DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

LECTURE 5: DIFFERENTIAL FORMS IN \mathbb{R}^n

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

Motivation: Applications of Differential Forms

Need to measure k-dimensional quantities that are changing in space & time!

Where Are We Going Next?

- **GOAL:** develop discrete exterior calculus (DEC)
- Prerequisites:
- Linear algebra: "little arrows" (vectors) **Vector Calculus:** how do vectors *change*? Next few lectures:
 - **Exterior algebra**: "little volumes" (*k*-vectors)
 - **Differential forms:** spatially-varying *k*-form
 - **Exterior calculus**: how do *k*-vectors change?
 - **DEC:** how do we do all of this on meshes?
- **Basic idea:** replace vector calculus with computation on meshes.

Recap: Exterior Algebra

- Like linear subspaces, but have magnitude and orientation
- Use Hodge star to describe complementary volumes

• Used wedge product to build up "little volumes" (k-vectors) from ordinary vectors

Recap: k-Forms

• Can measure a vector with a *covector;* can measure a *k*-vector with a *k*-form

Key idea: project *k*-vector onto *k*-form and compute volume (*e.g.*, via determinant)

Exterior Calculus: Flat vs. Curved Spaces

- For now, we'll only consider *flat* spaces like the 2D plane
 - Keeps all our calculations simple
 - Don't have to deal with *Riemannian metric* (yet!)
- True power of exterior calculus revealed on *curved* spaces
 - In flat spaces, vectors and forms look nearly identical
 - Difference is no longer superficial on curved spaces
 - Close relationship to *curvature* (geometry)
 - Also close relationship to *mass* (physics)

Differential k-Forms

Review: Vector vs. Vector Field

• Recall that a *vector field* is an assignment of a vector to each point of space:

vector

vector field

Differential Form

• A *differential k-form* is likewise an assignment of a *k*-form to each point*:

k-form

*Common (and confusing!) abbreviation: shorten "differential *k*-form" to just "*k*-form"!

Differential 0-Form

 $x_2 \uparrow$

Note: exactly the same thing as a *scalar function*!

Assigns a scalar to each point. *E.g.*, in 2D we have a value at each point (x_1, x_2) :

Differential 1-Form

Note: <u>not</u> the same thing as a vector field!

Assigns a 1-form each point. *E.g.*, in 2D we have a 1-form at each point (x_1, x_2) :

Vector Field vs. Differential 1-Form

Superficially, vector fields and differential 1-forms look the same (in \mathbb{R}^n):

But recall that a 1-form is a *linear function* from a vector to a scalar (here, at each point.)

Intuition: at each point (x_1, x_2) we see "how strong" the flow of X is along direction α .

Differential 2-Forms

Likewise, a differential 2-form is an area measurement at each point (x_1, x_2, x_3) :

2-vector field $(X \land Y)_{(x_1, x_2, x_3)}$

Note: only drawing a "slice" here.

differential 2-form $(\alpha \wedge \beta)_{(x_1,x_2,x_3)}$

Differential 2-Forms

Resulting function says how much 2-vector field "lines up" with differential 2-form.

Pointwise Operations on Differential k-Forms

- Most operations on differential *k*-forms simply apply that operation at each point.
- *E.g.*, consider two differential forms α , β on \mathbb{R}^n . At each point $p := (x_1, \dots, x_n)$,

- In other words, to get the Hodge star of the *differential k*-form, we just apply the Hodge star to the individual *k* forms at each point *p*; to take the wedge of two differential *k*-forms we just wedge their values at each point.
- Likewise, if X_1, \ldots, X_k are vector fields on all of \mathbb{R}^n , then

$$\alpha(X_1,\ldots,X_k)_p := (\alpha_p)((X_1)_p,\ldots,(X_k)_p)$$

Typically we omit the *p* and just write $\star \alpha, \alpha \wedge \beta, \alpha(X, Y)$, etc.

 $(\star \alpha)_{p} := \star (\alpha_{p})$ $(\alpha \wedge \beta)_{\mathcal{P}} := (\alpha_{\mathcal{P}}) \wedge (\beta_{\mathcal{P}})$

Differential k-Forms in Coordinates

Basis Vector Fields

- Just as we can pick a basis for *vectors*, we can also pick a basis for *vector fields*

- do with derivatives! (For now...)

• The standard basis for vector fields on \mathbb{R}^n are just **constant** vector fields of unit magnitude pointing along each of the coordinate axes:

• Notice that the basis vector fields have names that look like partial derivatives.

• You will do yourself a *huge* favor by **forgetting that they have anything at all to**

Basis Expansion of Vector Fields

- Any other vector field is then a linear combination of the basis vector fields... • ... *but*, the coefficients of the linear combination may vary across the domain:

Q: What would happen if we didn't allow coefficients to vary?

Bases for Vector Fields and Differential 1-forms

$$dx^{i}\left(\frac{\partial}{\partial x^{j}}\right) = \delta_{j}^{i} := \begin{cases} 1, & i = j \\ 0, & \text{otherwise} \end{cases}$$

Stay sane: think of these symbols as *bases*; forget they look like *derivatives*!

The story is nearly identical for differential 1-forms, but with different, *dual* bases:

Coordinate Bases as Derivatives

Q: Ok, but why the heck do we use symbols that look like *derivatives*?

Key idea: derivative of each coordinate function yields a constant basis field.

*We'll give a more precise meaning to "d" in a little bit.

Coordinate Notation — Further Apologies

• One very good reason for adopting this notation—consider a situation where we want to work with two different coordinate systems:

• Including the name of the coordinate system, in our name for the basis fields makes it clear which one we mean. (Not true with *e_i*, *X_i*, etc.)

Example: Hodge Star of Differential 1-form

- Consider the differential 1-form $\alpha := (1 x)dx + xdy$
 - Use coordinates (x,y) instead of (x_1,x_2)
 - Notice this expression varies over space
- **Q**: What's its Hodge star?

$$\star \alpha = \star ((1 - x)dx) + \star (xdy)$$
$$= (1 - x)(\star dx) + x(\star dy)$$
$$= (1 - x)dy + -xdx$$

Recall that in 2D, 1-form Hodge star is quarter-turn.

When we overlay the two we get little crosses (almost look like little areas...)

Example: Wedge of Differential 1-Forms

Consider the differential 1-forms*

$$\alpha := x dx, \qquad \beta := (1-x) dx + (1-y)$$

Q: What's their wedge product?

$$\alpha \wedge \beta = (xdx) \wedge ((1-x)dx + (1-y)dy$$
$$= (xdx) \wedge ((1-x)dx) + (xdx) \wedge y$$
$$= x(1-x)dx \wedge dx + x(1-y)dx \wedge y$$
$$= (x-xy)dx \wedge dy$$

(What does the result **look** like?)

*All plots in this slide (and the next few slides) are over the unit square [0,1] x [0,1].

Volume Form / Differential n-form

- Our picture has little parallelograms
- But what information does our differential 2-form actually encode?

$$\alpha \wedge \beta = (x - xy)dx \wedge dy$$

- Magnitude (*x*-*xy*), and "direction" $dx \wedge dy$
- But in the plane, every differential 2-form will be a multiple of $dx \wedge dy$!
 - More precisely, some scalar function times $dx \wedge dy$, which measures *unit area*
- - Provides some meaningful (i.e., nonzero, nonnegative) notion of volume

• In *n*-dimensions, any *positive* multiple of $dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n$ is called a *volume form*

Applying a Differential 1-Form to a Vector Field

$$\begin{aligned} \alpha(X) &= (xdx) \left((1-x)\frac{\partial}{\partial x} + (1-y)\frac{\partial}{\partial y} \right) \\ &= (xdx) \left((1-x)\frac{\partial}{\partial x} \right) + (xdx) \left((1-y)\frac{\partial}{\partial y} \right) \\ &= (x-x^2)dx(\frac{\partial}{\partial x}) + (x-xy)dx(\frac{\partial}{\partial y}) \end{aligned}$$

(Kind of like a dot product...)

 $= x - x^{2}$

• The whole point of a differential 1-form is to measure vector fields. So let's do it!

$$\alpha := x dx$$
$$X := (1 - x) \frac{\partial}{\partial x} + (1 - y) \frac{\partial}{\partial x} + y$$

 α

Differential Forms in Rⁿ - Summary

- Started with a vector space V (e.g., \mathbb{R}^n)
 - (1-forms) Dual space V^* of covectors, i.e., linear measurements of vectors
 - (*k-forms*) Wedge together *k* covectors to get a measurement of k-dim. volumes
 - (*differential k-forms*) Put a *k*-form at each point of space

3-form

differential 2-form

Exterior Algebra & Differential Forms—Summary

	primal	dual
linear algebra	vectors	covectors
exterior algebra	<i>k</i> -vectors	<i>k</i> -forms
spatially- varying	<i>k</i> -vector fields	differential <i>k</i> -forms

Where Are We Going Next?

GOAL: develop discrete exterior calculus (DEC)

Prerequisites:

Linear algebra: "little arrows" (vectors) **Vector Calculus:** how do vectors *change*? Next few lectures:

Exterior algebra: "little volumes" (*k*-vectors) **Exterior calculus**: how do *k*-vectors change? **DEC:** how do we do all of this on meshes?

Basic idea: replace vector calculus with computation on meshes.

DISCRETE DIFFERENTIAL GEOMETRY AN APPLIED INTRODUCTION