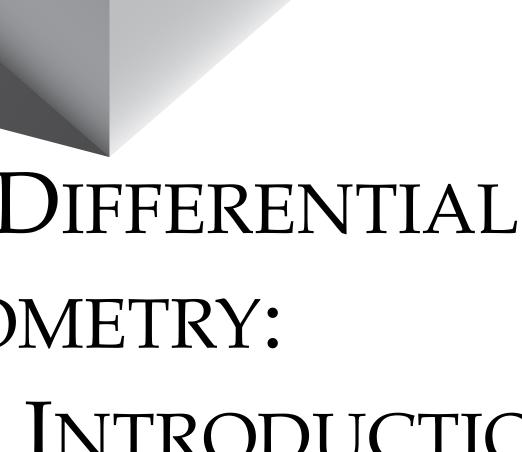
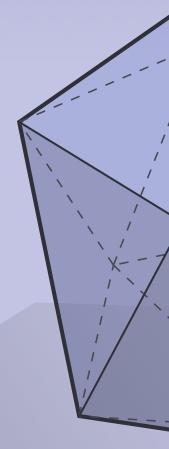
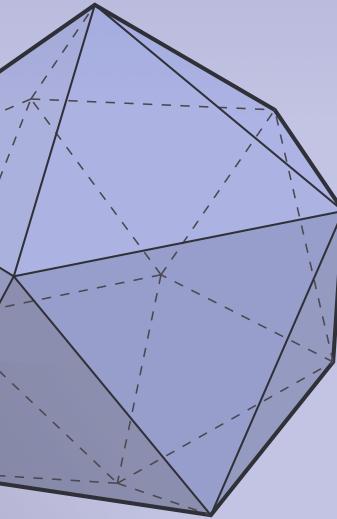
# DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858



# LECTURE 3: EXTERIOR ALGEBRA



# DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858



Why Learn Exterior Calculus?

# コンピュータサイエンスの建物の地下では、金があります!

**Translation:** "There is gold in the basement of the computer science building!"

Key idea: language is important!

# Not all languages are created equal...

 $\vdash :. \alpha, \beta \in 1 . \exists : \alpha \cap \beta = \Lambda . \equiv . \alpha \cup \beta \in 2$ **\*54**·**4**3. Dem.

[\*51·231] [**\***13·12] F.(1).\*11.11.35.D $\vdash :. (\exists x, y) \cdot \alpha = \iota' x \cdot \beta = \iota'$  $\vdash$  (2). \*11.54. \*52.1.  $\supset$   $\vdash$ . Prove the second state of the se From this proposition it will follow, defined, that 1 + 1 = 2.

(from Russel & Whitehead's Principia Mathematica, p. 379)

$$\begin{array}{l} \mathbf{\dot{y}} \cdot \mathbf{\mathcal{D}} : \mathbf{\alpha} \lor \mathbf{\beta} \in 2 \cdot \equiv \cdot x \neq y \cdot \\ \equiv \cdot \iota' x \land \iota' y = \Lambda \cdot \\ \equiv \cdot \mathbf{\alpha} \land \mathbf{\beta} = \Lambda \end{array}$$
(1)

by 
$$\Im: \alpha \cup \beta \in 2 := :\alpha \cap \beta = \Lambda$$
 (2)  
by when arithmetical addition has been

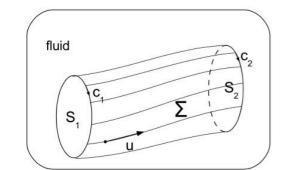


# Why Learn Exterior Calculus?

- Natural language for talking about signed volume
  - facilitates communication w/ math, physics, ...
  - provides new perspectives on computation
- Geometry
  - algebraic geometry
  - geometric algebra (Clifford algebra, spin physics)

# • **Physics**

- "massless" quantities are vectors (velocity, acceleration, ...)
- "massive" quantities are forms (momentum, force, ...)
- **Computer Science** (*this class*!): geometric computation on meshes



### Non-stationary Euler equation

Let us retell Cartan's results from the last section in the context of hydrodynamics, i.e. for particular choice (see Eq. (18))

$$\sigma = \hat{v} - \mathcal{E}dt \tag{44}$$

where, in usual coordinates  $(\mathbf{r}, t)$  on  $E^3 \times \mathbb{R}$ ,

$$i_{arepsilon} d\sigma = 0 \qquad \Leftrightarrow \qquad \mathcal{L}_{\partial_t} \hat{v} + i_v \hat{d} \hat{v} = - \hat{d} \mathcal{E}$$

 $\hat{v} := \mathbf{v} \cdot d\mathbf{r} \equiv \mathbf{v}(\mathbf{r}, t) \cdot d\mathbf{r}$ 

One easily checks (e.g. in Cartesian coordinates  $(\mathbf{r}, t)$ )

$$\mathcal{L}_{\partial_t}\hat{v} + i_v\hat{d}\hat{v} = -\hat{d}\mathcal{E} \tag{47}$$

is nothing but the complete, time-dependent, Euler equation (12). Therefore the time-dependent Euler equation may also be written in the succinct form

$$i_{\xi}d\sigma = 0$$
 Euler equation (48)

The form (48) of the Euler equation turns out to be very convenient. Short illustration:

1. Just looking at (40), (48) and (44) one obtains

$$\oint_{c} \mathbf{v} \cdot d\mathbf{r} = \text{const.} \qquad Kelvin's \ theorem \tag{49}$$

(the two loops  $c_1$  and  $c_2$  are usually in constant-time hyper-planes  $t = t_1$  and  $t = t_2$ ). 2. Application of d on both sides gives very quickly

Helmholtz theorem (see the next Section IIIC). Bernoulli theorem, by the way, is no longer true in time-dependent case, so we can not derive it from (48)

### C. Helmholtz statement on vortex lines - general case

Application of d on both sides of (48) and using formula (9) results in

or, in words, that the  $d\sigma$  is invariant the fluid (regarded as the flow of  $\xi$  on .

Now, we want to see an integrable d vortex lines, again. Define the distribut annihilation of as many as two exact fo

$$\mathcal{D} \quad \leftrightarrow \quad i_w d\sigma = 0 = i$$

By repeating the reasoning from (32) and (33) one concludes that  $\mathcal{D}$  is integrable.

the flow of the fluid. (Because of (50) and the trivial fact that  $\mathcal{L}_{\xi}(dt) = 0.$  So, integral submanifolds (surfaces) move with the fluid.

What do they look like? They are nothing but vortex lines. Indeed, making use of general formula (A3) from Ap-

pendix A and the form (47) of Euler equation we can

$$d\sigma = d\hat{v} + dt \wedge (\mathcal{L}_{\partial_t}\hat{v} + d\mathcal{E})$$
$$= \hat{d}\hat{v} + dt \wedge (-i \ \hat{d}\hat{v})$$

Let us now contemplate Eq. (52). It is tribution consists of *spatial* vectors (i.i. ishing *time* component, therefore annihi in addition, annihilate 
$$d\sigma$$
.

Let w be arbitrary spatial vector. Denote, for a while,  $i_w d\hat{v} =: \hat{b}$  (it is a *spatial* 1-form). Then, from (54),

$$i_w d\sigma = \hat{b} - dt \wedge i_v \hat{b}$$

from which immediately

$$i_w(d\sigma) = 0 \qquad \Leftrightarrow \qquad b \equiv i$$

This says that we can, alternatively, describe the distribution  $\mathcal{D}$  as consisting of those *spatial* vectors which, in addition, annihilate  $\hat{d}\hat{v}$  (rather than  $d\sigma$ , as it is expressed in the definition (52)). But Eqs. (45) and (22) show that

$$\hat{d}\hat{v} = \boldsymbol{\omega}\cdot d\mathbf{S} \equiv \boldsymbol{\omega}(\mathbf{r},t)\cdot d\mathbf{s}$$

so that  $d\hat{v}$  is nothing but the vorticity 2-form and, therefore, the integral surfaces of  $\mathcal{D}$  may indeed be identified with vortex lines. So, Helmholtz statement is also true in the general, time-dependent, case. (Notice that the system of vortex lines looks, in general, different in different times. This is because its generating object, the vorticity 2-form  $d\hat{v}$ , depends on time.)

### D. Helmholtz statement on vortex tubes - general case

Vortex tube is a genuinely spatial concept and the statement concerns purely kinematical property of any velocity field at a single time (see the beginning of Sec. IID). So, no (change of) dynamics has any influence on it. If the statement were true before, it remains to be true now

| w.r.t.                | the  | flow | of |
|-----------------------|------|------|----|
| $M \times \mathbb{I}$ | ₹).  |      |    |
| istribu               | tion | behi | nd |
| tion $\mathcal{D}$    | in t | erms | of |
| orms:                 |      |      |    |
|                       |      |      |    |

(52)

The distribution  $\mathcal{D}$  is, however, also invariant w.r.t.

always on solutions (54)

says, that the dis e. those with vanihilating dt) which

 $i_w \hat{d} \hat{v} = 0 \tag{56}$ 

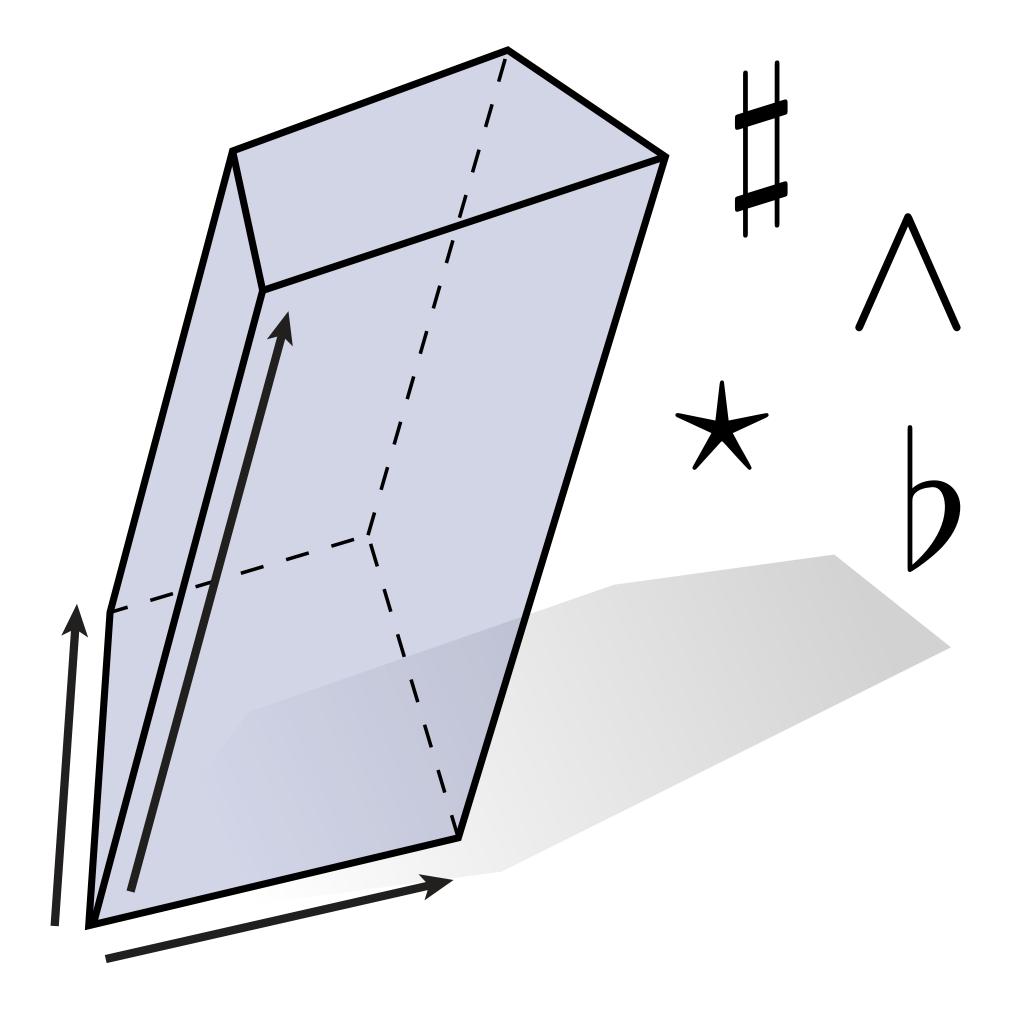
Where Are We Going Next?

**GOAL:** develop *discrete exterior calculus* (DEC) Prerequisites:

Linear algebra: "little arrows" (vectors) **Vector Calculus:** how do vectors *change*? Next few lectures:

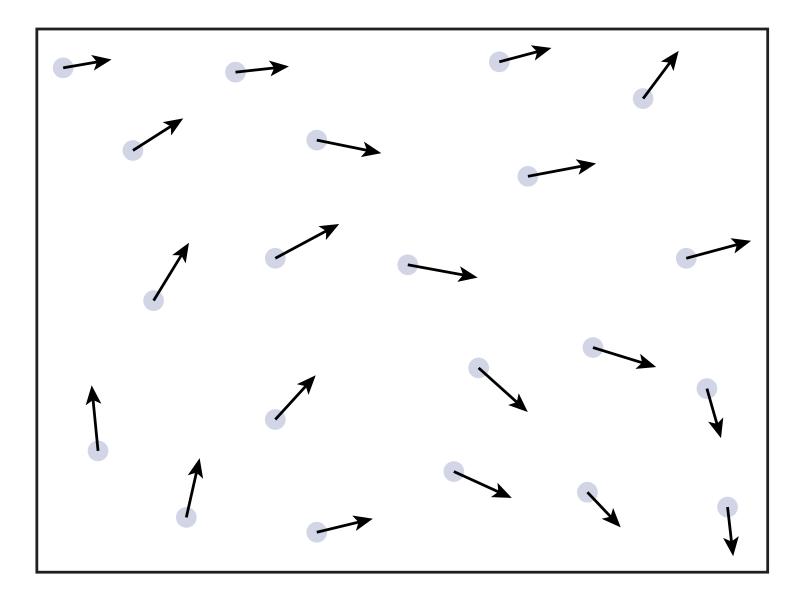
**Exterior algebra**: "little volumes" (*k*-vectors) **Exterior calculus**: how do *k*-vectors change? **DEC:** how do we do all of this on meshes?

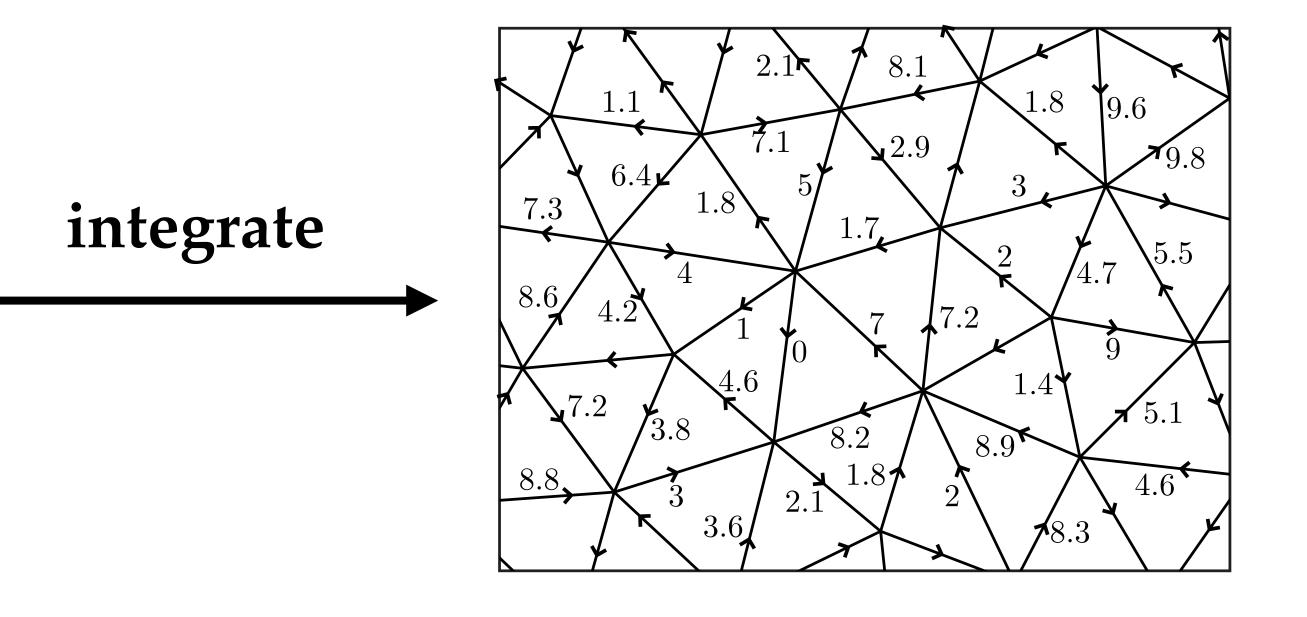
**Basic idea:** replace vector calculus with computation on meshes.



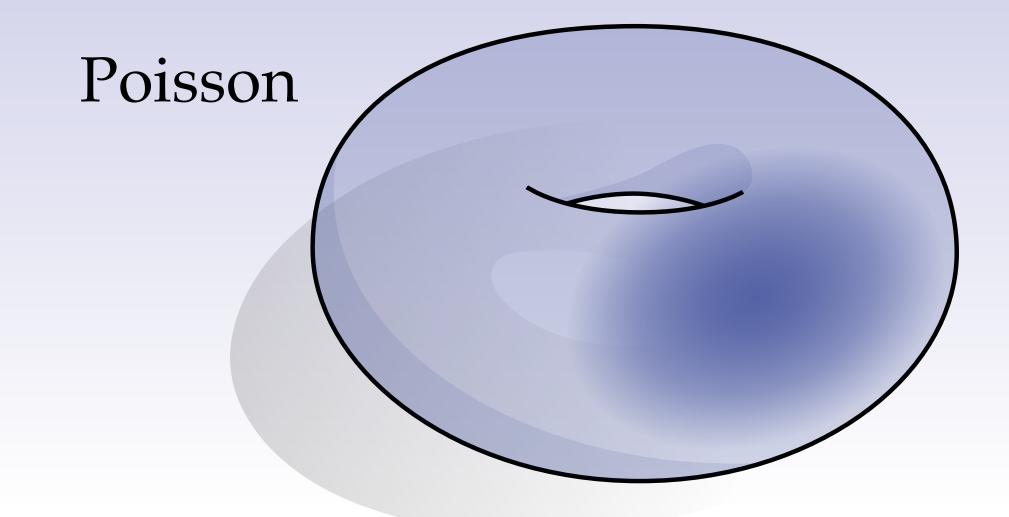
# Why Are We Going There?

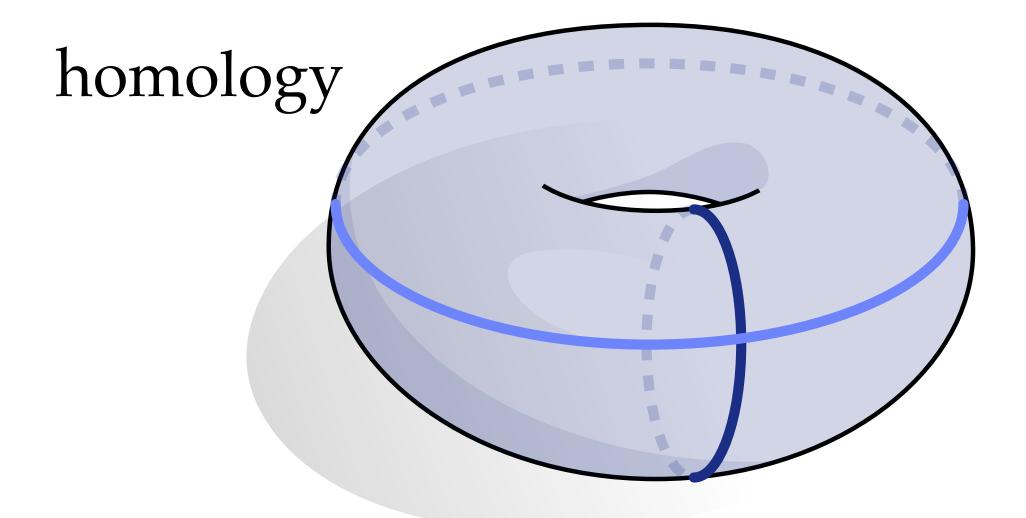
- **Motivation:** *Do cool and useful stuff with meshes!*
- Geometry processing algorithms must solve *equations* on meshes (PDEs)
- Meshes are made up of little *volumes*
- $\Rightarrow$  Need to learn to *integrate* equations over little volumes to do computation

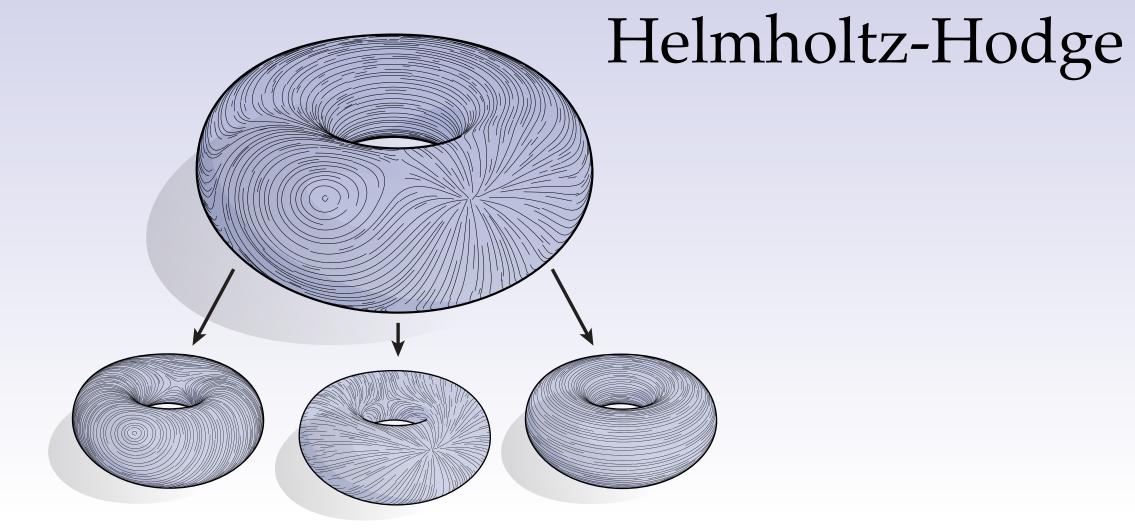




# Basic Computational Tools



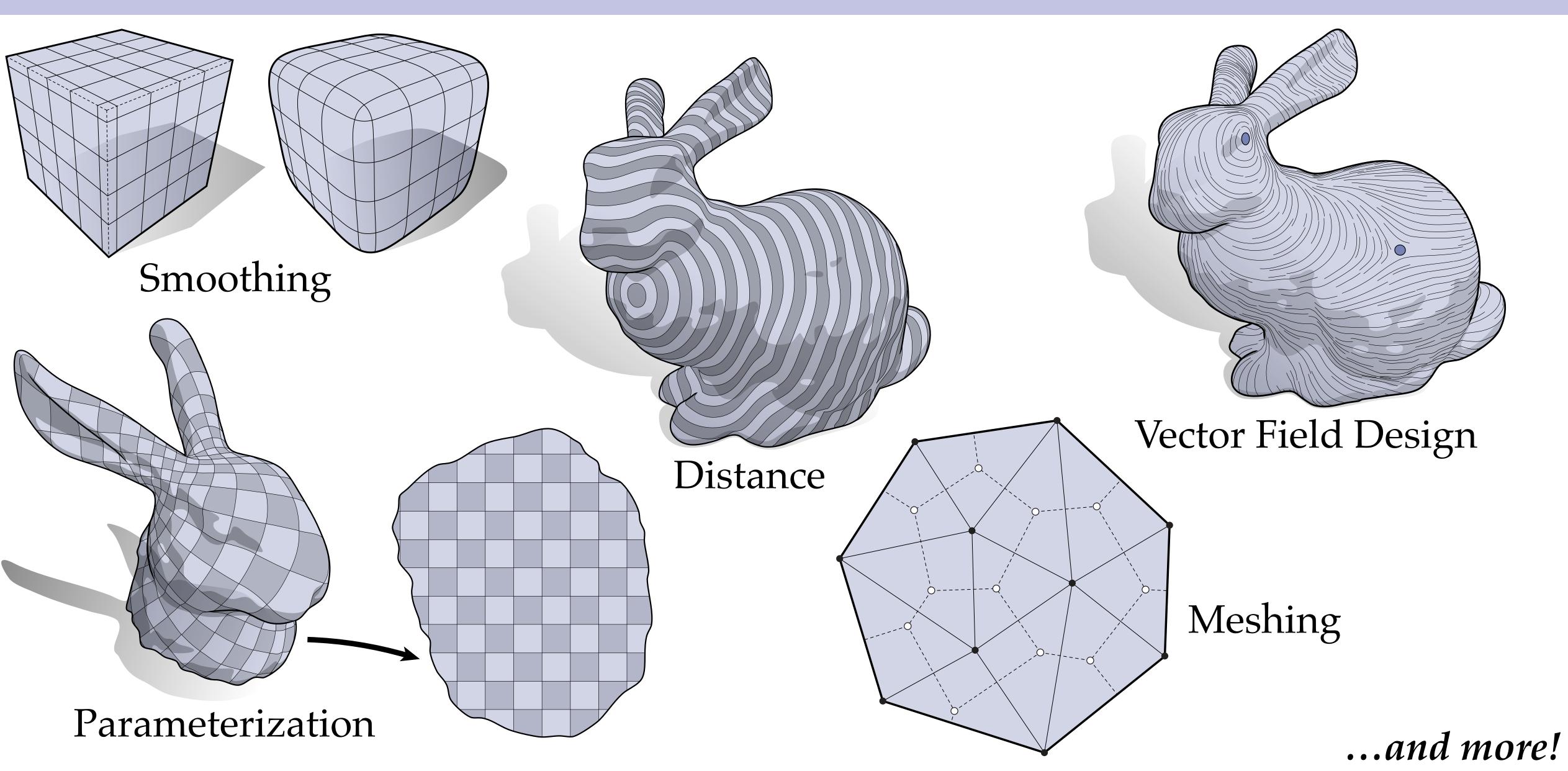


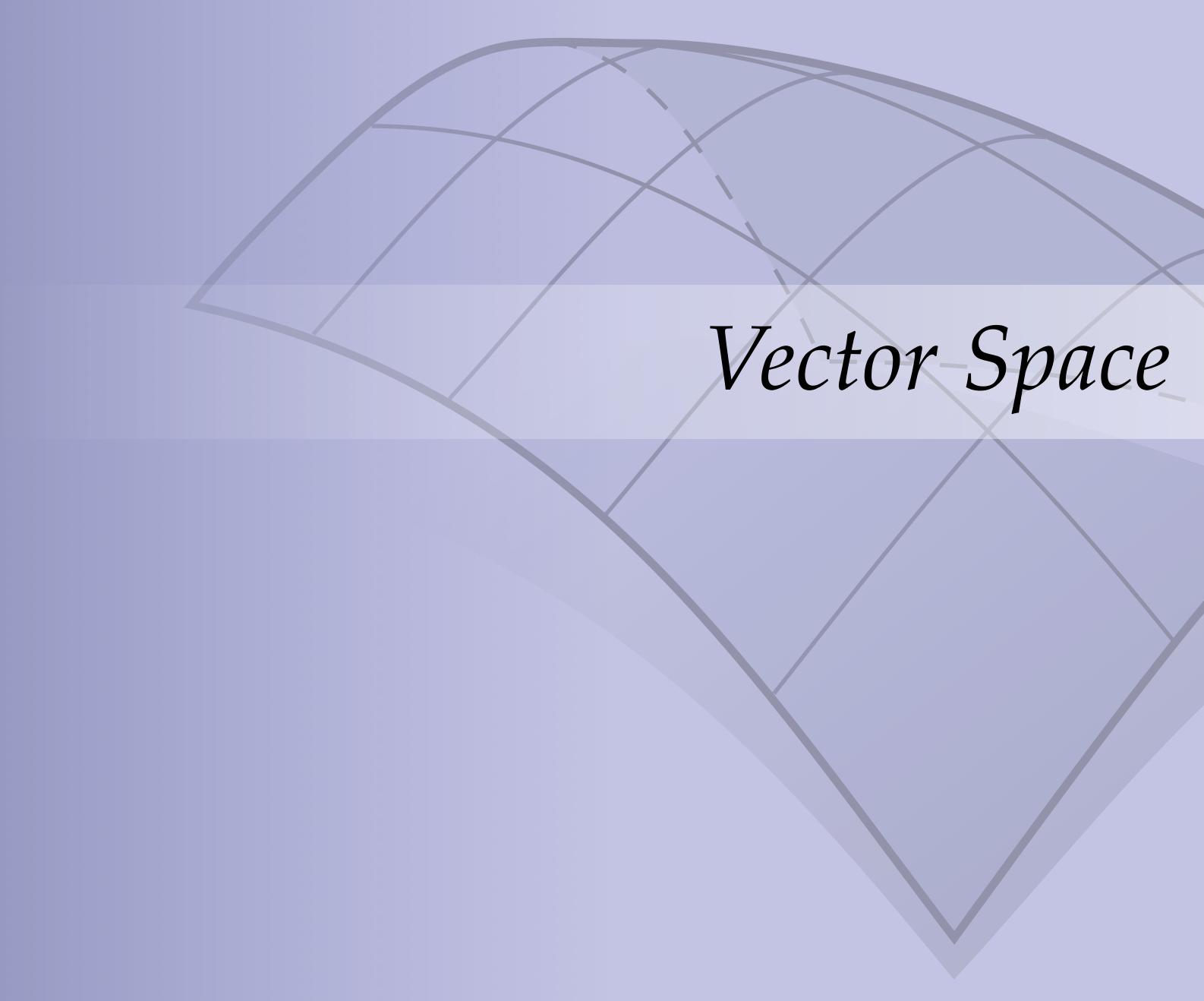


# cohomology



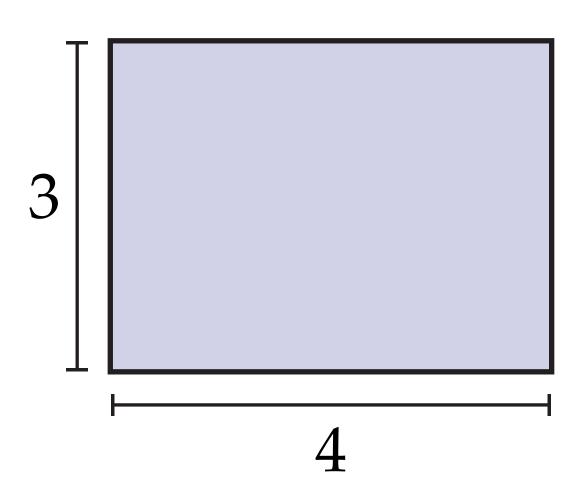




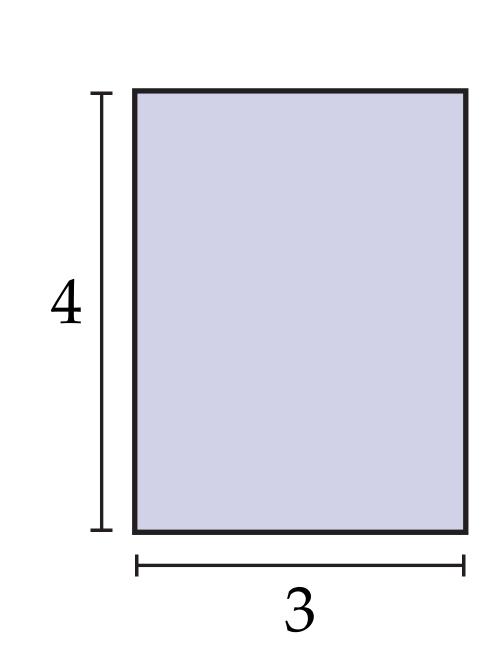


# Warm Up: Multiplication

**Question:** why does  $3 \times 4 = 4 \times 3$ ? **Answer:** <u>not</u> just because *"that's the rule!"* There is a very good geometric reason:

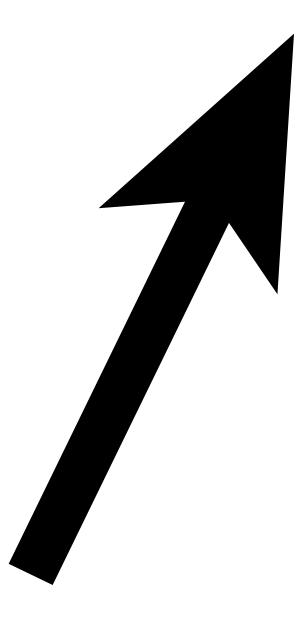


We didn't have to adopt this rule! We chose it because it captures natural behavior. You should <u>never</u> accept a rule purely on faith. Always ask, "<u>why</u> is this the rule?"



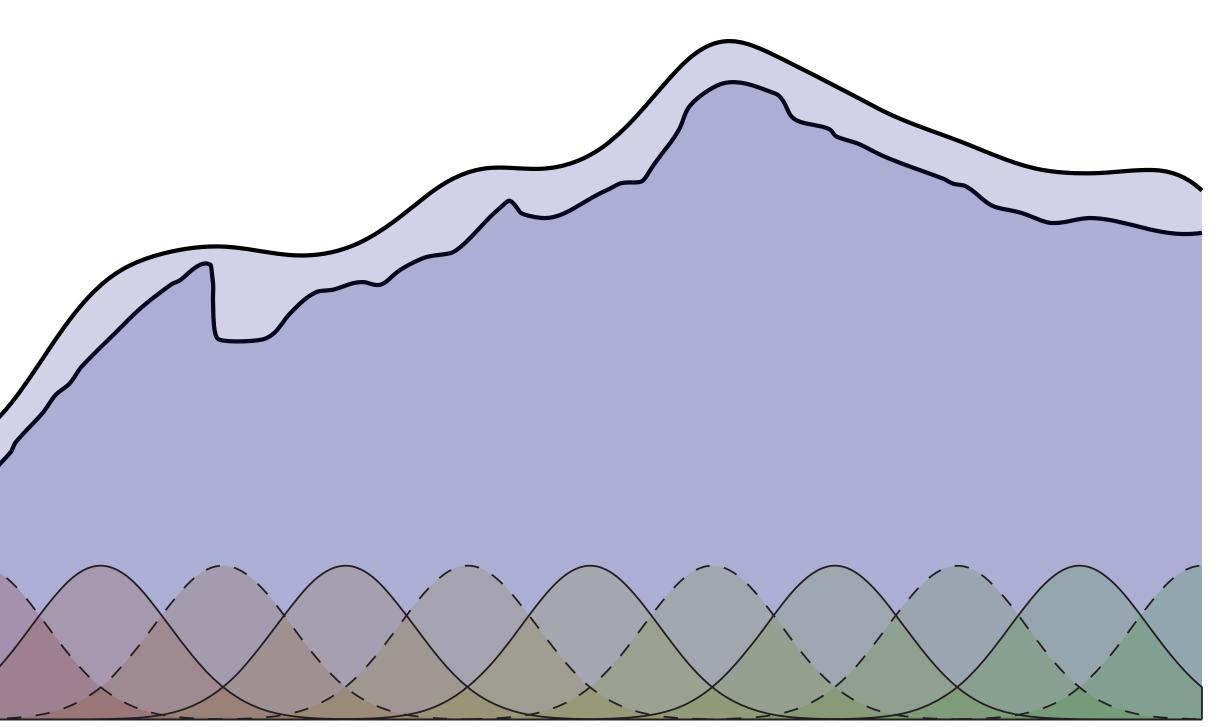
Review: Vector Spaces

• What is a vector? (*Geometrically*?)



## finite-dimensional

For geometric computing, often care most about dimensions 1, 2, 3, ... and  $\infty$ !



# infinite-dimensional

Review: Vector Spaces

• Formally, a *vector space* is a set *V* together with the operations\*

$$+: V \times V \to V \qquad \text{``a}$$
$$\cdot: \mathbb{R} \times V \to V \qquad \text{``set}$$

• Must satisfy the following rules for all vectors *x*,*y*,*z* and scalars *a*,*b*:

$$x + y = y + x$$
  
(x + y) + z = x + (y + z)  
$$\exists 0 \in V \text{ s.t. } x + 0 = 0 + x = x$$
  
$$\forall x, \exists \tilde{x} \in V \text{ s.t. } x + \tilde{x} = 0$$

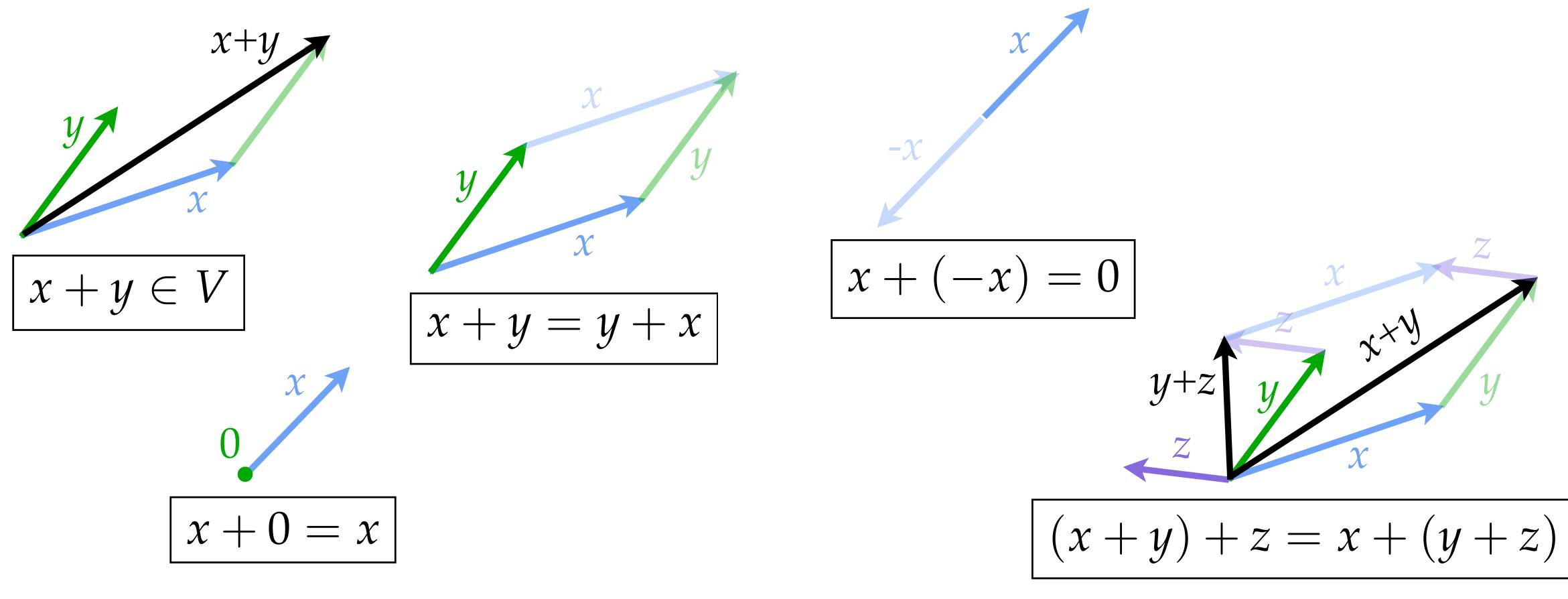
\*Note: in general, could use something other than *reals* here.

- ddition"
- calar multiplication"

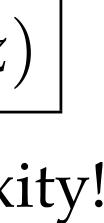
$$(ab)x = a(bx)$$
$$1x = x$$
$$a(x + y) = ax + ay$$
$$(a + b)x = ax + bx$$

Vector Spaces—Geometric Reasoning

- Where do these rules come from?
- As with numbers, reflect how *oriented lengths* (vectors) behave in nature:



...but the algebra makes it easier to manage complexity!



# Review: Inner Product

• We can also associate a vector space with an *inner product* 

- The quantity  $\langle x,y \rangle$  captures how well two vectors x, y in V "line up"
- For all vectors x, y, z in V, real numbers a, any (real) inner product must satisfy

# <u>symmetry</u>

$$\langle x, y \rangle = \langle y, x \rangle \qquad \langle a x, y \rangle$$

# **Example.** Euclidean inn

(Where do these "rules" come from? Why might they be natural?)

 $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ 

linearity positivity  $\langle ax, y \rangle = a \langle x, y \rangle$   $\langle x, x \rangle > 0, x \neq 0$  $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$   $\langle x, x \rangle = 0, x = 0$ 

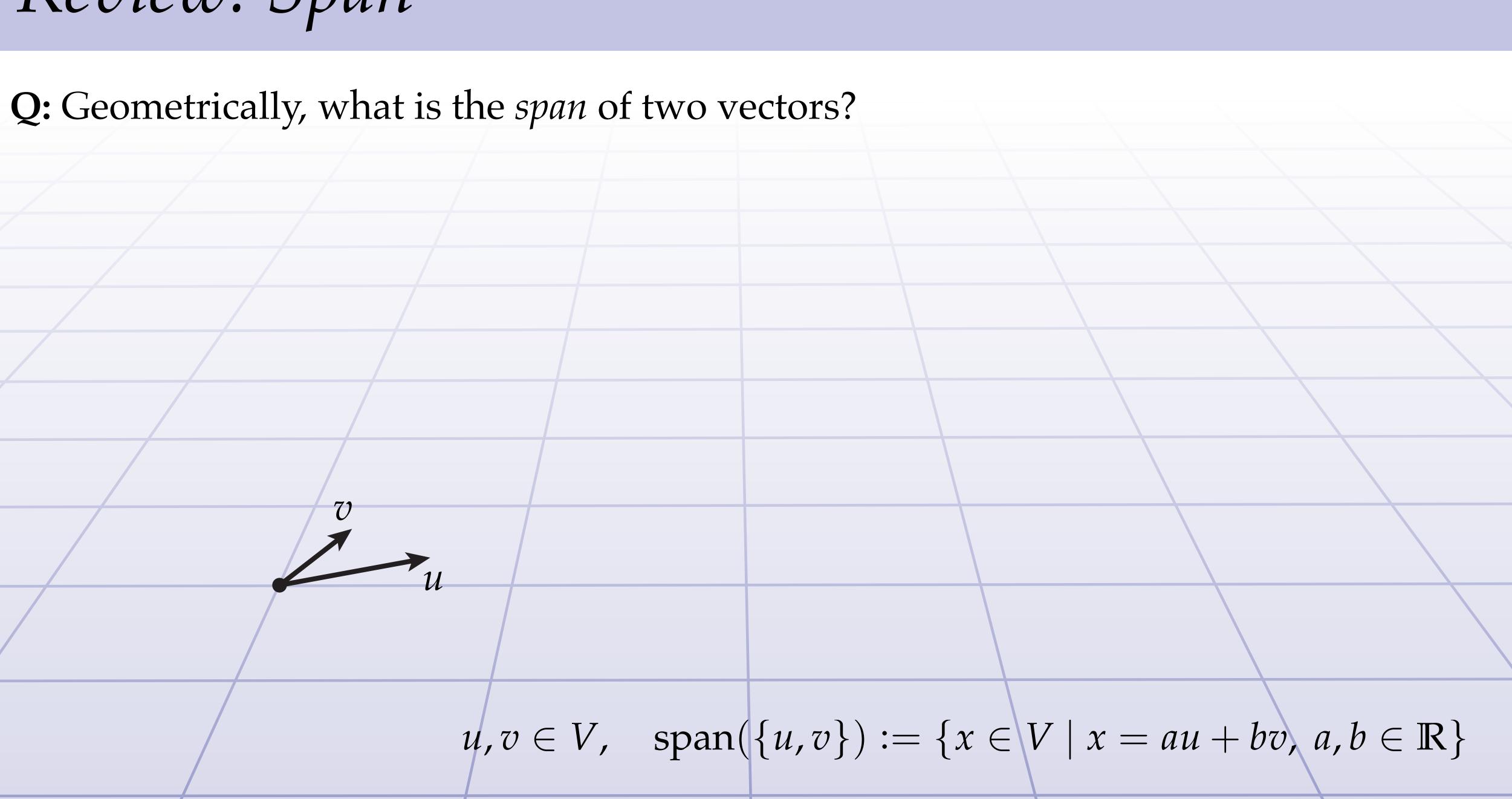
her product 
$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$





Wedge Product

Review: Span





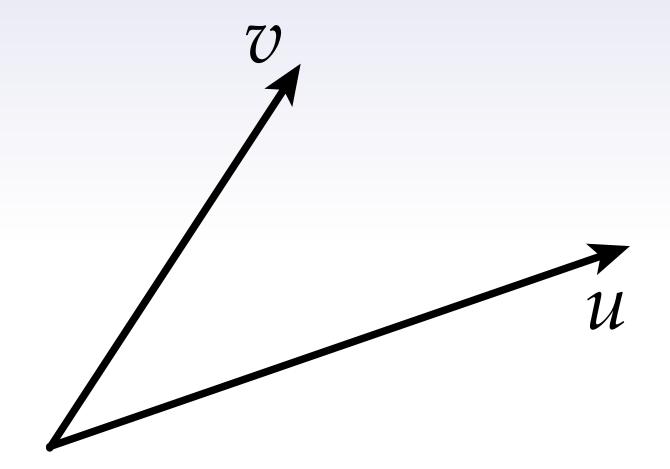
**Definition.** In any vector space *V*, the *span* of a finite<sup>\*</sup> collection of vectors {  $v_1$ , ...,  $v_k$  } is the set of all possible linear combinations:

span({
$$v_1, ..., v_n$$
}) :=  $\left\{ x \in V \mid x = \sum_{i=1}^k a_i v_i, \quad a_i \in \mathbb{R} \right\}$ 

The span of a collection of vectors is a *linear subspace, i.e.,* a subset that forms a vector space with respect to the original vector space operations.

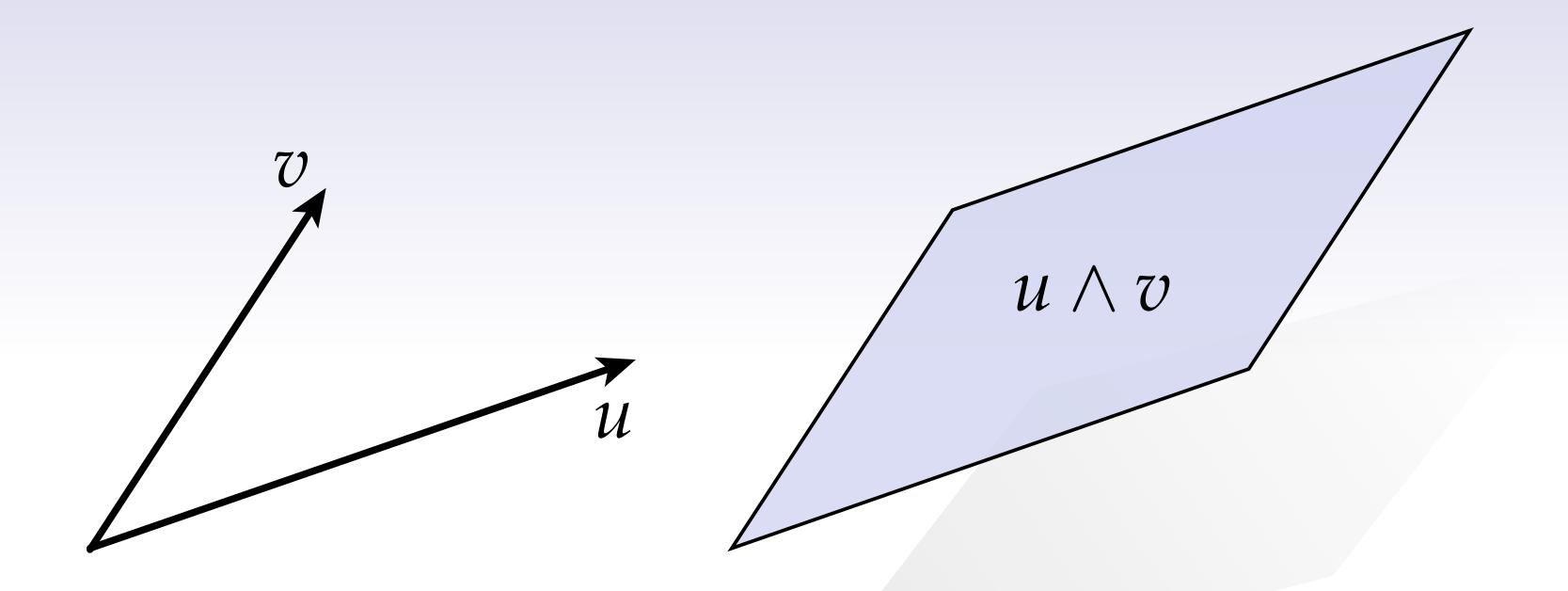
\*Note: one can extend this definition to infinite sums, but only with additional assumptions about *V*.

Wedge Product  $(\wedge)$ 



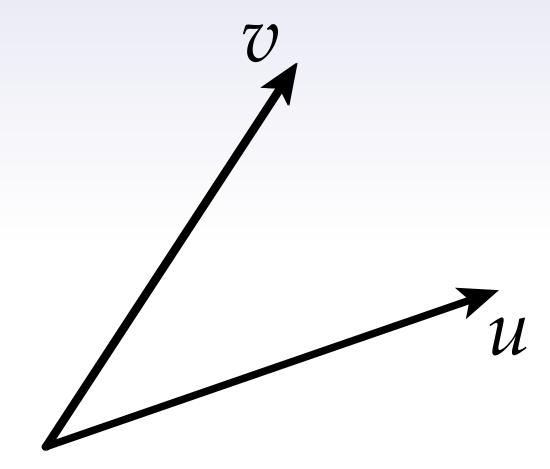
Analogy: span

Wedge Product  $(\wedge)$ 

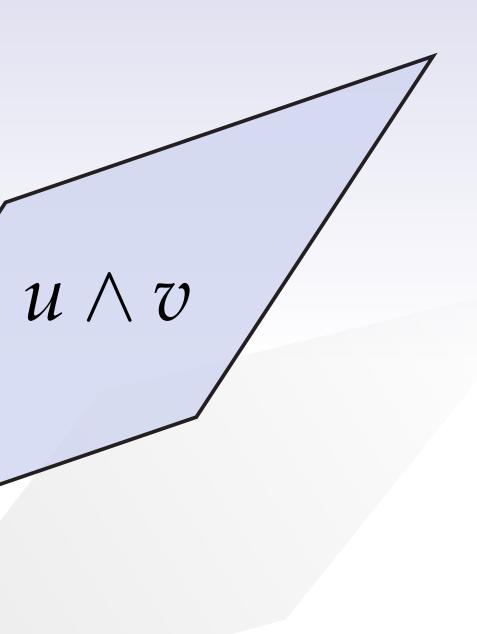


# Analogy: span

Wedge Product  $(\wedge)$ 



Analogy: span

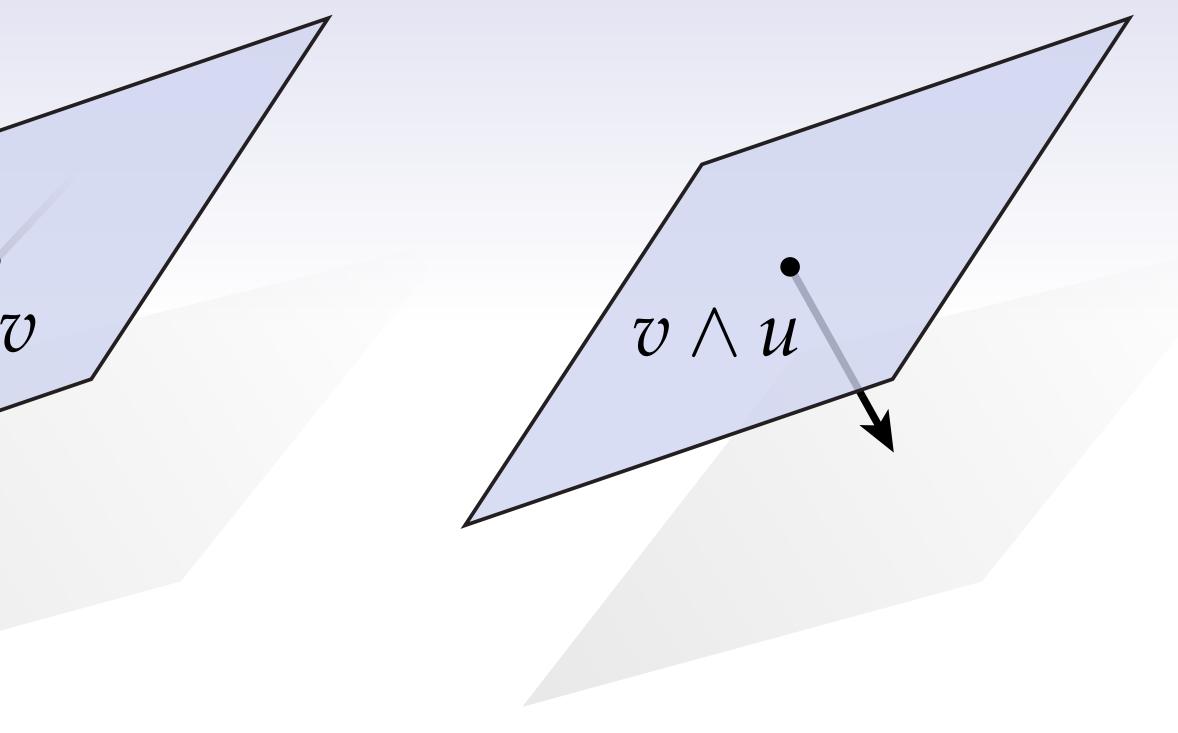


Wedge Product  $(\wedge)$ 

7)  $\mathcal{U} \wedge \mathcal{V}$  $\mathcal{U}$ 

Analogy: span Key differences: orientation & "finite extent" Key property: antisymmetry

## $u \wedge v = -v \wedge u$



Wedge Product – Degeneracy

**Q**: What is the wedge product of a vector with itself?

**A:** Geometrically, spans a region of *zero area*.

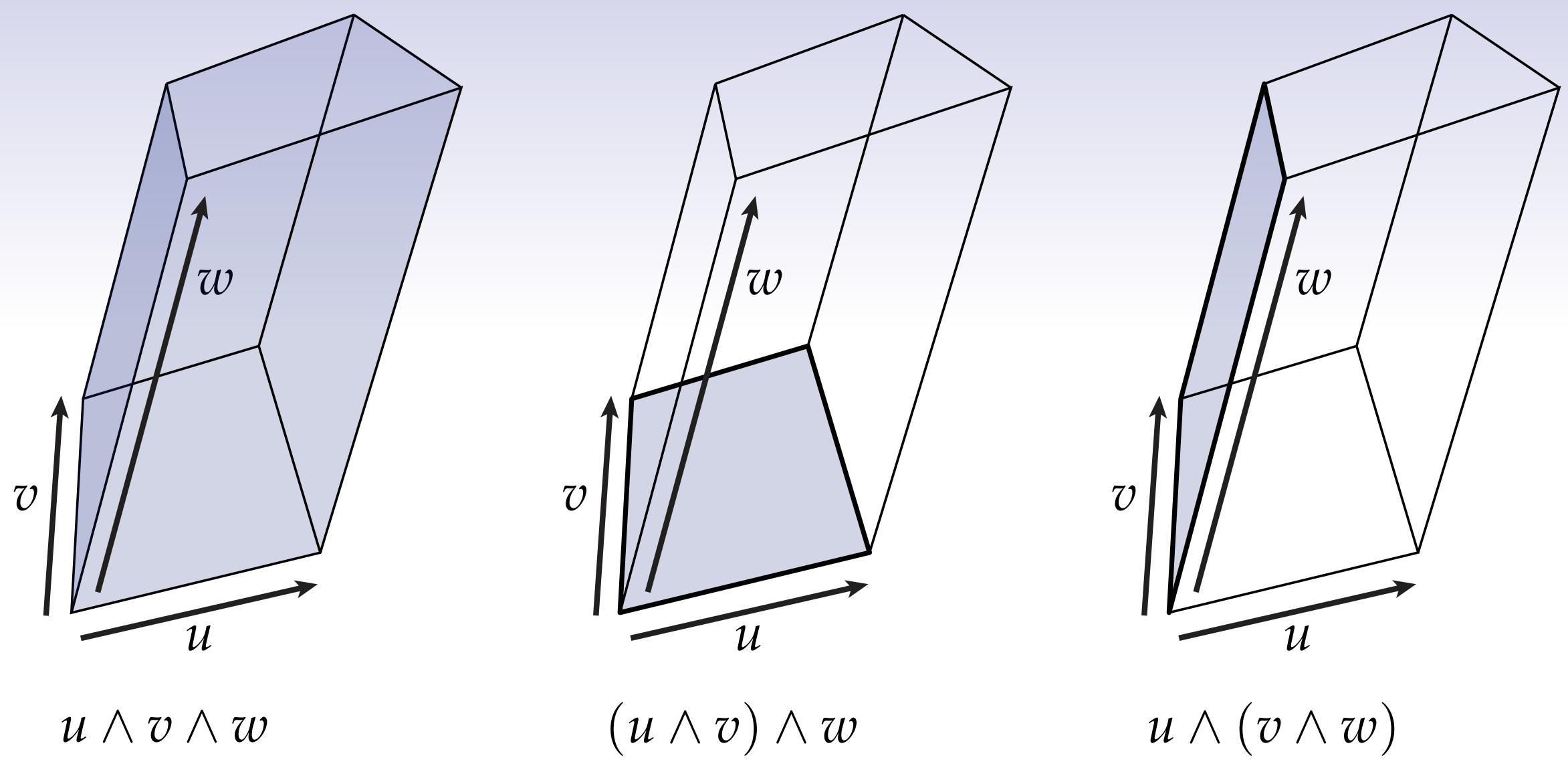


| u

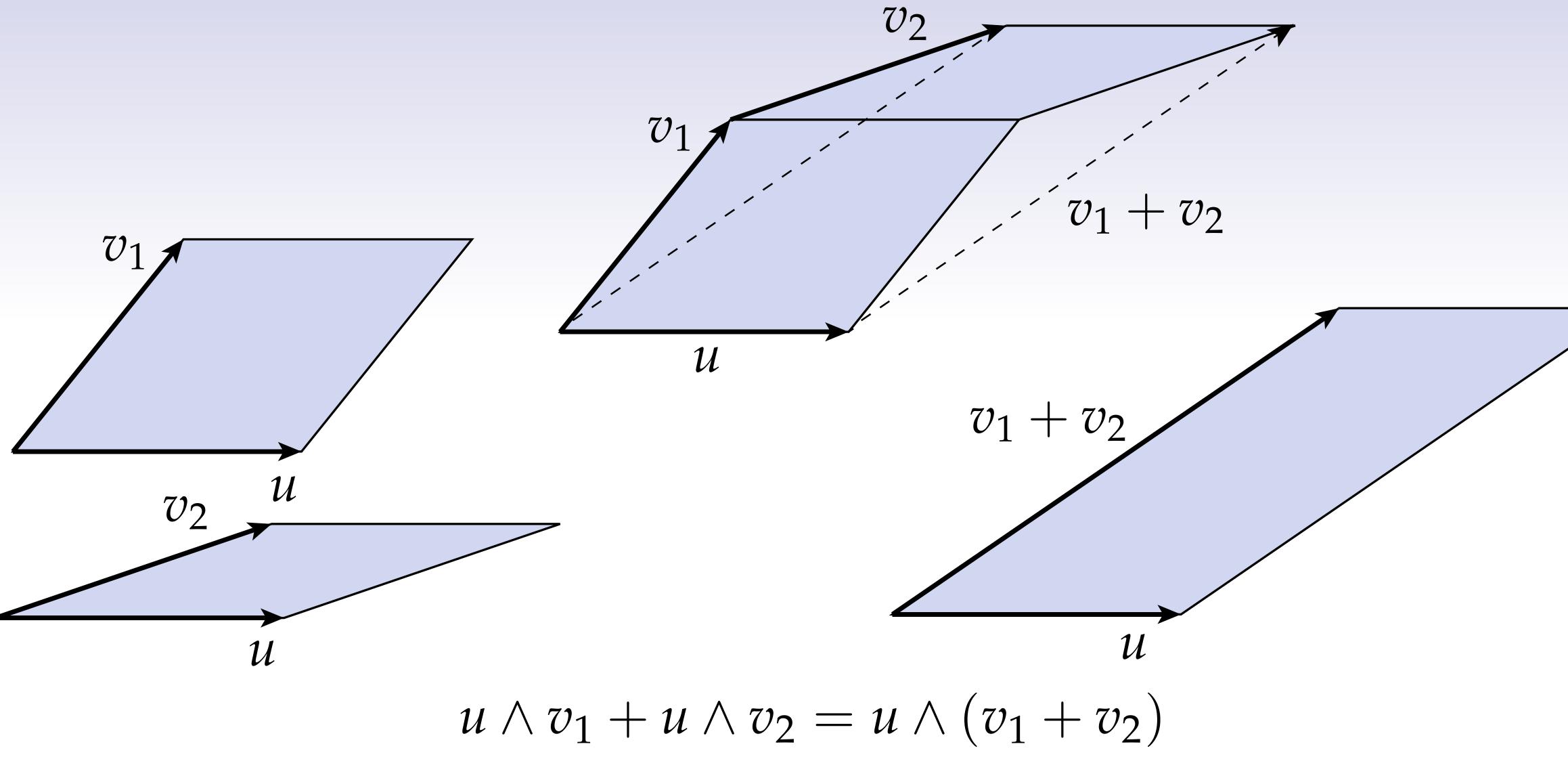
$$\mathcal{U}=0$$

\*May change when we generalize (later...)

Wedge Product - Associativity



Wedge Product - Distributivity



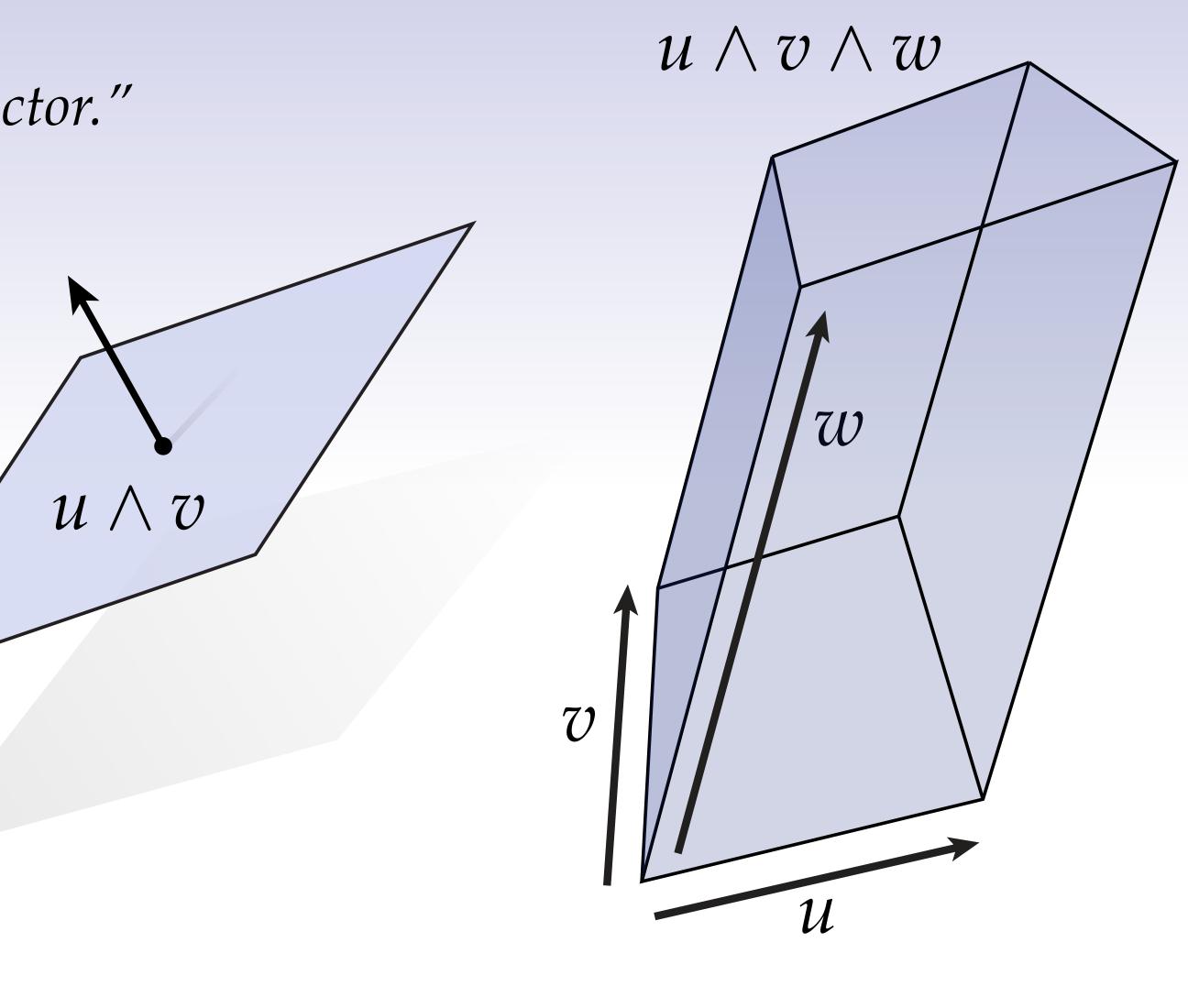
k-Vectors

# The wedge of *k* vectors is called a *"k-vector."*

0-vector

1-vector

 $\mathcal{U}$ 

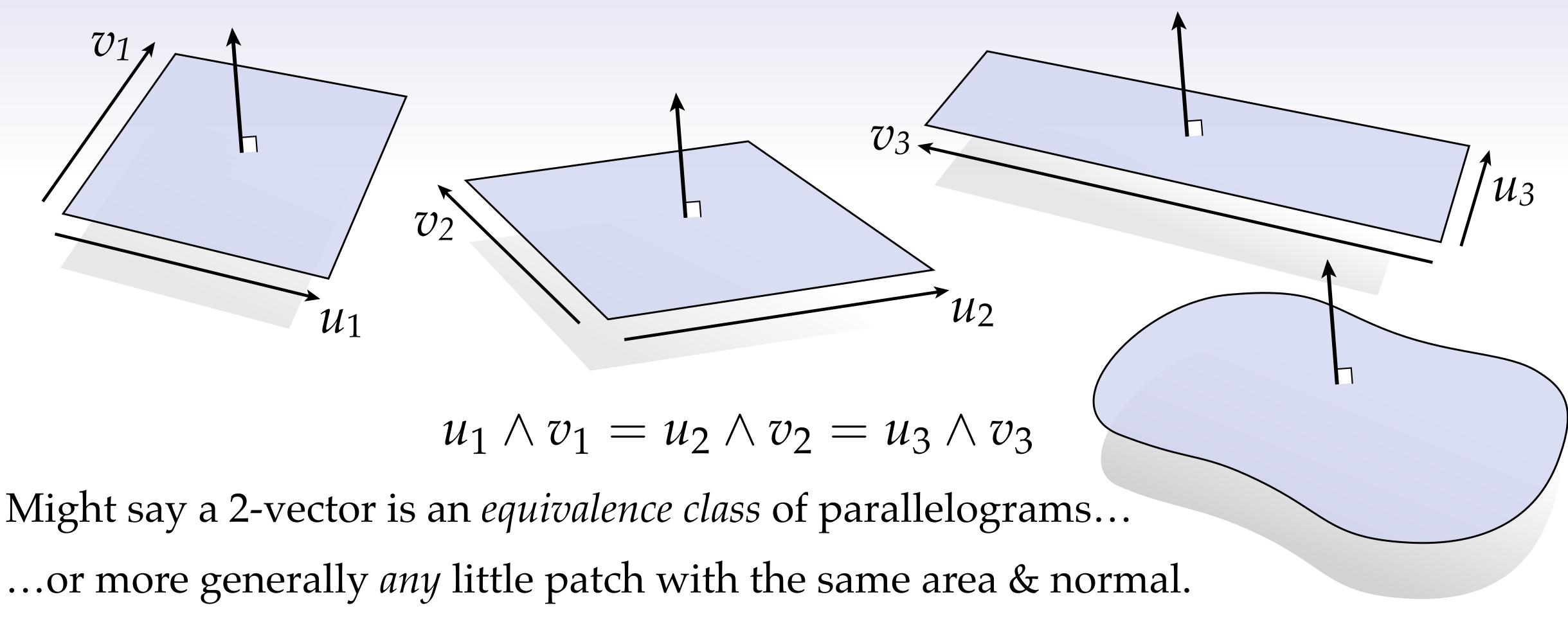


### 2-vector

**3-vector** 

# Visualization of k-Vectors

Our visualization is a little misleading: *k*-vectors only have *direction* & *magnitude*. *E.g.*, parallelograms w/ same plane, orientation, and area represent same 2-vector:





0-vectors as Scalars

**Q**: What do you get when you wedge *zero* vectors together? A: You get this:

For convenience, however, we will say that a "0-vector" is a scalar value (e.g., a real number). This treatment becomes extremely useful later on...

**Key idea:** *magnitude*, but no *direction* (scalar).

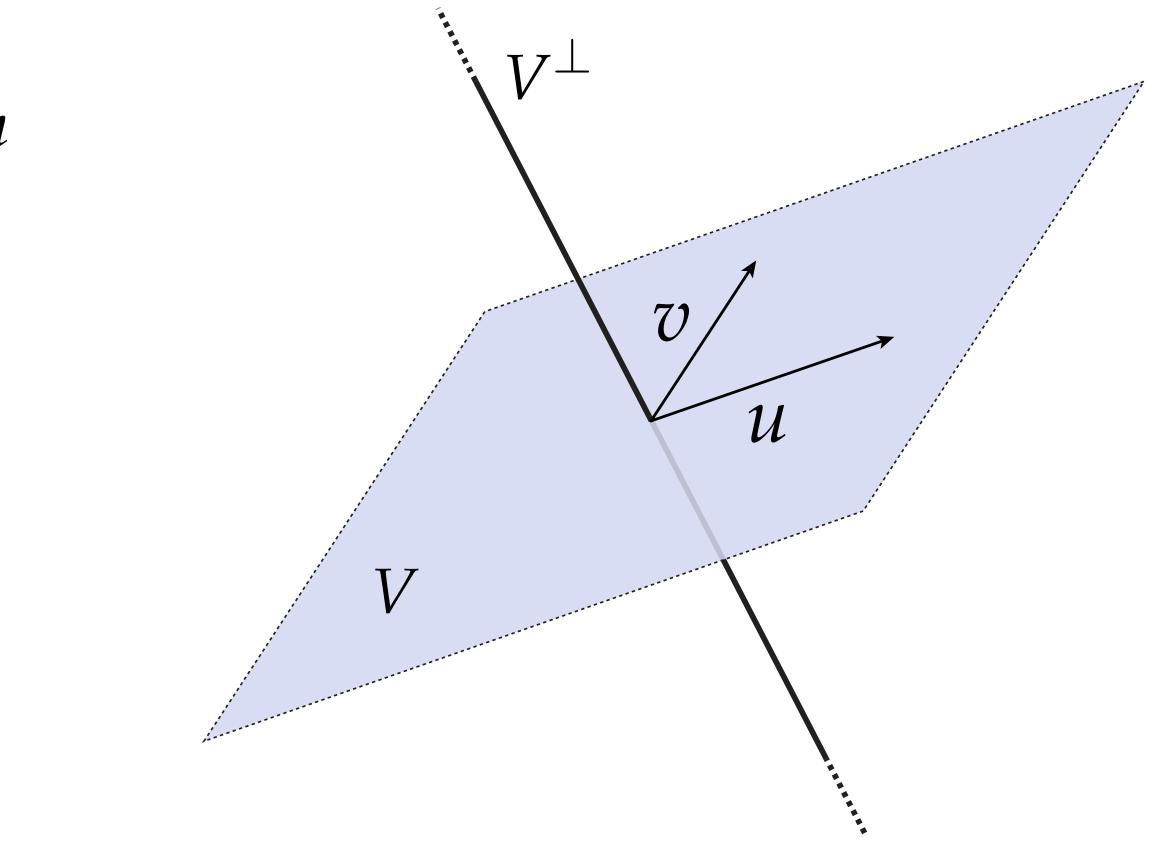


Review: Orthogonal Complement

**Q**: Geometrically, what is the *orthogonal complement* of a linear subspace?

**Example:** *orthogonal complement of a span*  $V := \operatorname{span}(\{u, v\})$  $V^{\perp} := \{ x \in \mathbb{R}^n | \langle x, w \rangle = 0 \, \forall w \in V \}$ 

**Notice:** orthogonal complement meaningful only if we have an *inner product!* 



# Orthogonal Complement

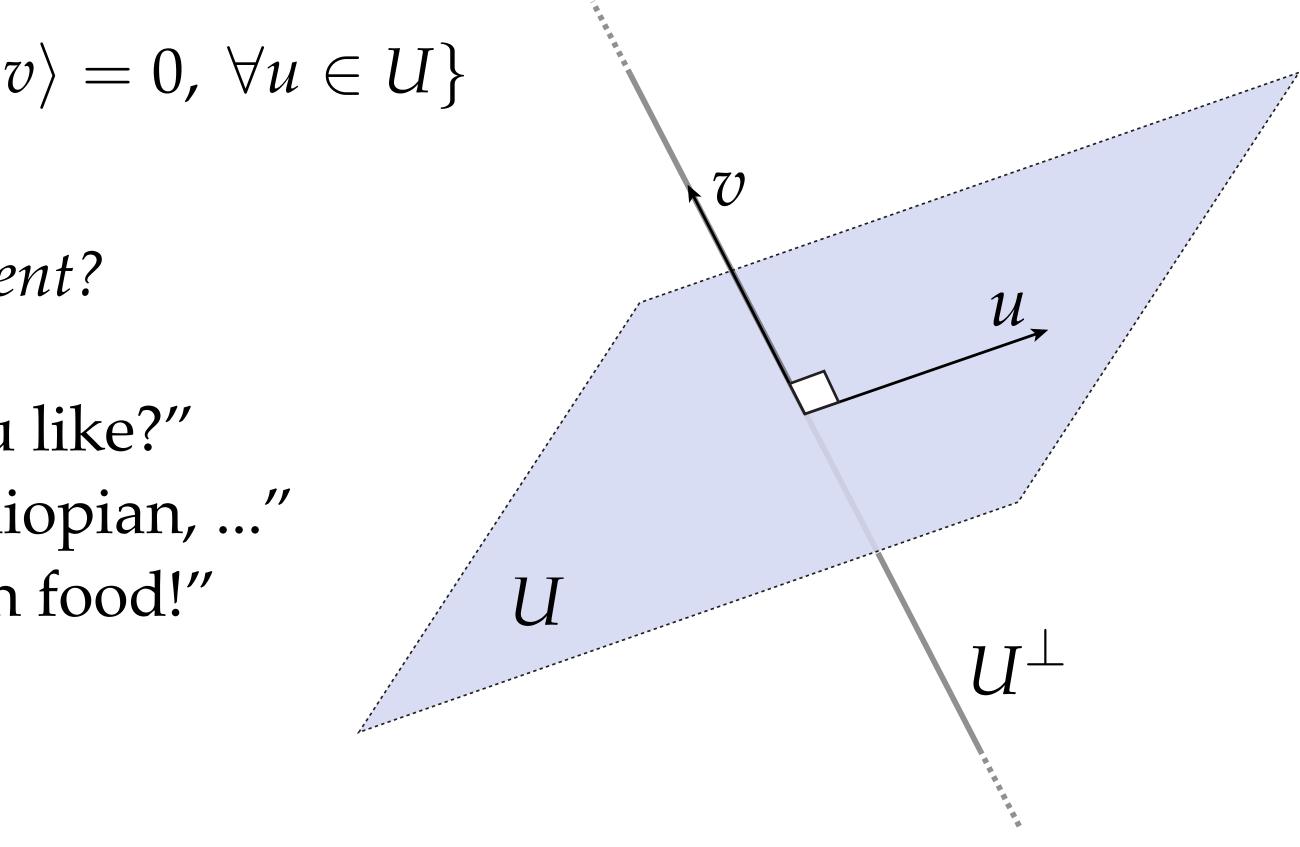
**Definition:** Let  $U \subseteq V$  be a linear subspace of a vector space V with an inner product  $\langle \cdot, \cdot \rangle$ . The *orthogonal complement* of U is the collection of vectors

$$U^{\perp} := \{ v \in V | \langle u, v \rangle \}$$

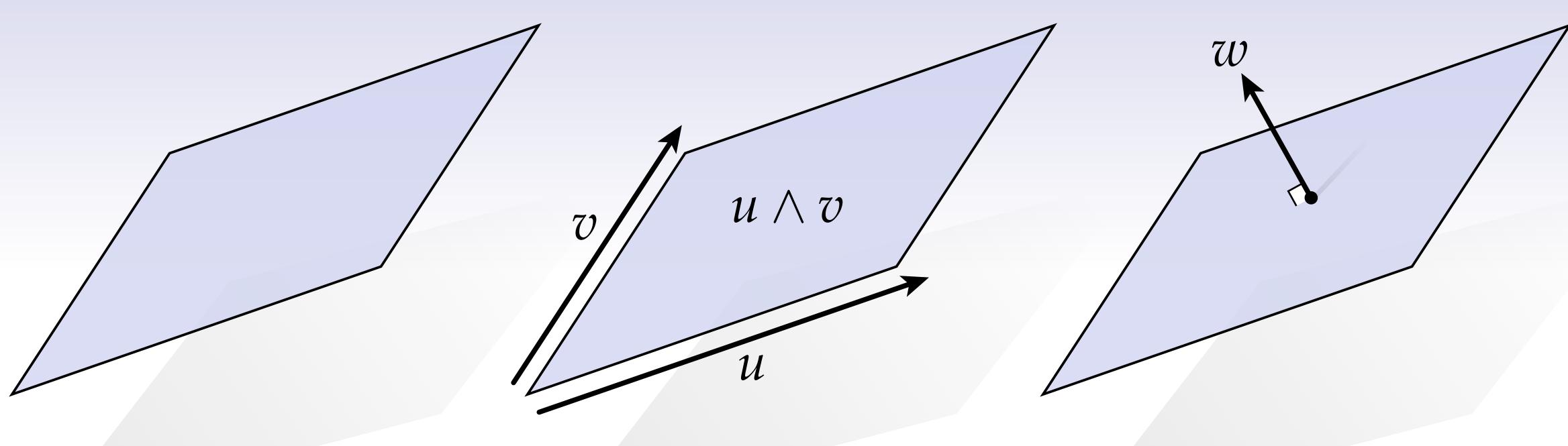
Why is it useful to talk about a *complement*?

**Example.** "What kind of cuisine do you like?" *Option 1: "I like Vietnamese, Italian, Ethiopian, ..." Option 2: "I like everything but Bavarian food!"* 

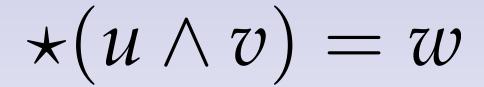
Key idea: often it's easier to specify a set by saying what it *doesn't* contain.



Hodge Star (\*)

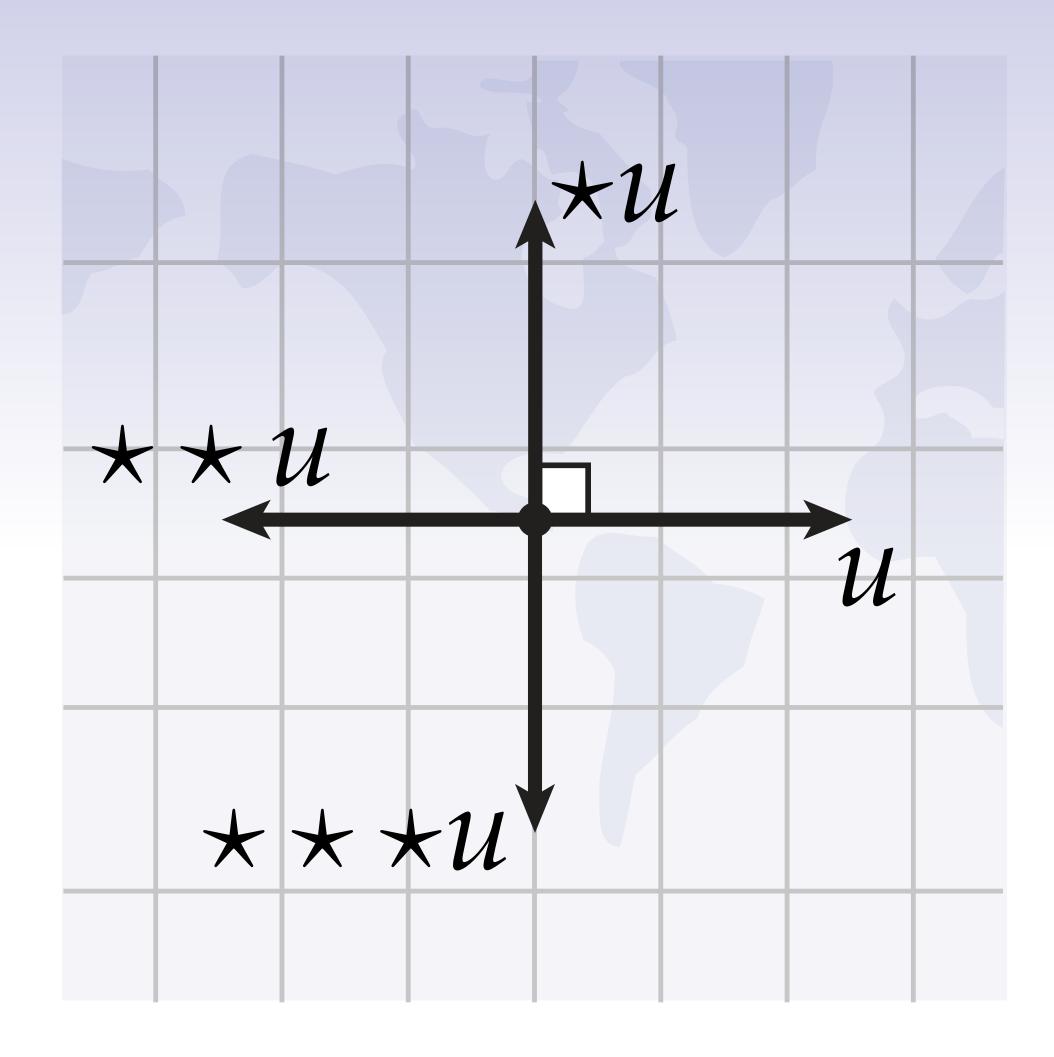


**Analogy:** *orthogonal complement* Key differences: orientation & magnitude **Important detail:**  $z \wedge \star z$  is positively oriented



 $k \mapsto (n - k)$ 

# Hodge Star - 2D

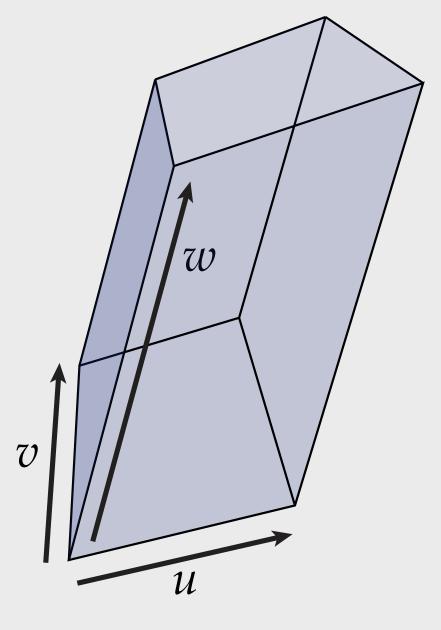


Analogy: 90-degree rotation

Exterior Algebra – Recap

Let *V* be an *n*-dimensional vector space, consisting of vectors or 1-vectors.

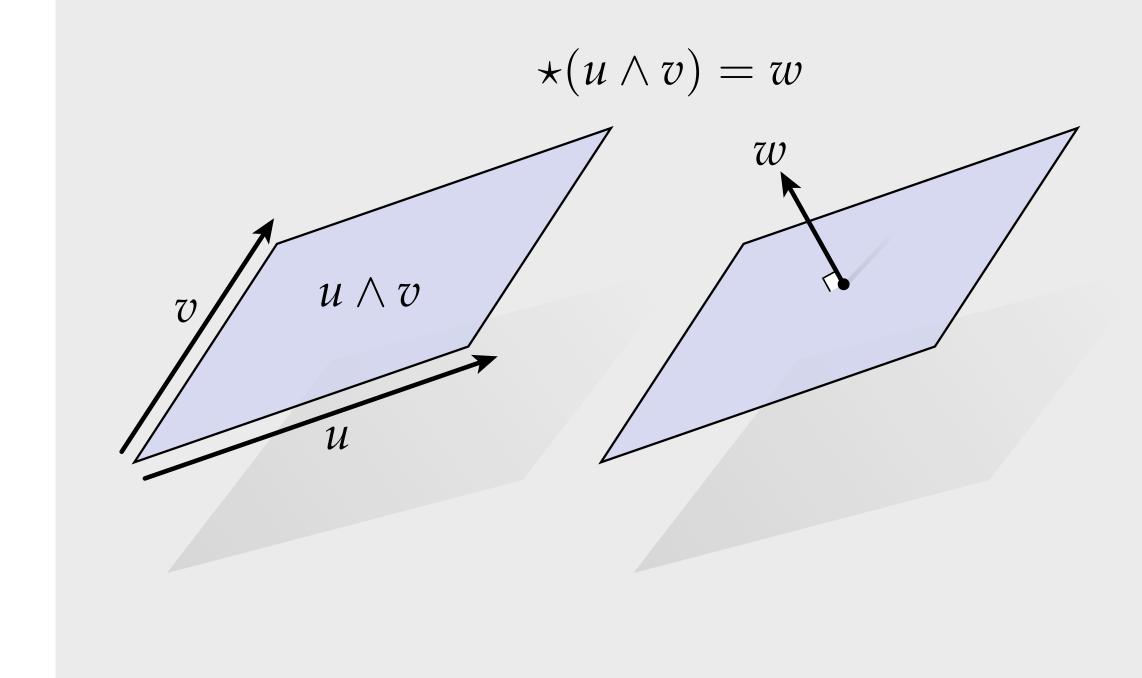
Can "wedge together" k vectors to get a *k*-vector (signed volume).

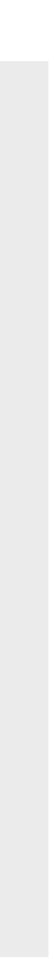


 $u \wedge v \wedge w$ 

(Also have the usual vector space operations: sum, scalar multiplication, ...)

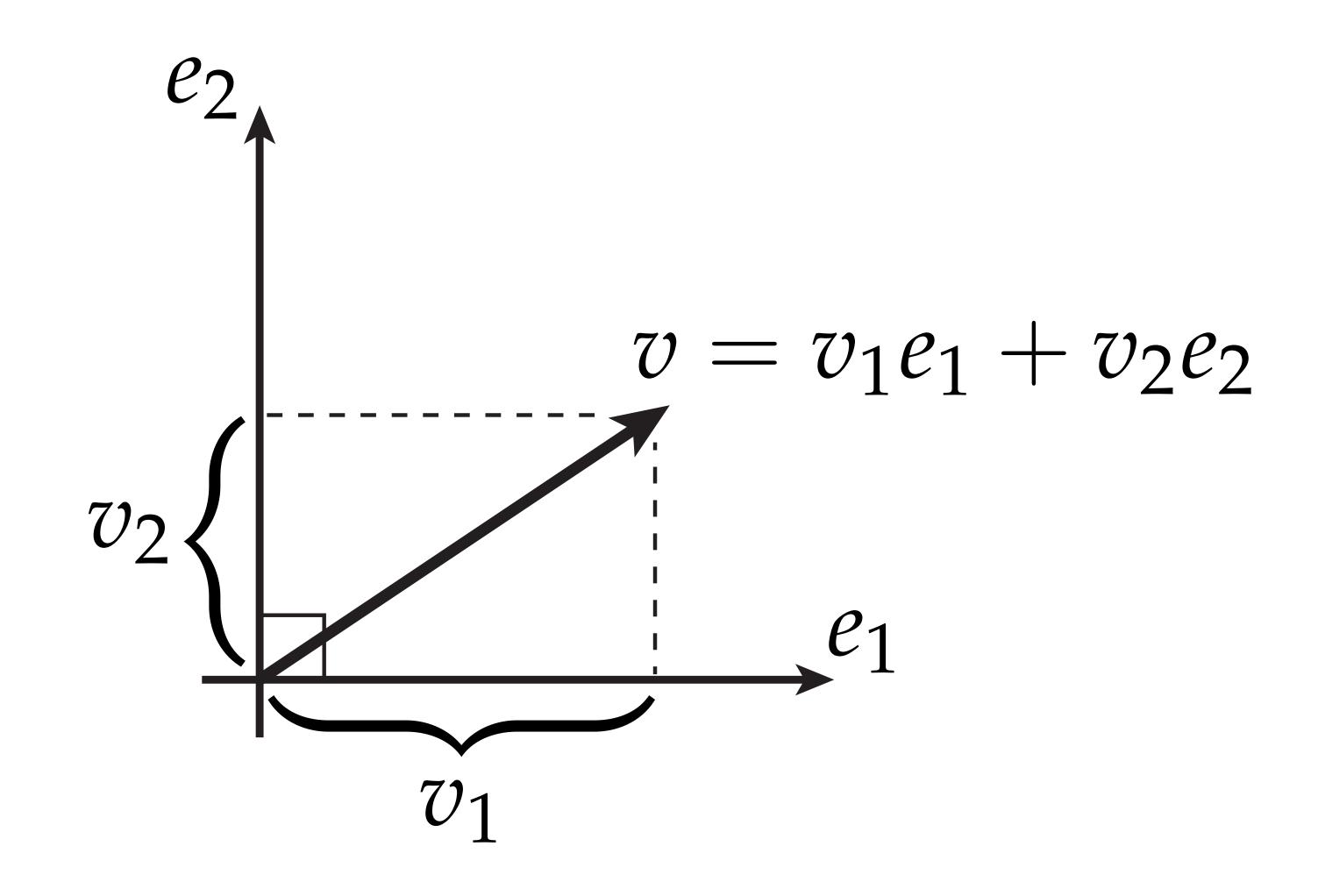
Can apply the Hodge star to get the "complementary" *k*-vector.





# Coordinate Representation

Basis – Visualized



Key idea: encode a vector by its extent along a collection of independent axes.

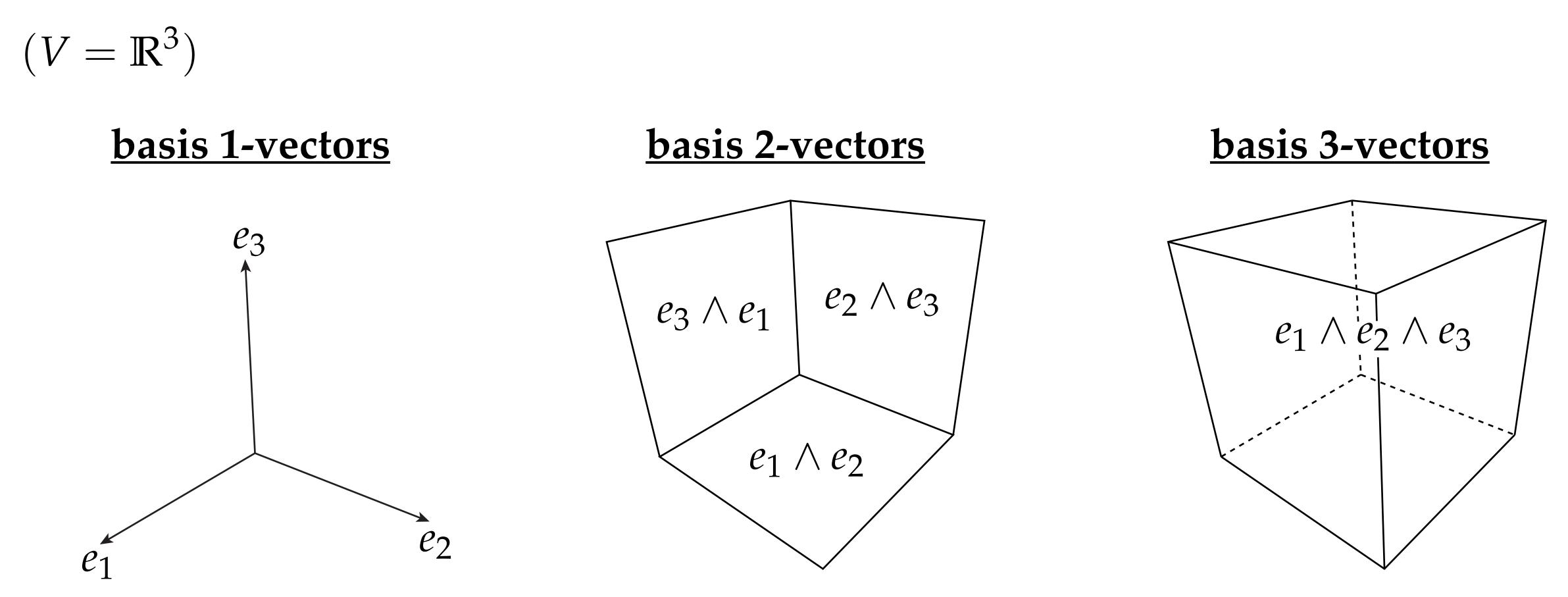
# Basis & Dimension

**Definition.** Let V be a vector space. A collection of vectors is *linearly independent* if no vector in the collection can be expressed as a linear combination of the others. A linearly independent collection of vectors  $\{e_1, \ldots, e_n\}$  is a *basis* for *V* if every vector  $v \in V$  can be expressed as

for some collection of coefficients  $v_1, \ldots, v_n \in \mathbb{R}$ , i.e., if every vector can be uniquely expressed as a linear combination of the *basis vectors*  $e_i$ . In this case, we say that V is *finite dimensional,* with dimension *n*.

 $v = v_1 e_1 + \cdots + v_n e_n$ 

Basis k-Vectors – Visualized



**Key idea:** signed volumes can be expressed as linear combinations of "basis volumes" or basis *k*-vectors.

Basis k-Vectors—How Many?

- Consider  $V = \mathbb{R}^4$  with basis  $\{e_1, e_2, e_3, e_4\}$ .
- **Q:** How many basis 2-vectors?

 $e_1 \wedge e_2$  $e_1 \wedge e_3 \quad e_2 \wedge e_3$  $e_1 \wedge e_4 \quad e_2 \wedge e_4 \quad e_3 \wedge e_4$ 

Why not  $e_3 \wedge e_2$ ?  $e_4 \wedge e_4$ ? What do these bases represent geometrically?

**Q**: How many basis 4-vectors?

 $e_1 \wedge e_2 \wedge e_3 \wedge e_4$ 

# **Q**: How many basis 3-vectors?

 $e_1 \wedge e_2 \wedge e_3$  $e_1 \wedge e_2 \wedge e_4$  $e_1 \wedge e_3 \wedge e_4$  $e^2 \wedge e^3 \wedge e^4$ 

**Q**: How many basis 1-vectors? **Q**: How many basis 0-vectors? **Q**: Notice a pattern?

$$\dim_{n,k} = \begin{pmatrix} n \\ k \end{pmatrix}$$



# Hodge Star – Basis k-Vectors

Consider  $V = \mathbb{R}^3$  with orthonormal basis  $\{e_1, e_2, e_3\}$ 

**Q**: How does the Hodge star map basis *k*-vectors to basis (n - k)-vectors (n=3)?

**A:** For any basis *k*-vector  $\alpha := e_{i_1} \wedge \cdots \wedge e_{i_k}$ , we must have det $(\alpha \wedge \star \alpha) = 1$ .

In other words, if we start with a "unit volume," wedging with its Hodge star must also give a unit, positively-oriented unit volume. For example:

Given  $\alpha := e_2$ , find  $\star \alpha$  such that det( $e_2 \wedge$ 

 $\Rightarrow$  Must have  $\star \alpha = e_3 \wedge e_1$ , since then

$$e_2 \wedge \star e_2 = e_2 \wedge e_3 \wedge e_1,$$

which is an even permutation of  $e_1 \wedge e_2$ 

$$(\wedge e_{2}) = 1.$$

$$(+e_{2}) = 1.$$

$$(+e_{2}) = e_{1} \wedge e_{2} \wedge e_{3}$$

$$(+e_{2}) = e_{3} \wedge e_{1}$$

$$(+e_{3}) = e_{1} \wedge e_{2}$$

$$(+e_{3}) = e_{1}$$

$$(+e_{3}) = e_{2}$$

$$(+e_{1} \wedge e_{2}) = e_{3}$$

$$(+e_{1} \wedge e_{2} \wedge e_{3}) = 1$$



# Exterior Algebra—Formal Definition

**Definition.** Let  $e_1, \ldots, e_n$  be the basis for an *n*-dimensional inner product space V. For each integer  $0 \le k \le n$ , let  $\bigwedge^k$ denote an  $\binom{n}{k}$ -dimensional vector space with basis elements denoted by  $e_{i_1} \wedge \cdots \wedge e_{i_k}$  for all possible sequences of indices  $1 \le i_1 < \cdots < i_k \le n$ , corresponding to all possible "axis-aligned" k-dimensional volumes. Elements of  $\bigwedge^k$  are called k-vectors. The *wedge product* is a bilinear map

uniquely determined by its action on basis elements; in particular, for any collection of *distinct* indices  $i_1, \ldots, i_{k+l}$ ,

$$(e_{i_1} \wedge \cdots \wedge e_{i_k}) \wedge_{k,l} (e_{i_{k+1}} \wedge \cdots \wedge e_{i_{k+l}}) := \operatorname{sgn}(\sigma) e_{\sigma(i_1)} \wedge \cdots \wedge e_{\sigma(i_{k+l})},$$

*k*-*vectors* is a linear isomorphism

\*:/

uniquely determined by the relationship

 $\det(\alpha \wedge \star \alpha) = 1$ 

define an *exterior algebra* on *V*, sometimes known as a *graded algebra*.

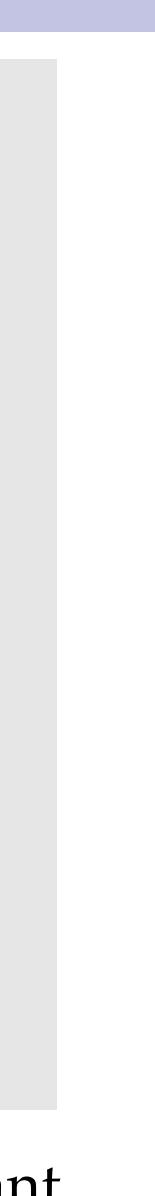
# Don't worry about this unless you really want to! Concepts & mechanics more important.

$$\wedge_{k,l}: \bigwedge^k \times \bigwedge^l \to \bigwedge^{k+l}$$

where  $\sigma$  is a permutation that puts the indices of the two arguments in canonical (lexicographic) order. Arguments with repeated indices are mapped to  $0 \in \bigwedge^{k+l}$ . For brevity, one typically drops the subscript on  $\bigwedge_{k,l}$ . Finally, the *Hodge star on* 

$$n^k \to \bigwedge^{n-k}$$

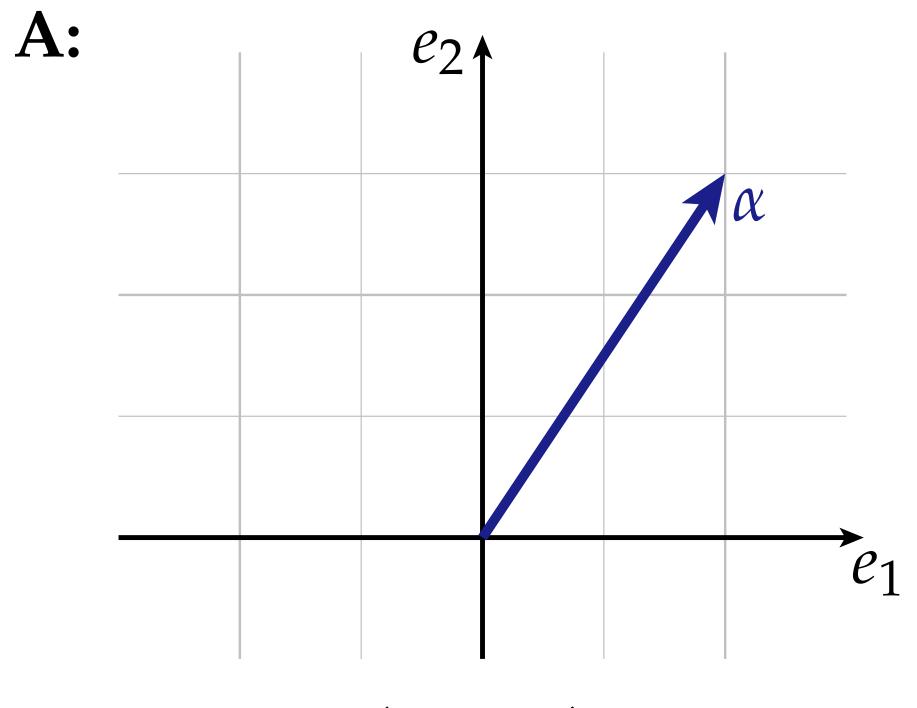
where  $\alpha$  is any *k*-vector of the form  $\alpha = e_{i_1} \wedge \cdots \wedge e_{i_k}$  and det denotes the determinant of the constituent 1-vectors (treated as column vectors) with respect to the inner product on V. The collection of vector spaces  $\wedge^k$  together with the maps  $\wedge$  and  $\star$ 



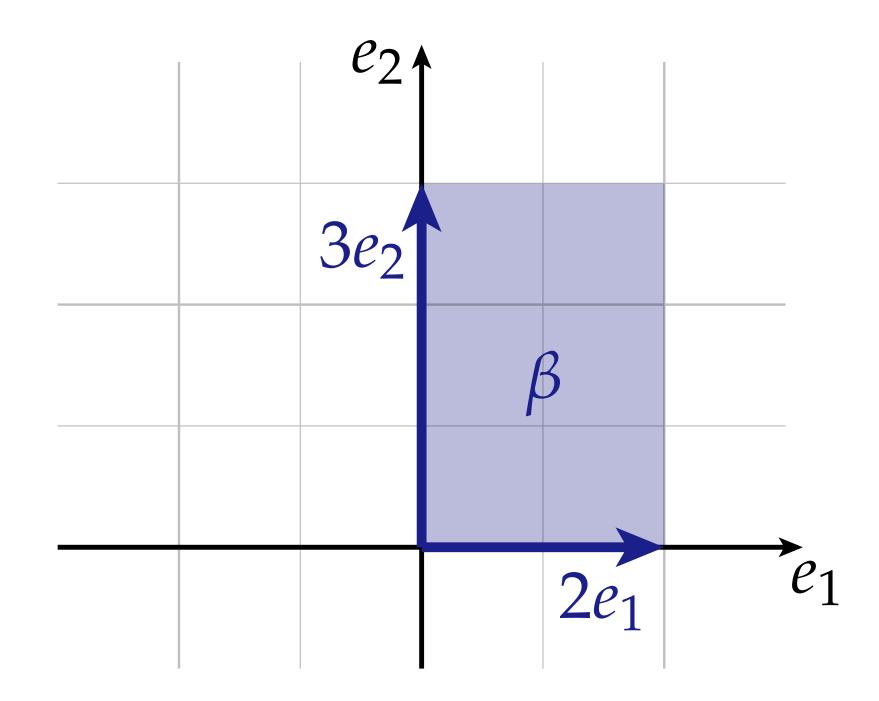
Sanity Check

# Q: What's the difference between

 $\alpha = 2e_1 + 3e_2 \quad \text{and} \quad \beta = 2e_1 \wedge 3e_2?$ 



(vector)



(2-vector)

Exterior Algebra – Example

$$V = \mathbb{R}^{2}$$

$$\alpha = 2e_{1} + e_{2}$$

$$\beta = -e_{1} + 2e_{2}$$

$$Q: What is the value
$$A: \alpha \land \beta = (2e_{1} + e_{2})$$

$$= (2e_{1} + e_{2})$$

$$= -2e_{1} \land e_{2} + e_{2}$$

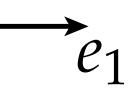
$$= 5e_{1} \land e_{2} + e_{3}$$$$

# **Q**: What does the result *mean*, geometrically?

e of  $\alpha \wedge \beta$ ?  $(-e_1 + 2e_2)$  $(e_2) \wedge (-e_1) + (2e_1 + e_2) \wedge (2e_2)$  $e_1 \stackrel{0}{-} e_2 \wedge e_1 + 4e_1 \wedge e_2 + 2e_2 \wedge e_2^0$ 

 $+4e_1 \wedge e_2$ 

 $e_2$  $\alpha \wedge \beta$ 



Exterior Algebra – Example

 $V = \mathbb{R}^3$ **Q**: What is  $\star (\alpha \land \beta + \beta \land \gamma)$ ?  $\alpha = 2e_1 \wedge e_2$  $\beta = 3e_3$  $\gamma = e_2 \wedge e_1$ 

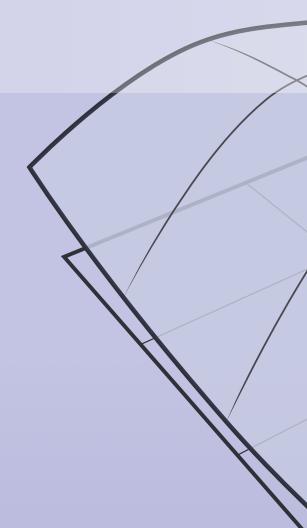
Key idea: in this example, it would have been fairly hard to reason about the answer geometrically. Sometimes the algebraic approach is (*incredibly*!) useful.

A:  $\star(\alpha \land \beta + \beta \land \gamma) = \star((2e_1 \land e_2) \land 3e_3 + 3e_3 \land (e_2 \land e_1))$  $= \star (6e_1 \wedge e_2 \wedge e_3 + 3e_3 \wedge e_2 \wedge e_1)$  $= \star (6e_1 \wedge e_2 \wedge e_3 - 3e_1 \wedge e_2 \wedge e_3)$  $= \star (3e_1 \wedge e_2 \wedge e_3)$ = 3.

Exterior Algebra - Summary

- Exterior algebra
  - language for manipulating signed volumes
  - length matters (magnitude)
  - order matters (orientation)
- behaves like a vector space (e.g., can add two volumes, scale a volume, ...) • Wedge product—analogous to span of vectors
- Hodge star—analogous to *orthogonal complement* (in 2D: 90-degree rotation)
- Coordinate representation—encode vectors in a *basis* 
  - Basis *k*-vectors are all possible wedges of basis 1-vectors





# DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

