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Review—Exterior Calculus
•Last lecture we saw exterior calculus 

(differentiation & integration of k-forms)

•As a review, let’s try solving an equation 
involving differential forms in .

•Recall that any 1-form can be expressed as 
 for some pair of functions u,v

•Also recall that .

•Hence, know what u and v must look like

•In other words:

•…is this what you expected?

Given. Constant 2-form .
Find. A 1-form α such that dα = ω.



• Solving even very easy differential equations by 
hand can be hard!  (Imagine harder equations…)

• If equations involve measured data (e.g., domain 
geometry), forget about solving them by hand!

• Instead, use computation to approximate solutions
• Basic idea:

• replace domain with mesh
– oriented simplicial complex

• replace differential forms with values on mesh
– differential k-form becomes values on k-simplices

• replace differential operators with matrices
– e.g., signed incidence matrices give exterior derivative

Discrete Exterior Calculus—Motivation

(pictures: Elcott et al, “Stable, Circulation-Preserving, Simplicial Fluids”)



Discrete Exterior Calculus—Basic Operations
•In smooth exterior calculus, we saw many operations (wedge product, Hodge star, 

exterior derivative, sharp, flat, …)

•In the discrete setting, the most commonly used operations are the discrete exterior 
derivative ( ) and the discrete Hodge star ( )

•Ultimately encoded as sparse matrices, applied to values stored on k-simplices of an 
oriented simplicial complex (“simplicial cochains”).
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Composition of Operators
•By composing matrices, we can easily solve equations involving operators like those 

from vector calculus (grad, curl, div, Laplacian…) but in much greater generality 
(e.g., curved surfaces, k-forms…) and on complicated domains (meshes)

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.



Discretization & Interpolation
•Two basic operations needed to 

translate between smooth & discrete 
quantities:

•Discretization — given a continuous 
object, how do I turn it into a finite 
(or discrete) collection of 
measurements?

•Interpolation — given a discrete 
object (representing a finite collection 
of measurements), how do I come up 
with a continuous object that agrees 
with (or interpolates) it?
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Discretization & Interpolation—Differential Forms
•In the case of differential k-forms:

•Discretization happens via 
integration over oriented k-simplices 
(known as the de Rham map)

•Interpolation is performed by taking 
linear combinations of continuous 
functions associated with k-simplices 
(known as Whitney interpolation)

•With these operations, becomes easy to 
translate some pretty sophisticated 
equations into algorithms!
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Discretization



Discretization—Basic Idea

Basic idea: integrate k-forms over k-simplices.

How can we approximate a differential form with a finite amount of information?

Doesn’t tell us everything about the form… but enough to solve equations!



Discretization of Forms (de Rham Map)

The map from continuous forms to discrete 
forms is called the discretization map, or 
sometimes the de Rham map.

Key idea: discretization just means “integrate a k-form over k-simplices.”  
Result is just a list of values.

ω

K

Let ω be a differential k-form on , and let K be an oriented simplicial complex.
For each k-simplex σ in K, the corresponding value of the discrete k-form is



Integrating a 0-form over Vertices
•Suppose we have a 0-form

•What does it mean to integrate it over a vertex v?

•Easy: just take the value of the function at the 
location p of the vertex!

Example:

Key idea: integrating a 0-form at vertices of a mesh just “samples” the function



•Suppose we have a 1-form α in the plane

•How do we integrate it over an edge e?

•Basic recipe:

•Compute unit tangent T

•Apply α to T, yielding function α(T)

•Integrate this scalar function over edge

•Result gives “total circulation”

•Can use numerical quadrature for tough integrals

•Ιn practice, rare to actually integrate!
•More often, discrete 1-form values come from, e.g., operations on discrete 0-form

Integrating a 1-form over an Edge
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Integrating a 1-Form over an Edge—Example

A: Let’s first compute the edge length L and unit tangent T:

An arc-length parameterization of the edge is given by

By plugging in all these expressions/values, our integral simplifies to

…why not let T := (p0-p1)/L?



Orientation & Integration
Mt. Everest
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Discretizing a 1-form—Example
Example. Consider the unit square [0,1]2 with coordinates (x,y).
Let K be the oriented simplicial complex shown on the right,
and consider the differential 1-form ω := 2dx. We can discretize
ω by integrating it over each edge of K:

ω



Integrating a 2-form Over a Triangle
•Suppose we have a 2-form ω in R3

•How do we integrate it over a triangle t?

•Similar recipe to 1-form:

•Compute orthonormal basis T1,T2 for triangle

•Apply ω to T1,T2, yielding a function ω(T1,T2)

•Integrate this scalar function over triangle

•Value encodes how well triangle is “lined up” 
with 2-form on average, times area of triangle

•Again, rare to actually integrate explicitly!

Q: Here, what determines the orientation of t?



Orientation and Integration
•In general, reversing the orientation of a simplex will reverse the sign of the integral.

•E.g., suppose we have a discrete 1-form α.

•Q: Suppose we have a 2-form β.  What do you think the relationship is between…

•Q: What’s the rule in general?

•A: Discrete k-form values change sign under odd permutation.  (Sound familiar?)

  Then for each edge ij,



Discrete Differential Forms



Discrete Differential k-Form
•Abstractly, a discrete differential k-form is just any 

assignment of a value to each oriented k-simplex.

•For instance, in 2D:

•values at vertices encode a discrete 0-form

•values at edges encode a discrete 1-form

•values at faces encode a discrete 2-form

•Conceptually, values represent integrated k-forms

•In practice, almost never comes from direct integration!

•Typically, values start at vertices (samples of some 
function); 1-forms, 2-forms, etc., arise from applying 
operators like the discrete exterior derivative (next lecture)
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Matrix Encoding of Discrete Differential k-Forms
•We can encode a discrete k-form as a column 

vector with one entry for every k-simplex.

•Simplest example: a discrete 0-form can be 
encoded as a vector with |V| entries

•To do so, we need to first assign a unique 
index to each k-simplex

•The order of these indices can be 
completely arbitrary

•Just need some way to put elements of the 
mesh into correspondence with entries of 
the vector

Careful: In code, indices often start from 0 rather than 1!



Matrix Encoding of Discrete Differential 1-Form
•A discrete differential 1-form is a 

value per edge of an oriented 
simplicial complex.

•To encode these values as a column 
vector, we must first assign a 
unique index to each edge of our 
complex.

•We can then assign values to the 
entries of a vector  encoding 
the discrete 1-form.

Careful: if we ever change the orientation of an edge, we must also negate the value in our vector!
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Matrix Encoding of Discrete Differential 2-Form
•Same idea for encoding a discrete differential 2-form as a vector 

•Assign indices to each 2-simplex; now we know which values go in which entries
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As always, changing the orientation of a triangle ijk will reverse the sign of the corresponding entry.



Chains & Cochains
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In the discrete setting, duality between “things that get measured” (k-vectors) and 
“things that measure” (k-forms) is captured by notion of chains and cochains.



Simplicial Chain
•Suppose we associate every k-simplex with its own basis vector
•Can specify some region of a mesh via a linear combination of simplices

Example.

0

Q: What does it means when we have a coefficient other than 0 or 1?  (Or negative?)

A: Roughly speaking, “n copies” of that simplex.  (Or opposite orientation.)
(Formally: chain group Ck is the free abelian group generated by the k-simplices.)



Arithmetic on Simplicial Chains
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Boundary Operator on Simplices



Boundary Operator on Simplicial Chains

Example.

Notice: boundary of boundary is always empty!



Coboundary Operator on Simplices
The coboundary of an oriented k-simplex σ is the collection of all oriented (k+1)-
simplices that contain σ, and which have the same relative orientation.

Example.

Example.

(Analogy: simplicial star)

Q: Why do the arrows point in?



Simplicial Cochain

Example.

A simplicial k-cochain α is a linear map taking a simplicial k-chain to a number:

(Formally: cochain group Ck is group of homomorphisms from k-chains to the reals.)



Simplicial Cochains & Discrete Differential Forms
Suppose a simplicial k-cochain is given by the integrated values from a discrete k-form

Q: What does it mean (geometrically) when we apply it to a simplicial k-chain?

A: Our discrete k-form values come from integrating a smooth k-form over each k-
simplex.  So, we just get the integral over the region specified by the chain:



Discrete Differential Form—Abstract Definition

DISCRETE
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Definition. A discrete differential k-form is an assignment of a number to each k-simplex 
of an oriented simplicial complex.  denotes the space of discrete k-forms (k-cochains).



Interpolation



piecewise linear
interpolation

Interpolation—0-Forms

Note: result is a continuous 0-form.
hat function

i



Barycentric Coordinates—Revisited
•Recall that any point in a k-simplex can be 

expressed as a weighted combination of 
the vertices, where the weights sum to 1.

•The weights ti are called the barycentric 
coordinates.

•The Lagrange basis for a vertex i is given 
explicitly by the barycentric coordinates of 
i in each triangle containing i.

0 1



Interpolation—k-Forms (Whitney Map)



Discretization & Interpolation
•Fact: Suppose we have a discrete differential k-form.  If we interpolate by Whitney 

bases, then discretize via the de Rham map (i.e., by integration), then we recover the 
exact same discrete k-form.

Q: What about the other direction?  If we discretize a continuous k-form then 
interpolate, will we always recover the same continuous k-form?

(smooth differential k-forms)

(discrete differential k-forms)

(interpolate)(discretize)



Summary



Discrete Differential Forms—Summary
•A discrete differential k-form amounts to a value stored on 

each oriented k-simplex

•Discretization: given a smooth differential k-form, can 
approximate by a discrete differential k-form by 
integrating over each k-simplex

•Interpolation: given a discrete differential k-form, 
construct a continuous one by taking a weighted sum 
of basis k-forms

•In practice, almost never comes from direct integration.  
More typically, values start at vertices (samples of some 
function); 1-forms, 2-forms, etc., arise from applying 
operators like the (discrete) exterior derivative.

•Next lecture: develop these operators!
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Thanks!

DISCRETE DIFFERENTIAL GEOMETRY
AN APPLIED INTRODUCTION


