-Forms

Note: still has magnitude, even though it has only one possible “direction.”

•What’s a 0-form?

•In general, a k-form takes k vectors and produces a scalar

•So a 0-form must take 0 vectors and produce a scalar

•I.e., a 0-form is a scalar!

•Basically looks like this:



k-Forms in Coordinates



Measurement in Coordinates
•Idea of measurement becomes very concrete 

once you have a coordinate system

•E.g., for a vector:

•just measure along each coordinate axis

•use these measurements to take a weighted 
linear combination of bases

Let’s see how this works for k-forms…
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Dual Basis
In an n-dimensional vector space V, can express vectors v in a basis e1, …, en:

The scalar values vi are the coordinates of v.

We can also write covectors α in a so-called dual basis e1, …, en:

These bases have a special relationship, namely:

(Q: What does ei mean, geometrically?)

COVECTORS

VECTORS



1-form—Example in Coordinates
•Some simple calculations in coordinates help to solidify understanding of k-forms.

•Let’s start with a vector v and a 1-form α in the plane:

(Just like a dot product!)



2-form—Example in Coordinates
Consider the following vectors and covectors:

We then have:

Q: What does this value mean, geometrically?  Why is it negative?



Einstein Summation Notation

— Einstein, “Die Grundlage der allgemeinen Relativitätstheorie” (1916)

Why are some indices “up” and others “down”?



Einstein Summation Notation

— Einstein, “The Basis of General Relativity” (1916)

Key idea: sum over repeated indices.

NOTE ON A SIMPLIFIED WAY OF WRITING EXPRESSIONS
A look at the equations of this paragraph show that there is 
always a summation over indices which occur twice, and 
only for twice-repeated indices.  It is therefore possible, 
without detracting from clarity, to omit the sum sign.  For 
this we introduce a rule: if an index in an expression 
appears twice, then a sum is implicitly taken over this 
index, unless specifically noted to the contrary.



Sharp and Flat in Coordinates
Q: What do sharp and flat do on a musical staff?

(raise pitch) (lower pitch)

Likewise, sharp and flat raise and lower indices of coefficients for 1-forms/vectors.

(Sometimes called the musical isomorphisms.)



Coming Up: Differential Forms
•Often useful to attach a vector to each point to obtain a vector field (fluid flow, gradient, …)

•Next time we will likewise attach a k-form to each point to obtain a differential k-form

vector fieldvector differential k-formk-form



Thanks!

DISCRETE DIFFERENTIAL GEOMETRY
AN APPLIED INTRODUCTION


