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Geodesics—Overview
• Generalize the notion of lines to curved spaces

• Ordinary lines have two basic features:

1. straightest — no curvature/acceleration

2. shortest — (locally) minimize length

• Geodesics share these same local properties, 
but may exhibit different behavior globally

• Part of the “origin story” of both classical and 
differential geometry…

Key idea: geodesic is straightest, (locally) shortest curve



Euclidean Geometry
Euclid (c. 300BC) used five basic “postulates” as a 
starting point for geometry:

I. Any two points can be connected by a 
straight line segment

II. Any line segment can be extended into a line

III. For any segment, there’s a circle centered at 
one endpoint, with the segment as a radius

IV. All right angles are congruent

V. For any line 𝓁 and point p not on 𝓁, there’s a 
unique line parallel to 𝓁 passing through p 

Idea: everything else can be proved from these postulates!
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Non-Euclidean Geometry
• Many attempts to prove parallel postulate from 

first four.  After two thousand years…

• (Lobachevsky, Bolyai, Gauss, …) Not possible!
There are other logically consistent geometries 
where parallel postulate doesn’t hold:

– Elliptic: no parallel lines through a point—all 
lines intersect

– Hyperbolic: parallel line through point is not 
unique

• More generally: “lines” or geodesics on curved 
surfaces will behave differently than in the plane

– Will try to understand this behavior today…



Examples of Geodesics—Great Arcs on the Sphere



Examples of Geodesics—Shortest Paths in Graphs



Aside: Geodesics on Domains with Boundary
• On domains with boundary, shortest path will 

not always be straight

– can also “hug” pieces of the boundary 
(curvature will match boundary curvature, 
acceleration will match boundary normal)

– on the interior, path will still be both 
shortest & straightest

• For simplicity, we will mainly consider 
domains without boundary

p q



Examples of Geodesics—Paths of Light

image credit: European Space Agency image credit: ESA/Hubble & NASA



shape analysis / correspondence

computational architecture

Examples of Geodesics—Geometry Processing
surface remeshing



Isometry Invariance of Geodesics
• Isometries are special deformations that do not change 

the intrinsic geometry

– Formally: preserves the Riemannian metric (which 
measures lengths & angles of tangent vectors)

• For instance, folding up a map doesn’t change angle 
between north and south, or areas of land masses

• Likewise, the shortest path between two cities does 
not change if we roll up a map

Key fact: geodesics are isometry invariant.



• How can we come up with a definition of discrete geodesics?
• Play “The Game” of DDG and consider different smooth starting points:

– straightest (zero acceleration)

– locally shortest

– no geodesic curvature

– harmonic map from interval to manifold

– gradient of distance function

– …

• Each starting point will have different consequences

Discrete Geodesics

Observation: for simplicial surfaces will see that shortest and straightest disagree



Shortest



Locally Shortest Paths
• A Euclidean line segment can be characterized as 

the shortest path between two distinct points

• How can we characterize a whole Euclidean line?

– …where are the endpoints?

• Say that it’s locally shortest: for any two “nearby” 
points on the path, can’t find a shorter route

– “nearby” means shortest path is unique

• This description directly gives us one possible 
definition for geodesics

• Note that locally shortest does not imply globally 
shortest!

– Both are geodesic paths locally
shortest

globally
shortest



Dirichlet Energy and Curve Length
Recall Dirichlet energy, which measures “smoothness”:

Key idea: for a curve, minimizing Dirichlet energy will minimize length.

planar curve Dirichlet energy

Can write γ as a reparameterization of a unit-speed curve:
unit-speed curve speed function

Now let’s try to find the smoothest curve…
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Shortest Planar Curve—Variational Perspective
• Consider again a curve γ(t): [0,1] ⟶ R2

• Can find shortest path by minimizing Dirichlet energy, 
subject to fixed endpoints γ(0)=p, γ(1)=q:

• Taking gradient w.r.t. γ yields a 1D Poisson equation

• Q: Solution?

Key idea: geodesics are harmonic functions

0 1
t

(integration by parts)

A: Linear function!
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Shortest Geodesic—Variational Perspective
• Essentially same story on a curved surface (M,g)

• Consider a differentiable curve γ: [0,1] ⟶ M

• Dirichlet energy is then

• Geodesics are still critical points (harmonic)

• May no longer be global minimizers

saddle pointminimum
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Shortest Geodesic—Variational Perspective
• Essentially same story on a curved surface (M,g)

• Consider a differentiable curve γ: [0,1] ⟶ M

• Dirichlet energy is then

• Geodesics are still critical points (harmonic)

• May no longer be global minimizers

minimum

ED

inspired by: Lucy Reading-Ikkanda
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Shortest Geodesic—Variational Perspective
• Essentially same story on a curved surface (M,g)

• Consider a differentiable curve γ: [0,1] ⟶ M

• Dirichlet energy is then

minimum saddle point

• Hence, geodesics no longer found by 
solving easy linear equation (Laplace)

– Will need numerical algorithms!

• Geodesics are still critical points (harmonic)

• May no longer be global minimizers



Discrete Shortest Paths—Boundary Value Problem
• Q: How can we find a shortest path in 

the discrete case?

• Dijkstra’s algorithm obviously comes 
to mind, but a shortest path in the 
edge graph is almost never geodesic

– even if you refine the mesh!

• To get locally shortest path, could 
iteratively straighten Dijkstra path by 
until no more progress can be made

• What if we want to compute the 
globally shortest path?

Martínez et al, “Computing Geodesics on Triangular Meshes” (2005)



Discrete Shortest Paths—Vertices
• Even locally shortest paths near vertices 

require some care—different behavior 
depending on angle defect Ω

• Flat (Ω = 0)
Shortest path simply goes straight 
through the vertex

• Cone (Ω > 0)
Can always faster to go around one side 
or the other; never through the vertex

• Saddle (Ω < 0)
Always many locally shortest paths 
passing through a saddle vertex.

Ω = 0

Ω > 0

Ω < 0



geodesics

geodesic 
distance

Algorithms for Shortest Polyhedral Geodesics
• Algorithms for shortest polyhedral geodesics 

generalize Dijkstra’s algorithm to include paths 
through triangles

• Mitchell, Mount, Papadimitrou (MMP)                               
“The Discrete Geodesic Problem” (1986) — O(n2 log n)

• Basic idea: track intervals or “windows” of 
common geodesic paths

• Many subsequent improvements by pruning 
windows, approximation, … though still quite 
expensive (same asymptotic complexity)

See: Surazhsky et al. “Fast Exact and Approximate Geodesics on Meshes” (2005)



Shortest Geodesics—Smooth vs. Discrete
• Smooth: two minimal geodesics γ1, γ2 from a source p to distinct points 

p1, p2 (resp.) intersect only if γ1 ⊆ γ2 or γ2 ⊆ γ1

• Discrete: many geodesics can coincide at saddle vertex (“pseudo-source”)

Note: Shortest polyhedral geodesics may not faithfully capture behavior of smooth ones!



Closed Geodesics
• Theorem. (Birkhoff 1917) Every smooth convex 

surface contains a simple closed geodesic, i.e., a 
geodesic loop that does not cross itself (“Birkhoff 
equator”)

• Theorem. (Luysternik & Shnirel’man 1929) 
Actually, there are at least three—and this result 
is sharp: only three on some smooth surfaces.

image adapted from Radeschi, “Closed Geodesics on Surfaces and Riemannian Manifolds”



Closed Geodesics

A shortest geodesic can’t pass through convex 
vertices.  So, by Gauss-Bonnet, a closed geodesic 
would have to partition vertices into two sets that 
each have total angle defect of exactly 2π.

• Theorem. (Galperin 2002) Most convex 
polyhedra do not have simple closed geodesics 
(in the sense of discrete shortest geodesics).

• Shortest characterization of discrete geodesics 
again fails to capture properties from smooth 
setting.

• Theorem. (Birkhoff 1917) Every smooth convex 
surface contains a simple closed geodesic, i.e., a 
geodesic loop that does not cross itself (“Birkhoff 
equator”)

• Theorem. (Luysternik & Shnirel’man 1929) 
Actually, there are at least three—and this result 
is sharp: only three on some smooth surfaces.



Cut Locus & Injectivity Radius
• For a source point p on a smooth surface 

M, the cut locus is the set of all points q 
such that there is not a unique (globally) 
shortest geodesic between p and q.

– injectivity radius is the distance to the 
closest point on the cut locus

• E.g., on a sphere cut locus of any point +p 
is the antipodal point -p

– injectivity radius covers whole sphere

• In general can be much more complicated 
(and smaller injectivity radius…)

p

M

animation credit: S. Markvorsen and P.G. Hjorth (The Cut Locus Project)

+p

-p
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Discrete Cut Locus
• What does cut locus look like for 

polyhedral surfaces?

• Recall that it’s always shorter to go 
“around” a cone-like vertex (i.e., 
vertex with positive curvature Ωi > 0)

• Hence, polyhedral cut locus will 
contain every cone vertex in the 
entire surface

• Can look very different from the 
smooth cut locus!

Polyhedron image adapted from Itoh & Sinclair, “Thaw: A Tool for Approximating Cut Loci on a Triangulation of a Surface”

p



Medial Axis
• Similar to the cut locus, the medial axis of 

a surface or region is the set of all points p 
that do not have a unique closest point on 
the boundary

• A medial ball is a ball with center on the 
medial axis, and radius given by the 
distance to the closest point

• Like cut locus, can get quite complicated!

• Typically three branches (why?)

• Provides a “dual” representation: can 
recover original shape from

– medial axis
– radius function



Discrete Medial Axis
• What does the medial 

axis of a discrete domain 
look like?

• Let’s start with a square.  
(What did the medial axis 
for a circle look like?)

• What about a rectangle? 
(What happened with an 
ellipse?)

• How about a nonconvex 
polygon?

– surprise: no longer just 
straight edges!



Discrete Medial Axis
• In general, medial axis touches every 

convex vertex

• May not look much like true (smooth) 
medial axis!

• One idea: “filter” using radius function…

– still hard to say exactly which pieces 
should remain

• Lots of work on alternative “shape 
skeletons” for discrete curves & surfaces



Medial Axis in 3D
Same definition applies in any dimension—provides notion of “skeleton” for a shape:

Hard to compute exactly (e.g., quadratic pieces); often approximate by simplicial complex.
image credit: S. Yoshizawa, A. Belyaev, & H-P. Seidel



Computing the Medial Axis
• Many algorithms for computing/

approximating medial axis & other “shape 
skeletons”

• One line of thought: use Voronoi diagram as 
starting point:
– sample points on boundary
– compute Voronoi diagram
– keep “short” facets of tall/skinny cells

• With enough points, get correct topology



Medial Axis & Surface Reconstruction
• Can use similar approach for surface reconstruction from points

– connect centers of skinny cells that meet along “long” edges
• In 3D, gives surface reconstruction with guarantees on topology (w/ enough points)

Amenta et al, “A New Voronoi-Based Surface Reconstruction Algorithm”



Peters et al 2016

Medial Axis—Applications
• Many applications of medial axis:

– surface reconstruction
– shape skeletons
– local feature size
– fast collision detection
– fluid simulation
– …

Adams et al 2007

Bradshaw & Sullivan 2004

Amenta et al 1998

Giesen et al 2009



Straightest



Straightest Paths
• A Euclidean line can be characterized as a curve 

that is “as straight as possible”

• Q: How can we make this statement more precise?

• geometrically: no curvature

• dynamically: no acceleration

• How can we generalize to curves in manifolds?

• geometrically: no geodesic curvature

• dynamically: zero covariant derivative



Straightness—Geometric Perspective
• Consider a curve γ(s) with tangent T in a 

surface with normal N, and let B := T × N.
• Can decompose “bending” into two pieces:

• Curve is “forced” to have normal 
curvature due to curvature of M

• Any additional bending beyond this 
minimal amount is geodesic curvature

normal curvature

geodesic curvature

Key idea: geodesic is curve where κg = 0



M

Discrete Curves on Discrete Surfaces
• To understand straightest curves on 

discrete surfaces, first have to define 
what we mean by a discrete curve

• One definition: a discrete curve in a 
simplicial surface M is any 
continuous curve γ that is piecewise 
linear in each simplex

• Doesn’t have to be a path of edges: 
could pass through faces, have 
multiple vertices in one face, …

• Encode as sequence of simplices (not 
all same degree), and barycentric 
coordinates for each simplex

ilj (.1, .7, .2)
ij (.45, .55)

ijk (.40, .15, .45)
k (1)

simplex
barycentric
coordinates



Discrete Geodesic Curvature
• For planar curve, one definition of discrete 

curvature was turning angle κi

• Since most points of a simplicial surface are 
intrinsically flat, can adopt this same definition 
for discrete geodesic curvature

• Faces: just measure angle between segments

• Edges: “unfold” and measure angle

• Vertices: not as simple—can’t unfold!

• Recall trouble w/ shortest geodesics…

κi

unfold



Discrete Straightest Geodesics
• In the smooth setting, characterized geodesics 

as curves with zero geodesic curvature

• In the discrete setting, have a hard time at 
vertices: can’t unfold, no shortest paths 
through some vertices…

• Alternative smooth characterization: just 
have same angle on either side of the curve

• Translates naturally to the discrete setting: 
equal angle sum on either side of the curve

• Provides definition of discrete straightest 
geodesics (Polthier & Schmies 1998)

θl
θr θl

θr

image adapted from Radeschi, Polthier & Schmies, “Straightest Geodesics on Polyhedral Surfaces”

θl = θr

θl θr



Geodesics and Waves
Might seem that geodesics are “unlikely” to pass exactly through a vertex, but consider 
simulating a continuous wavefront—how should it behave when it hits a vertex?

video from Polthier, Schmies, Steffens & Teitzel, “Geodesics and Waves” (1997)



Exponential Map
• At a point p of a smooth surface M, the 

exponential map expp: TpM → M takes a 
tangent vector X to the point reached by 
walking along a geodesic in the direction 
X/|X| for distance |X|

points
tangent
vectors

exponential
map at p

Key idea: provides notion of “translation” for curved domains

• Can also imagine that exp “wraps” 
the tangent plane around the surface



Logarithmic Map
• Q: Is the exponential map surjective?  I.e., 

can we reach every point q from p?

• A: Yes (Hopf-Rinow): Consider a smooth 
surface M without boundary.  Then

– find the shortest geodesic γ from p to q
– let X be a vector in direction γ’ w/ 

length |γ|

– then by construction, expp(X ) = q
– Can also write logp(q) = X

• Map from q to X  is called the log map
points

tangent
vectors

log map
at p

Q: Is the log map uniquely determined?



Exponential Map—Injectivity
• Equivalently, is the exponential map 

always injective? (I.e., is there a unique 
geodesic that takes us from p to q?)

• No! Consider the exponential map on the 
sphere…

• By convention, log map therefore gives 
the smallest vector X such that expp(X) = q

• Q: Why are exp/log map useful?

• A: Allows us to locally work with points 
on curved spaces as though they are just 
vectors in a flat space



Averages on Surfaces
• Average of points in the plane is easy: just add 

up coordinates, divide by number of points

• How do we talk about an average of points on 
a curved surface?

– average of coordinates may no longer be on 
the surface

– might not even know how surface is 
embedded into space…

• Motivates idea of Karcher mean:

– average is point that minimizes sum of 
squared geodesic distances to all points

– in the plane, agrees with usual notion of 
“average” in the plane (why?) 

Karcher
mean

Euclidean
mean

Euclidean mean

x y1

y2
y3

y4

y5



Karcher Mean via Log Map
• Want to compute mean of points yi

• Iterative algorithm:
– pick a random initial starting point x
– compute the log vi of all points yi

– compute the mean v of all the vectors vi

– move x to expx(v) and repeat
• Will quickly converge to some Karcher mean

– in general may not be unique—consider 
two points y1 = -y2 on the sphere

• Can also be used to average, e.g., rotations

Key idea: turn “curved averaging” into linear averaging

+y

-y



Karcher Mean—Examples

Notice: not always as easy as taking Euclidean average & projecting onto surface!



p
u

Discrete Exponential Map
• Easy to evaluate exp map on discrete surfaces
• Given point p and vector u, start walking along u

– i.e., just intersect ray with edges of triangle
– continue w/ same angle in next triangle
– if we hit a vertex, continue in direction that 

makes equal angles (straightest)
• Q: How big is the injectivity radius?
• A: Distance to the closest cone vertex (Ω > 0)
• Q: Is the discrete exponential map surjective?
• A: No! Consider a saddle vertex (Ω < 0)

p

u

j

i
k

Notice: like “shortest”, “straightest” doesn’t work out perfectly…



Discrete Exponential Map—Examples
• Discrete exponential map provides a practical way to approximate geodesics on smooth 

surfaces (by triangulating them), and gives exact geodesics on discrete surfaces

p u



Computing the Log Map

p

Sharp, Soliman, Crane, “The Vector Heat Method” (2019)



Straightness—Dynamic Perspective
• Dynamic perspective: geodesic has zero 

tangential acceleration

• Consider curve γ(t): [a,b] ⟶ M (not unit speed)

• Tangential velocity is just the tangent to the curve

• Tangential acceleration should be something like 
the “tangential change in the tangent,” but:

– extrinsically, change in tangent is not a 
tangent vector

– intrinsically, tangents belong to different 
vector spaces

• So, how do we measure acceleration? M



Geodesic Equation
The covariant derivative ∇ provides 
another characterization of geodesics:

Intuition: no “in-plane turning” as we move along the curve.

tangent 
to curve

change along
tangent 

direction



Covariant Derivative—Extrinsic
• Suppose we want to measure how fast a 

vector field Y is changing along another 
vector field X at a point p

• Find a curve γ(t) with tangent X(p) at p
• Restrict Y to a vector field Y’(t) := Y(γ(t))
• Take the derivative dY’/dt
• Removing the normal component gives the 

covariant derivative  of Y along X

• Sound familiar?
– not so different from how we defined 

geodesic curvature (change of T in B direction)

– which explains geodesic equation 

Key idea: covariant derivative gives change in one vector field along another.



Covariant Derivative—Intrinsic Definition
• Since geodesics are intrinsic, can also define “straightness” using only the metric g

• For any function φ, tangent vector fields X, Y, Z, operator ∇ uniquely determined by

“compatible w/ metric”

“torsion free”

(linearity)

(product rule)



Lie Bracket of Vector Fields
• The Lie bracket [X,Y] measures failure of 

flows along two vector fields X, Y to 
commute

• Starting at any point p, follow X for time 
τ > 0, then Y, then -X, then -Y to arrive at 
a point q

• Lie bracket at p is vector given by limit of 
(q-p)/τ as τ→ 0

• For vector fields expressed in local 
coordinates u1, …, un, can write as

X Y

→ [X,Y]

q

p



Covariant Derivative from Metric
Claim. Covariant derivative is uniquely determined by the Riemannian metric g.
Proof.  For any three vector fields U, V, W, we have

By symmetry and bilinearity of the metric g, adding (1) and (2) and subtracting (3) gives

(1)

Hence,

Key observation: can solve for covariant derivative in terms of data we know (metric g).

(2)
(3)



Christoffel Symbols
• Let X1, … Xn be our usual basis vector fields (in local coordinates)

• Christoffel symbols tell us how to differentiate one basis along another: 

• By linearity, we then know how to take any covariant derivative
Recall the expression

Since [Xi , Xj] = 0 for any two coordinate vector fields, we get

In terms of Christoffel symbols, the left-hand side is

and we can write the right-hand side as

Hence, our final expression for the Christoffel symbols is



Solving the Geodesic Equation
• Can use Christroffel symbols to numerically 

compute geodesics on smooth surfaces

• Given surface 

– write out Jacobian 

– write out metric  and its inverse gij

– write out Christoffel symbols Γ
– express geodesic equation via Γ

• From here, can use any standard numerical 
integrator (e.g., Runge-Kutta) to step an initial 
position/direction forward in “time”



• Apply f to resulting curve in parameter 
domain to get a geodesic on the surface

• Can use Christroffel symbols to numerically 
compute geodesics on smooth surfaces

• Given surface 

– write out Jacobian 

– write out metric  and its inverse gij

– write out Christoffel symbols Γ
– express geodesic equation via Γ

• From here, can use any standard numerical 
integrator (e.g., Runge-Kutta) to step an initial 
position/direction forward in “time”

Solving the Geodesic Equation



Computing Geodesics on a Parametrized Surface
Now have two ways to solve initial value 
problem for a smooth parameterized surface f :

• Discretization

– triangulate the surface f
– trace rays along discrete surface

• ODE integration
– write metric g in terms of f
– write Christoffel symbols Γ in terms of g
– solve geodesic equation via ODE solver

Q: What are the pros/cons?
– speed, memory, accuracy, simplicity…
– generality (smooth and discrete)

p
u

p

u



Summary



Geodesics—Shortest vs. Straightest, Smooth vs. Discrete
• In smooth setting, several equivalent characterizations:

• shortest (harmonic)
• straightest (zero curvature, zero acceleration)

• In discrete setting, characterizations no longer agree!
– shortest natural for boundary value problem
– straightest natural for initial value problem
– convex: shortest paths are straightest (but not vice versa)
– nonconvex: shortest may not even be straightest! (saddles)

• Neither definition faithfully captures all smooth behavior:
– (shortest) cut locus/medial axis touches every convex vertex
– (straightest) exponential map is not surjective

• Use the right tool for the job (and look for other definitions!)

shortest straightest

smooth

discrete



Thanks!
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