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Why Learn Exterior Calculus?

コンピュータサイエンスの建物
の地下では、⾦があります!

Translation: “There is gold in the basement of the computer science building!”

Key idea: language is important!



Not all languages are created equal…

(from Russel & Whitehead’s Principia Mathematica, p. 379)



Why Learn Exterior Calculus?
•Natural language for talking about signed volume

•facilitates communication w/ math, physics, …

•provides new perspectives on computation

•Geometry

•algebraic geometry

•geometric algebra (Clifford algebra, spin physics)

•Physics

•“massless” quantities are vectors (velocity, acceleration, …)

•“massive” quantities are forms (momentum, force, …)

•Computer Science (this class!): geometric computation on meshes

 

http://arxiv.org


GOAL: develop discrete exterior calculus (DEC)

Prerequisites:

Linear algebra: “little arrows” (vectors)

Vector Calculus: how do vectors change?

Next few lectures:

Exterior algebra: “little volumes” (k-vectors)

Exterior calculus: how do k-vectors change?

DEC: how do we do all of this on meshes?

Where Are We Going Next?
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Basic idea: replace vector calculus with computation on meshes.



Why Are We Going There?
•Motivation: Do cool and useful stuff with meshes!

integrate

•Geometry processing algorithms must solve equations on meshes (PDEs)

•Meshes are made up of little volumes

⇒ Need to learn to integrate equations over little volumes to do computation



Basic Computational Tools
Poisson

homology cohomology

Helmholtz-Hodge



Applications

Smoothing

Parameterization

Meshing

Distance
Vector Field Design

…and more!



Vector Space



Warm Up: Multiplication
Question: why does 3 × 4 = 4 × 3?
Answer: not just because “that’s the rule!”
There is a very good geometric reason:

We didn’t have to adopt this rule!  We chose it because it captures natural behavior.
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You should never accept a rule purely on faith.  Always ask, “why is this the rule?”



•What is a vector? (Geometrically?)

Review: Vector Spaces

finite-dimensional infinite-dimensional

For geometric computing, often care most about dimensions 1, 2, 3, …and ∞!



Review: Vector Spaces
•Formally, a vector space is a set V together with the operations*

*Note: in general, could use something other than reals here.

“addition”

“scalar multiplication”

• Must satisfy the following rules for all vectors x,y,z and scalars a,b:



Vector Spaces—Geometric Reasoning
• Where do these rules come from?
• As with numbers, reflect how oriented lengths (vectors) behave in nature:
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…but the algebra makes it easier to manage complexity!



Review: Inner Product
•We can also associate a vector space with an inner product

•The quantity ⟨x,y⟩ captures how well two vectors x, y in V “line up”

(Where do these “rules” come from?  Why might they be natural?)

Example. Euclidean inner product

linearity positivitysymmetryx
y

•For all vectors x, y, z in V, real numbers a, any (real) inner product must satisfy



Wedge Product



Review: Span
Q: Geometrically, what is the span of two vectors?



Span
Definition. In any vector space V, the span of a finite* collection of vectors { v1, …, 
vk } is the set of all possible linear combinations:

The span of a collection of vectors is a linear subspace, i.e., a subset that forms a vector 
space with respect to the original vector space operations.

*Note: one can extend this definition to infinite sums, but only with additional assumptions about V.



Wedge Product
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v

Analogy: span
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Wedge Product
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Wedge Product
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Wedge Product

u

v

u ^ v

Analogy: span

u ^ v = �v ^ u

(^)

Key differences: orientation & “finite extent”
Key property: antisymmetry



Wedge Product—Degeneracy
Q: What is the wedge product of a vector with itself?

A: Geometrically, spans a region of zero area.

*May change when we generalize (later…)



Wedge Product - Associativity
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Wedge Product - Distributivity



k-Vectors
The wedge of k vectors is called a “k-vector.”

u ^ v
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w

u ^ v ^ w

0-vector 1-vector 2-vector 3-vector



Visualization of k-Vectors
Our visualization is a little misleading: k-vectors only have direction & magnitude.

E.g., parallelograms w/ same plane, orientation, and area represent same 2-vector:

Might say a 2-vector is an equivalence class of parallelograms…

u1 u2

u3

v1

v2

v3

…or more generally any little patch with the same area & normal.



0-vectors as Scalars

Key idea: magnitude, but no direction (scalar).

Q: What do you get when you wedge zero vectors together?
A: You get this:

For convenience, however, we will say that a “0-vector” is a scalar value (e.g., a real 
number).  This treatment becomes extremely useful later on...



Hodge Star



Review: Orthogonal Complement
Q: Geometrically, what is the orthogonal complement of a linear subspace?

Notice: orthogonal complement meaningful only if we have an inner product!

V



Orthogonal Complement

Key idea: often it’s easier to specify a set by saying what it doesn’t contain.

Example.  “What kind of cuisine do you like?”
Option 1: “I like Vietnamese, Italian, Ethiopian, ...”
Option 2: “I like everything but Bavarian food!”

Why is it useful to talk about a complement?



Hodge Star

Analogy: orthogonal complement
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Key differences: orientation & magnitude



Hodge Star - 2D

Analogy: 90-degree rotation
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Exterior Algebra—Recap
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Coordinate Representation



Basis—Visualized

Key idea: encode a vector by its extent along a collection of independent axes.



Basis & Dimension



Basis k-Vectors—Visualized

Key idea: signed volumes can be expressed as linear 
combinations of “basis volumes” or basis k-vectors.

basis 1-vectors basis 2-vectors basis 3-vectors



Basis k-Vectors—How Many?

Q: How many basis 2-vectors? Q: How many basis 3-vectors?

Q: How many basis 4-vectors? Q: How many basis 1-vectors?
Q: How many basis 0-vectors?
Q: Notice a pattern?



Hodge Star—Basis k-Vectors

In other words, if we start with a “unit volume,” wedging with its Hodge 
star must also give a unit, positively-oriented unit volume.  For example:



Exterior Algebra—Formal Definition

Don’t worry about this unless you really want to!  Concepts & mechanics more important.



Sanity Check

A:

(vector) (2-vector)



Exterior Algebra—Example

A:

Q: What does the result mean, geometrically?



Exterior Algebra—Example

A:

Key idea: in this example, it would have been fairly hard to reason about the 
answer geometrically.  Sometimes the algebraic approach is (incredibly!) useful.



Exterior Algebra - Summary
•Exterior algebra

•language for manipulating signed volumes

•length matters (magnitude)

•order matters (orientation)

•behaves like a vector space (e.g., can add two volumes, scale a volume, ...)

•Wedge product—analogous to span of vectors

•Hodge star—analogous to orthogonal complement (in 2D: 90-degree rotation)

•Coordinate representation—encode vectors in a basis

•Basis k-vectors are all possible wedges of basis 1-vectors



Thanks!
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