Lecture 20:

GEODESICS

DISCRETE DIFFERENTIAL

GeOMETRY:
An Applied Introduction
CMU 15-458/858 • Keenan Crane

Geodesics - Overview

- Generalize the notion of lines to curved spaces
- Ordinary lines have two basic features:

1. straightest - no curvature/acceleration
2. shortest - (locally) minimize length

- Geodesics share these same local properties, but may exhibit different behavior globally
- Part of the "origin story" of both classical and differential geometry...

Key idea: geodesic is straightest, (locally) shortest curve

Euclidean Geometry

Euclid (c. 300BC) used five basic "postulates" as a starting point for geometry:
I. Any two points can be connected by a straight line segment
II. Any line segment can be extended into a line
III. For any segment, there's a circle centered at one endpoint, with the segment as a radius
IV. All right angles are congruent
V. For any line ℓ and point p not on ℓ, there's a unique line parallel to ℓ passing through p

Idea: everything else can be proved from these postulates!

Non-Euclidean Geometry

- Many attempts to prove parallel postulate from first four. After two thousand years...
- (Lobachevsky, Bolyai, Gauss, ...) Not possible! There are other logically consistent geometries where parallel postulate doesn't hold:
- Elliptic: no parallel lines through a point-all lines intersect

Examples of Geodesics - Great Arcs on the Sphere

Examples of Geodesics - Shortest Paths in Graphs

Aside: Geodesics on Domains with Boundary

- On domains with boundary, shortest path will not always be straight
- can also "hug" pieces of the boundary (curvature will match boundary curvature, acceleration will match boundary normal)
- on the interior, path will still be both shortest \& straightest
- For simplicity, we will mainly consider domains without boundary

Examples of Geodesics - Paths of Light

Examples of Geodesics - Geometry Processing

surface remeshing

shape analysis / correspondence

Isometry Invariance of Geodesics

- Isometries are special deformations that do not change the intrinsic geometry
- Formally: preserves the Riemannian metric (which measures lengths \& angles of tangent vectors)
- For instance, folding up a map doesn't change angle between north and south, or areas of land masses
- Likewise, the shortest path between two cities does not change if we roll up a map

Key fact: geodesics are isometry invariant.

Discrete Geodesics

- How can we come up with a definition of discrete geodesics?
- Play "The Game" of DDG and consider different smooth starting points:
- straightest (zero acceleration)
- locally shortest
- no geodesic curvature
- harmonic map from interval to manifold
- gradient of distance function
- Each starting point will have different consequences

Observation: for simplicial surfaces will see that shortest and straightest disagree

Shortest

Locally Shortest Paths

- A Euclidean line segment can be characterized as the shortest path between two distinct points
- How can we characterize a whole Euclidean line?
- ...where are the endpoints?
- Say that it's locally shortest: for any two "nearby" points on the path, can't find a shorter route
- "nearby" means shortest path is unique
- This description directly gives us one possible definition for geodesics
- Note that locally shortest does not imply globally shortest!
- Both are geodesic paths

Dirichlet Energy and Curve Length

Recall Dirichlet energy, which measures "smoothness":

Dirichlet energy

$$
\begin{array}{cc}
\stackrel{\text { planar curve }}{\gamma:[0,1] \rightarrow \mathbb{R}^{2}} & E_{D}(\gamma)=\int_{0}^{1}\left|\gamma^{\prime}(t)\right|^{2} d t
\end{array}
$$

Can write γ as a reparameterization of a unit-speed curve:

$$
\begin{aligned}
& \text { unit-speed curve } \\
& \widehat{\gamma}:[0, L] \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

$$
\begin{array}{lc}
\text { speed function } \\
c:[0,1] \rightarrow \mathbb{R} & \gamma(t)=\widehat{\gamma}(c(t)) \\
c(0)=0, c(1)=L & \left|\gamma^{\prime}(t)\right|=\left|c^{\prime}(t)\right|
\end{array}
$$

Now let's try to find the smoothest curve...

$$
\min _{\gamma} E_{D}(\gamma)=\min _{\widehat{\gamma}}(\min _{c} \int_{0}^{1}(\underbrace{\left(c^{\prime}(t)\right.}_{\rightarrow L})^{2} d t)=\min _{\widehat{\gamma}} L^{2}
$$

Key idea: for a curve, minimizing Dirichlet energy will minimize length.

Shortest Planar Curve - Variational Perspective

- Consider again a curve $\gamma(t):[0,1] \longrightarrow R^{2}$
- Can find shortest path by minimizing Dirichlet energy, subject to fixed endpoints $\gamma(0)=p, \gamma(1)=q$:

$$
\min _{\gamma} \int_{0}^{1}\left|\gamma^{\prime}(t)\right|^{2} d t
$$

(integration by parts)

$$
\Longleftrightarrow \min _{\gamma}-\int_{0}^{1}\left\langle\gamma(t), \gamma^{\prime \prime}(t)\right\rangle d t
$$

- Taking gradient w.r.t. γ yields a 1D Poisson equation
- Q: Solution?

A: Linear function!

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{2}} \gamma(t) & =0 \\
\gamma(0) & =p \\
\gamma(1) & =q
\end{aligned}
$$

Key idea: geodesics are harmonic functions

Shortest Geodesic - Variational Perspective

- Essentially same story on a curved surface (M, g)
- Consider a differentiable curve $\gamma:[0,1] \longrightarrow M$
- Dirichlet energy is then

$$
E_{D}(\gamma)=\int_{0}^{1}\left|\gamma^{\prime}(t)\right|^{2} d t=\int_{0}^{1} g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right) d t
$$

- Geodesics are still critical points (harmonic)
- May no longer be global minimizers

Shortest Geodesic-Variational Perspective

- Essentially same
- Consider a differe
- Dirichlet energy i

$$
E_{D}(\gamma)=\int_{0}^{1} \mid \gamma^{\prime}(t)
$$

- Geodesics are still
- May no longer be

Shortest Geodesic - Variational Perspective

- Essentially same story on a curved surface (M, g)
- Consider a differentiable curve $\gamma:[0,1] \longrightarrow M$
- Dirichlet energy is then

$$
E_{D}(\gamma)=\int_{0}^{1}\left|\gamma^{\prime}(t)\right|^{2} d t=\int_{0}^{1} g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right) d t
$$

- Geodesics are still critical points (harmonic)
- May no longer be global minimizers
- Hence, geodesics no longer found by solving easy linear equation (Laplace)
- Will need numerical algorithms!

Discrete Shortest Paths - Boundary Value Problem

- Q: How can we find a shortest path in the discrete case?
- Dijkstra's algorithm obviously comes to mind, but a shortest path in the edge graph is almost never geodesic
- even if you refine the mesh!
- To get locally shortest path, could iteratively straighten Dijkstra path by until no more progress can be made
- What if we want to compute the globally shortest path?

Discrete Shortest Paths - Vertices

- Even locally shortest paths near vertices require some care-different behavior depending on angle defect Ω
- Flat $(\Omega=0)$

Shortest path simply goes straight through the vertex

- Cone $(\Omega>0)$

Can always faster to go around one side or the other; never through the vertex

- Saddle $(\Omega<0)$

Always many locally shortest paths passing through a saddle vertex.

Algorithms for Shortest Polyhedral Geodesics

- Algorithms for shortest polyhedral geodesics generalize Dijkstra's algorithm to include paths through triangles
- Mitchell, Mount, Papadimitrou (MMP) "The Discrete Geodesic Problem" (1986) - O($\left.n^{2} \log n\right)$
- Basic idea: track intervals or "windows" of common geodesic paths
- Many subsequent improvements by pruning

Shortest Geodesics - Smooth vs. Discrete

- Smooth: two minimal geodesics γ_{1}, γ_{2} from a source p to distinct points p_{1}, p_{2} (resp.) intersect only if $\gamma_{1} \subseteq \gamma_{2}$ or $\gamma_{2} \subseteq \gamma_{1}$
- Discrete: many geodesics can coincide at saddle vertex (" $p s e u d o-s o u r c e ")$

Note: Shortest polyhedral geodesics may not faithfully capture behavior of smooth ones!

Closed Geodesics

- Theorem. (Birkhoff 1917) Every smooth convex surface contains a simple closed geodesic, i.e., a geodesic loop that does not cross itself ("Birkhoff equator")
- Theorem. (Luysternik \& Shnirel'man 1929) Actually, there are at least three-and this result is sharp: only three on some smooth surfaces.

Closed Geodesics

- Theorem. (Birkhoff 1917) Every smooth convex surface contains a simple closed geodesic, i.e., a geodesic loop that does not cross itself ("Birkhoff equator")
- Theorem. (Luysternik \& Shnirel'man 1929) Actually, there are at least three-and this result is sharp: only three on some smooth surfaces.
- Theorem. (Galperin 2002) Most convex polyhedra do not have simple closed geodesics (in the sense of discrete shortest geodesics).
- Shortest characterization of discrete geodesics again fails to capture properties from smooth setting.

A shortest geodesic can't pass through convex vertices. So, by Gauss-Bonnet, a closed geodesic would have to partition vertices into two sets that each have total angle defect of exactly 2π.

Cut Locus \mathcal{E} Injectivity Radius

- For a source point p on a smooth surface M, the cut locus is the set of all points q such that there is not a unique (globally) shortest geodesic between p and q.
- injectivity radius is the distance to the closest point on the cut locus
- E.g., on a sphere cut locus of any point $+p$ is the antipodal point $-p$
- injectivity radius covers whole sphere
- In general can be much more complicated (and smaller injectivity radius...)

Discrete Cut Locus

- What does cut locus look like for polyhedral surfaces?
- Recall that it's always shorter to go "around" a cone-like vertex (i.e., vertex with positive curvature $\Omega_{i}>0$)
- Hence, polyhedral cut locus will contain every cone vertex in the entire surface

- Can look very different from the smooth cut locus!

Medial Axis

- Similar to the cut locus, the medial axis of a surface or region is the set of all points p that do not have a unique closest point on the boundary
- A medial ball is a ball with center on the medial axis, and radius given by the distance to the closest point
- Like cut locus, can get quite complicated!
- Typically three branches (why?)
- Provides a "dual" representation: can recover original shape from
- medial axis
- radius function

Discrete Medial Axis

- What does the medial axis of a discrete domain look like?
- Let's start with a square. (What did the medial axis
 for a circle look like?)
- What about a rectangle? (What happened with an ellipse?)
- How about a nonconvex polygon?
- surprise: no longer just straight edges!

Discrete Medial Axis

- In general, medial axis touches every convex vertex
- May not look much like true (smooth)
 medial axis!
- One idea: "filter" using radius function...
- still hard to say exactly which pieces should remain
- Lots of work on alternative "shape skeletons" for discrete curves \& surfaces

Medial Axis in $3 D$

Same definition applies in any dimension-provides notion of "skeleton" for a shape:

Hard to compute exactly (e.g., quadratic pieces); often approximate by simplicial complex.

Computing the Medial Axis

- Many algorithms for computing/ approximating medial axis \& other "shape skeletons"
- One line of thought: use Voronoi diagram as starting point:
- sample points on boundary

- compute Voronoi diagram
- keep "short" facets of tall/skinny cells
- With enough points, get correct topology

Medial Axis \mathcal{E} Surface Reconstruction

- Can use similar approach for surface reconstruction from points
- connect centers of skinny cells that meet along "long" edges
- In 3D, gives surface reconstruction with guarantees on topology (w/ enough points)

Medial Axis - Applications

- Many applications of medial axis:
- surface reconstruction
- shape skeletons
- local feature size
- fast collision detection
- fluid simulation
- ...

Bradshaw \& Sullivan 2004

Straightest

Straightest Paths

- A Euclidean line can be characterized as a curve that is "as straight as possible"

Straightness-Geometric Perspective

- Consider a curve $\gamma(s)$ with tangent T in a surface with normal N, and let $B:=T \times N$.
- Can decompose "bending" into two pieces:

$$
\begin{array}{ll}
\kappa_{n}:=\left\langle N, \frac{d}{d s} T\right\rangle & \text { normal curvature } \\
\kappa_{g}:=\left\langle B, \frac{d}{d s} T\right\rangle & \text { geodesic curvature }
\end{array}
$$

Discrete Curves on Discrete Surfaces

- To understand straightest curves on discrete surfaces, first have to define what we mean by a discrete curve
- One definition: a discrete curve in a simplicial surface M is any continuous curve γ that is piecewise linear in each simplex
- Doesn't have to be a path of edges: could pass through faces, have multiple vertices in one face, ...
- Encode as sequence of simplices (not all same degree), and barycentric coordinates for each simplex

Discrete Geodesic Curvature

- For planar curve, one definition of discrete curvature was turning angle κ_{i}
- Since most points of a simplicial surface are intrinsically flat, can adopt this same definition for discrete geodesic curvature
- Faces: just measure angle between segments
- Edges: "unfold" and measure angle

- Vertices: not as simple-can't unfold!
- Recall trouble w/ shortest geodesics...

Discrete Straightest Geodesics

- In the smooth setting, characterized geodesics as curves with zero geodesic curvature
- In the discrete setting, have a hard time at vertices: can't unfold, no shortest paths through some vertices...
- Alternative smooth characterization: just have same angle on either side of the curve
- Translates naturally to the discrete setting: equal angle sum on either side of the curve
- Provides definition of discrete straightest geodesics (Polthier \& Schmies 1998)

Geodesics and Waves

Might seem that geodesics are "unlikely" to pass exactly through a vertex, but consider simulating a continuous wavefront-how should it behave when it hits a vertex?

[^0]
Exponential Map

- At a point p of a smooth surface M, the exponential map $\exp _{p}: T_{p} M \rightarrow M$ takes a tangent vector X to the point reached by walking along a geodesic in the direction $X /|X|$ for distance $|X|$

$$
\begin{array}{cc}
\begin{array}{c}
\text { exponential } \\
\text { map at } p
\end{array} & \begin{array}{c}
\text { tangent } \\
\text { vectors }
\end{array} \\
\mathrm{eXP}_{p}: T_{p} M \rightarrow M
\end{array}
$$

- Can also imagine that exp "wraps" the tangent plane around the surface

Key idea: provides notion of "translation" for curved domains

Logarithmic Map

- Q : Is the exponential map surjective? I.e., can we reach every point q from p ?
- A: Yes (Hopf-Rinow): Consider a smooth surface M without boundary. Then
- find the shortest geodesic γ from p to q
- let X be a vector in direction $\gamma^{\prime} \mathrm{w} /$ length $|\gamma|$
- then by construction, $\exp _{p}(X)=q$
- Can also write $\log _{p}(q)=X$
- Map from q to X is called the \log map

Q: Is the log map uniquely determined?

Exponential Map-Injectivity

- Equivalently, is the exponential map always injective? (I.e., is there a unique geodesic that takes us from p to q ?)
- No! Consider the exponential map on the sphere...
- By convention, log map therefore gives the smallest vector X such that $\exp _{p}(X)=q$
- Q: Why are exp/log map useful?
- A: Allows us to locally work with points on curved spaces as though they are just
 vectors in a flat space

Averages on Surfaces

- Average of points in the plane is easy: just add up coordinates, divide by number of points
- How do we talk about an average of points on a curved surface?
- average of coordinates may no longer be on the surface
- might not even know how surface is embedded into space...
- Motivates idea of Karcher mean:
- average is point that minimizes sum of squared geodesic distances to all points
- in the plane, agrees with usual notion of "average" in the plane (why?)

Karcher Mean via Log Map

- Want to compute mean of points y_{i}
- Iterative algorithm:

$$
v \leftarrow \frac{1}{n} \sum_{i} \log _{x}\left(y_{i}\right)
$$

- pick a random initial starting point x

$$
x \leftarrow \exp _{x}(v)
$$

- compute the $\log v_{i}$ of all points y_{i}
- compute the mean v of all the vectors v_{i}
- move x to $\exp _{x}(v)$ and repeat
- Will quickly converge to some Karcher mean
- in general may not be unique-consider two points $y_{1}=-y_{2}$ on the sphere
- Can also be used to average, e.g., rotations

Karcher Mean - Examples

Notice: not always as easy as taking Euclidean average \& projecting onto surface!

Discrete Exponential Map

- Easy to evaluate exp map on discrete surfaces
- Given point p and vector u, start walking along u - i.e., just intersect ray with edges of triangle
- continue w/ same angle in next triangle
- if we hit a vertex, continue in direction that makes equal angles (straightest)
- \mathbf{Q} : How big is the injectivity radius?
- A: Distance to the closest cone vertex $(\Omega>0)$
- Q : Is the discrete exponential map surjective?
- A: No! Consider a saddle vertex $(\Omega<0)$

Notice: like "shortest", "straightest" doesn't work out perfectly...

Discrete Exponential Map-Examples

- Discrete exponential map provides a practical way to approximate geodesics on smooth surfaces (by triangulating them), and gives exact geodesics on discrete surfaces

Computing the Log Map

Sharp, Soliman, Crane, "The Vector Heat Method" (2019)

Straightness - Dynamic Perspective

- Dynamic perspective: geodesic has zero tangential acceleration
- Consider curve $\gamma(t):[a, b] \longrightarrow M$ (not unit speed)
- Tangential velocity is just the tangent to the curve
- Tangential acceleration should be something like the "tangential change in the tangent," but:
- extrinsically, change in tangent is not a tangent vector
- intrinsically, tangents belong to different vector spaces
- So, how do we measure acceleration?

Geodesic Equation

The covariant derivative ∇ provides another characterization of geodesics:

Intuition: no "in-plane turning" as we move along the curve.

Covariant Derivative - Extrinsic

- Suppose we want to measure how fast a vector field Y is changing along another vector field X at a point p
- Find a curve $\gamma(t)$ with tangent $X(p)$ at p
- Restrict Y to a vector field $Y^{\prime}(\mathrm{t}):=Y(\gamma(t))$
- Take the derivative $d Y^{\prime} / d t$
- Removing the normal component gives the covariant derivative $\nabla_{X} Y$ of Y along X
- Sound familiar?
- not so different from how we defined geodesic curvature (change of T in B direction)
- which explains geodesic equation $\nabla_{\dot{\gamma}} \dot{\gamma}=0$

Key idea: covariant derivative gives change in one vector field along another.

Covariant Derivative - Intrinsic Definition

- Since geodesics are intrinsic, can also define "straightness" using only the metric g
- For any function ϕ, tangent vector fields X, Y, Z, operator ∇ uniquely determined by

$$
\begin{aligned}
\nabla_{Z}(X+Y) & =\nabla_{Z} X+\nabla_{Z} Y \\
\nabla_{X+Y} Z & =\nabla_{X} Z+\nabla_{Y} Z \\
\nabla_{\phi X} Y & =\phi \nabla_{X} Y \\
\nabla_{X}(\phi Y) & =\left(D_{X} \phi\right) Y+\phi \nabla_{X} Y
\end{aligned}
$$

$$
\begin{gathered}
D_{Z} g(X, Y)=g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z} Y\right) \\
\nabla_{X} Y-\nabla_{Y} X=[X, Y]
\end{gathered}
$$

Lie Bracket of Vector Fields

- The Lie bracket $[X, Y]$ measures failure of flows along two vector fields X, Y to commute
- Starting at any point p, follow X for time $\tau>0$, then Y, then $-X$, then $-Y$ to arrive at a point q
- Lie bracket at p is vector given by limit of
 $(q-p) / \tau$ as $\tau \rightarrow 0$
- For vector fields expressed in local coordinates $u_{1}, \ldots, u_{\mathrm{n}}$, can write as

$$
[X, Y]=\sum_{i, j=1}^{n}\left(X^{j} \frac{\partial}{\partial u_{j}} Y^{i}-Y^{j} \frac{\partial}{\partial u_{j}} X^{i}\right) \frac{\partial}{\partial u^{i}}
$$

Covariant Derivative from Metric

Claim. Covariant derivative is uniquely determined by the Riemannian metric g. Proof. For any three vector fields U, V, W, we have

$$
\begin{align*}
& D_{U} g(V, W)=g\left(\nabla_{U} V, W\right)+g\left(V, \nabla_{U} W\right) \tag{1}\\
& D_{V} g(W, U)=g\left(\nabla_{V} W, U\right)+g\left(W, \nabla_{V} U\right) \tag{2}\\
& D_{W} g(U, V)=g\left(\nabla_{W} U, V\right)+g\left(U, \nabla_{W} V\right) \tag{3}
\end{align*}
$$

By symmetry and bilinearity of the metric g, adding (1) and (2) and subtracting (3) gives

$$
\begin{aligned}
& D_{U} g(V, W)+D_{V} g(W, U)-D_{W} g(U, V)= \\
& g\left(\nabla_{U} V+\nabla_{V} U\right)+g([U, W], V)+g([V, W], U)= \\
& 2 g\left(\nabla_{V} U, W\right)+g([U, V], W)+g([V, W], U)+g([U, W], V)
\end{aligned}
$$

Hence,

$$
g\left(\nabla_{V} U, W\right)=\frac{1}{2}\left(D_{U} g(V, W)+D_{V} g(W, U)-D_{W} g(U, V)-g([U, V], W)-g([V, W], U)-g([U, W], V)\right)
$$

Key observation: can solve for covariant derivative in terms of data we know (metric g).

Christoffel Symbols

- Let $X_{1}, \ldots X_{n}$ be our usual basis vector fields (in local coordinates)
- Christoffel symbols tell us how to differentiate one basis along another: $\nabla_{X_{j}} X_{i}=\Gamma_{i j}^{k} X_{k}$
- By linearity, we then know how to take any covariant derivative

Recall the expression
$g\left(\nabla_{V} U, W\right)=\frac{1}{2}\left(D_{U} g(V, W)+D_{V} g(W, U)-D_{W} g(U, V)-g([U, V], W)-g([V, W], U)-g([U, W], V)\right)$. Since $\left[X_{i}, X_{j}\right]=0$ for any two coordinate vector fields, we get

$$
2 g\left(\nabla_{X_{k}} X_{i}, X_{j}\right)=D_{X_{i}} g\left(X_{k}, X_{j}\right)+D_{X_{k}} g\left(X_{j}, X_{i}\right)-D_{X_{j}} g\left(X_{i}, X_{k}\right) .
$$

In terms of Christoffel symbols, the left-hand side is

$$
2 g\left(\Gamma_{i k}^{p} X_{p}, X_{j}\right)=2 \Gamma_{i k}^{p} g\left(X_{p}, X_{j}\right)=2 \Gamma_{i k}^{p} g_{p j}
$$

and we can write the right-hand side as $g_{k j, i}+g_{j i, k}-g_{i k, j}$.
Hence, our final expression for the Christoffel symbols is $\Gamma_{i k}^{p}=\frac{1}{2} g^{p j}\left(g_{i j, k}+g_{j k, i}-g_{k i, j}\right)$

Solving the Geodesic Equation

- Can use Christroffel symbols to numerically compute geodesics on smooth surfaces
- Given surface $f: M \rightarrow \mathbb{R}^{3}$
- write out Jacobian J_{f}
_ write out metric $g=J_{f}^{\top} J_{f}$ and its inverse $g^{i j}$
- write out Christoffel symbols Γ

- express geodesic equation via Γ
- From here, can use any standard numerical integrator (e.g., Runge-Kutta) to step an initial position/ direction forward in "time"

$$
\begin{aligned}
& \Gamma_{i k}^{p}=\frac{1}{2} g^{p j}\left(g_{i j, k}+g_{j k, i}-g_{k i, j}\right) \\
& \nabla_{\dot{\gamma}} \dot{\gamma}=0 \quad \nabla_{X_{j}} X_{i}=\Gamma_{i j}^{k} X_{k}
\end{aligned}
$$

$$
\Rightarrow \ddot{\gamma}^{k}+\Gamma_{i j}^{k} \dot{\gamma}^{i} \dot{\gamma}^{j}=0
$$

Solving the Geodesic Equation

- Apply f to resulting curve in parameter domain to get a geodesic on the surface

$$
\Rightarrow \ddot{\gamma}^{k}+\Gamma_{i j}^{k} \dot{\gamma}^{i} \dot{\gamma}^{j}=0
$$

Computing Geodesics on a Parametrized Surface

Now have two ways to solve initial value problem for a smooth parameterized surface f :

- Discretization
- triangulate the surface f
- trace rays along discrete surface

- ODE integration
- write metric g in terms of f
- write Christoffel symbols Γ in terms of g

$$
\begin{gathered}
g=J_{f}^{\top} J_{f} \\
\underbrace{\frac{1}{2} g^{p j}\left(g_{i j, k}+g_{j k, i}-g_{k i, j}\right)}_{\Gamma_{i k}^{p}} \\
\ddot{\gamma}^{k}+\Gamma_{i j}^{k} \dot{\gamma}^{i} \dot{\gamma}^{j}=0
\end{gathered}
$$

- solve geodesic equation via ODE solver

Q: What are the pros/cons?

- speed, memory, accuracy, simplicity...
-
- generality (smooth and discrete)

Summary

Geodesics - Shortest vs. Straightest, Smooth vs. Discrete

- In smooth setting, several equivalent characterizations:
- shortest (harmonic)
- straightest (zero curvature, zero acceleration)
- In discrete setting, characterizations no longer agree!
- shortest natural for boundary value problem

straightest

smooth
- convex: shortest paths are straightest (but not vice versa)
- nonconvex: shortest may not even be straightest! (saddles)
- Neither definition faithfully captures all smooth behavior:
- (shortest) cut locus/medial axis touches every convex vertex
- (straightest) exponential map is not surjective
- Use the right tool for the job (and look for other definitions!)

Thanks!

DISCRETE DIFFERENTIAL

GEOMETRY:

AN ApPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

[^0]: video from Polthier, Schmies, Steffens \& Teitzel, "Geodesics and Waves" (1997)

