DISCRETE DIFFERENTIAL
(GEOMETRY:
AN APPLIED INTRODUCTION

Keenan Crane * CMU 15-458/858



LLECTURE 3:
EXTERIOR ALGEBRA

DISCRETE DIFFERENTIAL
(GEOMETRY:
AN APPLIED INTRODUCTION

Keenan Crane * CMU 15-458/858



Why Learn Exterior Calculus?
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Translation: “There is gold in the basement of the computer science building!”

Key idea: language is important!



Not all languages are created equal. ..

¥04'43. F:a,Bel.d:anB=A.=.avBe2

Dem. .
F.%5426. D Fra=t2.B=ty.D:avBe2.=.24y.
[%51°231] =.t‘znty=A.
[%13°12] =.anfB=A (1)

F.(1).%11°'11'35.D
Fro (o, y).a=tzc. B=ty.d:avBel.
Fo(2).%11:54.%52'1 . D F . Prop
From this nrenosition 1t will follow, when arithmetical addition has been

defined, that 1 4+ 1 = 2.

onfB=A (2)

1]

(from Russel & Whitehead’s Principia Mathematica, p. 379)



Why Learn Exterior Calculus?

* Natural language for talking about signed volume
e facilitates communication w/ math, physics, ...
* provides new perspectives on computation
* Geometry
* algebraic geometry
e ceometric algebra (Clifford algebra, spin physics
* Physics

B. Non-stationary Euler equation

Let us retell Cartan’s results from the last section in
the context of hydrodynamics, i.e. for particular choice

(see Eq. (18))
o =1 —Edt (44)
where, in usual coordinates (r,t) on E® x R,
9:=v-dr=v(r,t)-dr (45)
From we get
iedo =0 & Lo +iudd = —dE (46)

One easily checks (e.g. in Cartesian coordinates (r,t))
that

L, 0+ iydd = —dE (47)

is nothing but the complete, time-dependent, Euler equa-
tion (12). Therefore the time-dependent Euler equation
may also be written in the succinct form

iedo =0 Euler equation (48)
The form of the Euler equation turns out to be very
convenient. Short illustration:

1. Just looking at (40, and one obtains

fv - dr = const.
5

(the two loops ¢1 and c2 are usually in constant-time
hyper-planes t = ¢, and ¢t = ¢5).
2. Application of d on both sides gives very quickly
Helmholtz theorem (see the next Section [IIIC).
Bernoulli theorem, by the way, is no longer true in
time-dependent case, so we can not derive it from (48).

Kelvin’s theorem (49)

C. Helmholtz statement on vortex lines - general case

Application of d on both sides of (48) and using formula
(9) results in

or, in words, that the do is invariant w.r.t. the flow of
the fluid (regarded as the flow of £ on M x R).

Now, we want to see an integrable distribution behind
vortex lines, again. Define the distribution D in terms of
annihilation of as many as fwo exact forms:

D © iudo=0=1i,dt (52)
By repeating the reasoning from and one con-
cludes that D is integrable.

The distribution D is, however, also invariant w.r.t.
the flow of the fluid. (Because of (50) and the trivial fact
that L¢(dt) = 0.) So, integral submanifolds (surfaces)
move with the fluid.

What do they look like? They are nothing but vortex
lines.

Indeed, making use of general formula (A3) from Ap-
pendix [A] and the form of Euler equation we can
write

do = dbd + dt A (La, 0 + dE)
= di + dt A (—i,dd)

always (53)
on solutions (54)
Let us now contemplate Eq. (52). It says, that the dis-
tribution consists of spatial vectors (i.e. those with van-
ishing time component, therefore annihilating dt) which,
in addition, annihilate do.

Let w be arbitrary spatial vector. Denote, for a while,
iwd® =: b (it is a spatial 1-form). Then, from (54),

iwdo = b— dt Nigb (55)
from which immediately

iw(do) =0 & b=i,do=0 (56)

This says that we can, alternatively, describe the distri-
bution D as consisting of those spatial vectors which, in
addition, annihilate dd (rather than do, as it is expressed
in the definition (52)). But Egs. and (22) show that

di = w -dS = w(r,t)-dS (57)

so that d is nothing but the vorticity 2-form and, there-
fore, the integral surfaces of D may indeed be identified
with vortex lines. So, Helmholtz statement is also true in
the general, time-dependent, case. (Notice that the sys-
tem of vortex lines looks, in general, different in different
times. This is because its generating object, the vorticity
2-form df, depends on time.)

D. Helmholtz statement on vortex tubes - general case

Vortex tube is a genuinely spatial concept and the
statement concerns purely kinematical property of any
velocity field at a single time (see the beginning of Sec.
IID). So, no (change of) dynamics has any influence on
it. If the statement were true before, it remains to be
true now.

* “massless” quantities are vectors (velocity, acceleration, ...
* “massive” quantities are forms (momentum, force, ...

e Computer Science (this class!): geometric computation on mesh

€5
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Where Are We Going Next?

GOAL: develop discrete exterior calculus (DEC)

Prerequisites:

Linear algebra: “little arrows” (vectors)
Vector Calculus: how do vectors change?

Next few lectures:

Exterior algebra: “little volumes” (k-vectors)
Exterior calculus: how do k-vectors change?

DEC: how do we do all of this on meshes?

/

Basic idea: replace vector calculus with computation on meshes.



Why Are We Going There?

* Motivation: Do cool and useful stuff with meshes!
e Geometry processing algorithms must solve eguations on meshes (PDEs)
e Meshes are made up of little volumes

= Need to learn to integrate equations over little volumes to do computation
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Basic Computational Tools
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Parameterization

..and more!






Warm Up: Multiplication

Question: why does 3 x 4 =4 x 37?
Answer: not just because “that’s the rule!”

There is a very good geometric reason:

3

We didn’t have to adopt this rule! We chose it because it captures natural behavior.

You should never accept a rule purely on faith. Always ask, “why is this the rule?”




e What is a vector? (Geometrically?)

finite-dimensional infinite-dimensional

For geometric computing, often care most about dimensions 1, 2, 3, ...and oo!



Review: Vector Spaces

e Formally, a vector space is a set V together with the operations®

+: VXV =V “addition”
. RxV =V “scalar multiplication”

e Must satisfy the following rules for all vectors x,y,z and scalars a,b:

X+y=y+x (ab)x = a(bx)
(x+vy)+z=x+(y+2z2) Ix = x

0 EVstx+0=0+x=x a(x +y) = ax +ay
Vx,3x e Vst.x+x=0 (a4 b)x = ax + bx

*Note: in general, could use something other than reals here.



Vector Spaces — Geometric Reasoning

e Where do these rules come from?
e As with numbers, reflect how oriented lengths (vectors) behave in nature:

rr0=x (x+y)+z=x+(y+2)

...but the algebra makes it easier to manage complexity!



Review: Inner Product

e We can also associate a vector space with an inner product
(,)y: VXV =R

e The quantity <x,y) captures how well two vectors x, y in V “line up”

e For all vectors x, y, z in V, real numbers a, any (real) inner product must satisty

X symmetry linearity positivity
/ <x1y> — <y,X> <Elx,y> — a<x,y> <x’x> > O, Y # O

X,y +z)=(xy)+(x,z) (x,x) =0, x=0

Example. Euclidean inner product (x, y) Z X;ilY;

(Where do these “rules” come from? Why might they be natural?)
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edge Product



Review: Span

Q: Geometrically, what is the span of two vectors?

0

L,

u,oeV, span({u,v}):={xeV |x=au+bv, abe R}



Span

Definition. In any vector space V, the span of a finite* collection of vectors { vy, ...,
vk } is the set of all possible linear combinations:

k
span({vl,. : .,Z)n}) =cxeV |x= Zaivi, a; € R
=1

The span of a collection of vectors is a linear subspace, i.e., a subset that forms a vector
space with respect to the original vector space operations.

*Note: one can extend this definition to infinite sums, but only with additional assumptions about V.



Wedge Product ()

(Y

Analogy: span



Wedge Product ()

(Y

Analogy: span



Wedge Product ()

(Y

Analogy: span



Wedge Product ()

UND=—DNU

Analogy: span
Key differences: orientation & “finite extent”
Key property: antisymmetry



Wedge Product — Degeneracy

Q: What is the wedge product of a vector with itself?

A: Geometrically, spans a region of zero area.

uNu=~0

*May change when we generalize (later...)



Wedge Product - Associativity

[/u’ / [/u'

UND AW (u A o) u (o Aw)



Wedge Product - Distributivity

uNv,+uNvy=uA(vq +vp)




k-Vectors

UNDNW
The wedge of k vectors is called a “k-vector.”

i

O-vector 1-vector 2-vector 3-vector



Visualization of k-Vectors

Our visualization is a little misleading: k-vectors only have direction & magnitude.

E.q., parallelograms w/ same plane, orientation, and area represent same 2-vector:

\C /D ——

U1 \N01 = Uy N0y = Uz \ 03

Might say a 2-vector is an equivalence class of parallelograms...

...or more generally any little patch with the same area & normal.



0-vectors as Scalars

Q: What do you get when you wedge zero vectors together?
A: You get this:

For convenience, however, we will say that a “0-vector” is a scalar value (e.g., a real
number). This treatment becomes extremely useful later on...

Key idea: magnitude, but no direction (scalar).



e Star

U ¢

\
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Review: Orthogonal Complement

Q: Geometrically, what is the orthogonal complement of a linear subspace?

Example: orthogonal complement of a span

V :=span({u,v})

Vti={x e R"(x,w) =0Vw € V}

Notice: orthogonal complement meaningful only if we have an inner product!



Orthogonal Complement

Definition: Let U C V be a linear subspace of a vector space V with an inner
product (-, -). The orthogonal complement of U is the collection of vectors

Ut :={veVl{uv)=0,Vuecl}

Why is it useful to talk about a complement?

Example. “What kind of cuisine do you like?”
Option 1: “I like Vietnamese, Italian, Ethiopian, ...”
Option 2: “1 like everything but Bavarian food!”

.
-
-
-
-
-
-
-
-

-
.-
-
V2

Key idea: often it’s easier to specify a set by saying what it doesn’t contain.



Hodge Star ()

*x(UNv) =w

/

Analogy: orthogonal complement
Key d1fference§: or1enta’f1on & I.nagmt.ude ks (n—k)
Important detail: z A\ xz is positively oriented



Hodge Star - 2D

* *x U

* Kk xU

Analogy: 90-degree rotation

*U




Exterior Algebra— Recap

Let V be an n-dimensional vector space, consisting of vectors or 1-vectors.

Can “wedge together” k vectors to Can apply the Hodge star to get
get a k-vector (signed volume). the “complementary” k-vector.

*(UAND) =w

w

0

¢ /
—

UNDNW

(Also have the usual vector space operations: sum, scalar multiplication, ...)



Coordinate Representation



Basis — Visualized

€2

0 = 0161 + 016>

Key idea: encode a vector by its extent along a collection of independent axes.



Basis & Dimension

Definition. Let V be a vector space. A collection of vectors is linearly independent if
no vector in the collection can be expressed as a linear combination of the others. A
linearly independent collection of vectors {ey,...,e,} is a basis for V if every vector
v € V can be expressed as

0 =701€61 + -+ 0nby

for some collection of coefficients vy, ...,v, € R, i.e,, if every vector can be uniquely
expressed as a linear combination of the basis vectors e;. In this case, we say that V is
finite dimensional, with dimension n.



Basis k-Vectors — Visualized

(V = R?)

basis 1-vectors basis 2-vectors

€3
¢

e3 N\ e

ey N e3

T e

€1 €2

Key idea: signed volumes can be expressed as linear
combinations of “basis volumes” or basis k-vectors.

basis 3-vectors

€1 /\:82/\83

”~




Basis k-Vectors—How Many?

Consider V = R* with basis {e1,er,e3,64}.

Q: How many basis 2-vectors?

e1 \Nes e»/\ej3 er/hex /ey
e1 /\ e3 /\ ey
e1/\Nes €ex/N\eg e3/\ey 5 3 4
e-Ne Ne

Why not ez N ex? eg N ey?
What do these bases represent geometrically?

Q: How many basis 4-vectors? .
= Y N Q: How many basis 1-vectors?

e1 Nex ANes /ey Q: How many basis 0-vectors?

Q: Notice a pattern?

Q: How many basis 3-vectors?

. n
dlmn,k — ( k
R> R*

1 1

3 4

3 6

1 4

1

)



Hodge Star — Basis k-Vectors

Consider V = R’ with orthonormal basis {ej, >, e3}

Q: How does the Hodge star map basis k-vectors to basis (n — k)-vectors (n=3)?

A: For any basis k-vector a :=¢;, A--- Ae; , we must have det(a A xa) = 1.

In other words, if we start with a “unit volume,” wedging with its Hodge
star must also give a unit, positively-oriented unit volume. For example:

Given « := ey, find *a such that det(e, A xep) = 1. i

*€1

— Must have xa = e3 A eq, since then *€7
*€3

ey \xey = er Ne3 Neq, *(e2 Aes)

*(e3 Aeq)
*(e1 Aep)
)

which is an even permutation of e; A ey A e3. x(eg Aes Aes

e1 /\ e A\ es
er /N e3
e3 N\ eq
e1 /\ é



Exterior Algebra— Formal Definition

Definition. Let ¢y, ..., e, be the basis for an n-dimensional inner product space V. For each integer 0 < k < n, let /\k
denote an (;)-dimensional vector space with basis elements denoted by e;, A - - - A¢;_ for all possible sequences of indices

1 <i; <--- < i <mn,corresponding to all possible “axis-aligned” k-dimensional volumes. Elements of A\ are called k-vectors.
The wedge product is a bilinear map
k / k+1
/\k,l I /\ X /\ —

uniquely determined by its action on basis elements; in particular, for any collection of distinct indices 11, . .., ik,

(ei, A== Nep ) N ( A Nej ) =8gn(0) ey N Aegy

where 0 is a permutation that puts the indices of the two arguments in canonical (lexicographic) order. Arguments with

repeated indices are mapped to 0 € A*™!. For brevity, one typically drops the subscript on Ak 1. Finally, the Hodge star on
k-vectors is a linear isomorphism
k —k
i N = A

det(a A xa) =1

uniquely determined by the relationship

where « is any k-vector of the form a« = ¢;, A --- Ae; and det denotes the determinant of the constituent 1-vectors (treated as

column vectors) with respect to the inner product on V. The collection of vector spaces A* together with the maps A and *
define an exterior algebra on V, sometimes known as a graded algebra.

Don’t worry about this unless you really want to! Concepts & mechanics more important.



Sanity Check

Q: What's the difference between
x = 2e1 + 3e and B = 2e1 N\ 3ep?

A: €n €2

(vector) (2-vector)



Exterior Algebra— Example

282)

(261 +ep) A (—eq) + (2e1 +e2) A (2ep)

V = R? Q: What is the value of a A 57?
X = 2e1 + e A: a ANB=(2e1+e) N (—e
p = —e1+2e N

—Mgeg/\el

=e1 Ney +4e1 Ney

be1 N\ er

Q: What does the result mean, geometrically?

4e1 N\ ep




Exterior Algebra— Example

V=R’ Q: Whatisx(a A+ BAY)?
x = 2e1 /\ ey
B = 3e3 A: x(a AB+BNY) = *((2e1 Nex) AN3es+3e3 A\ (ex Nep))

|
*

(661 Neyx Aes+3ez Aexy Neq)
(661 N ey ANes —3e; ANep Aes)
*(381 /\ €2 /\63)

3.

YT=exNe

|
*

Key idea: in this example, it would have been fairly hard to reason about the
answer geometrically. Sometimes the algebraic approach is (incredibly!) useful.



Exterior Algebra - Summary

* Exterior algebra

* language for manipulating signed volumes

¢ length matters (magnitude)

e order matters (orientation)

e behaves like a vector space (e.g., can add two volumes, scale a volume, ...)
* Wedge product—analogous to span of vectors
e Hodge star—analogous to orthogonal complement (in 2D: 90-degree rotation)
* Coordinate representation—encode vectors in a basis

* Basis k-vectors are all possible wedges of basis 1-vectors



Thanks!
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