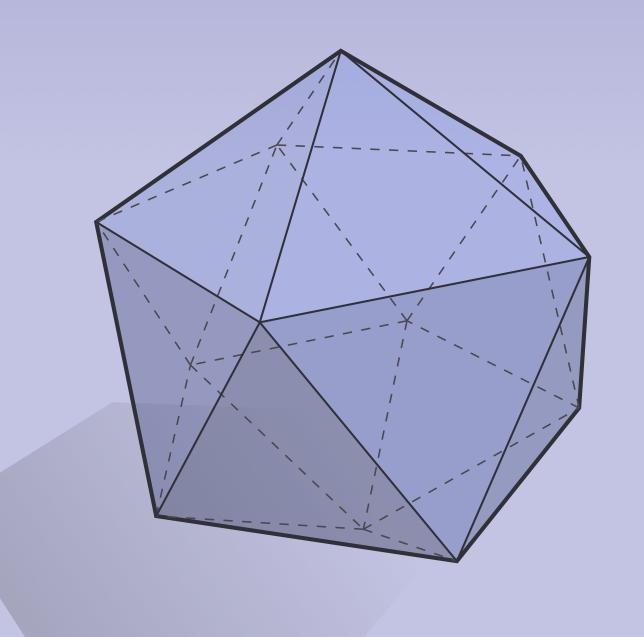


DISCRETE DIFFERENTIAL GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

LECTURE 6: EXTERIOR DERIVATIVE



DISCRETE DIFFERENTIAL GEOMETRY:

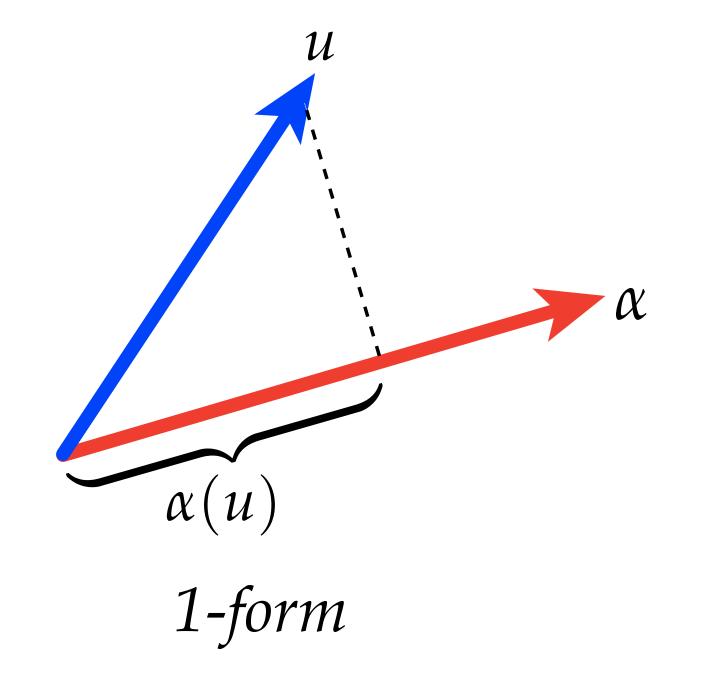
AN APPLIED INTRODUCTION

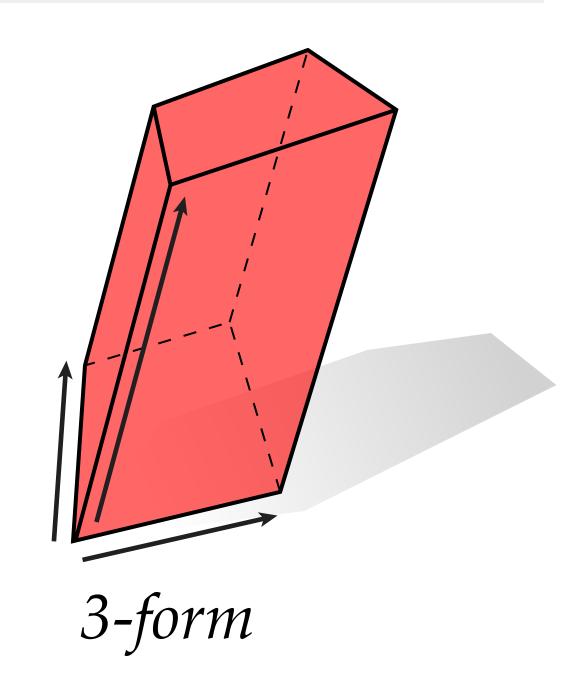
Keenan Crane • CMU 15-458/858

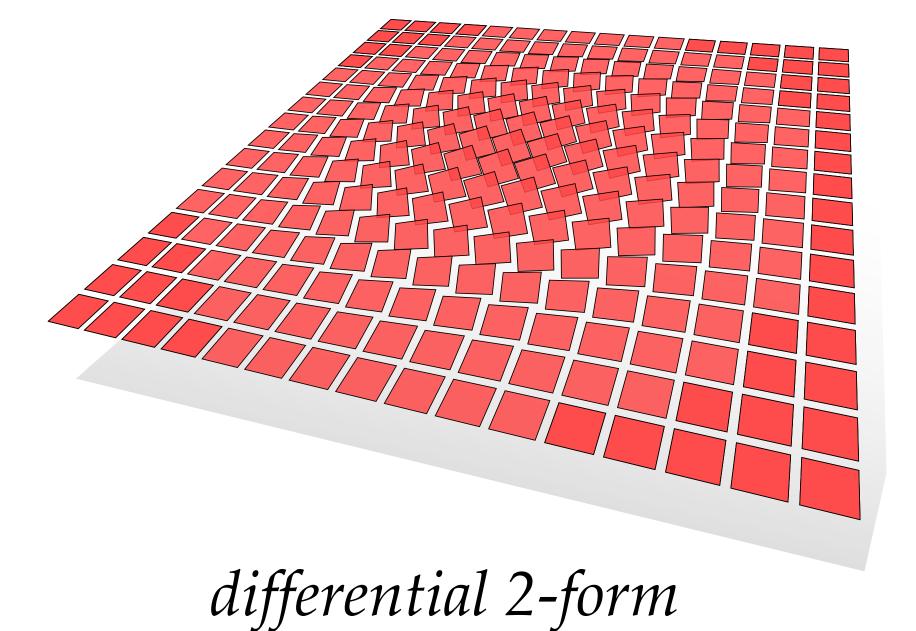
Exterior Calculus—Overview

- Previously:
 - 1-form—linear measurement of a vector
 - k-form—multilinear measurement of volume
 - differential *k*-form—*k*-form at each point

- Today: exterior calculus
 - how do k-forms change?
 - how do we integrate k-forms?







Integration and Differentiation

- Two big ideas in calculus:
 - differentiation
 - integration
 - linked by fundamental theorem of calculus
- Exterior calculus generalizes these ideas
 - differentiation of *k*-forms (exterior derivative)
 - integration of *k*-forms (measure volume)
 - linked by Stokes' theorem

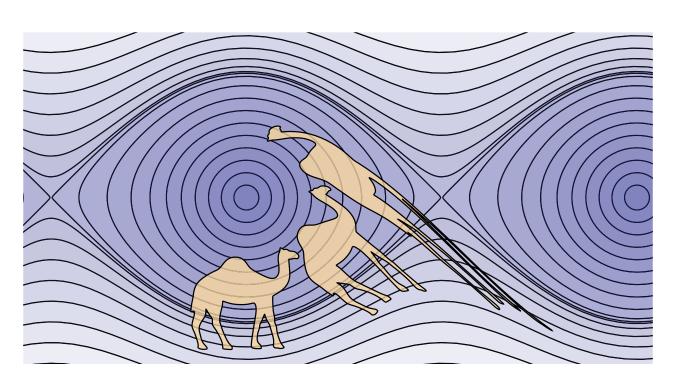
$$\int_a^b f' dx = f(b) - f(a)$$

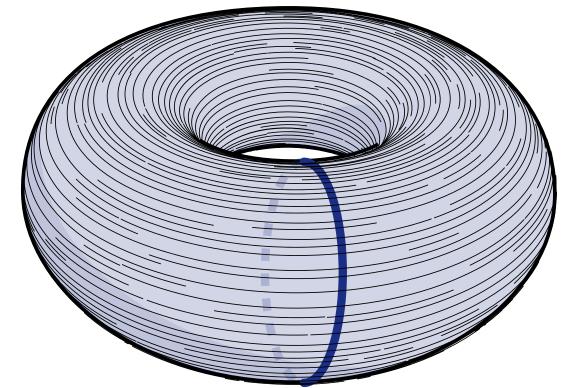
$$\int_{M} d\alpha = \int_{\partial M} \alpha$$

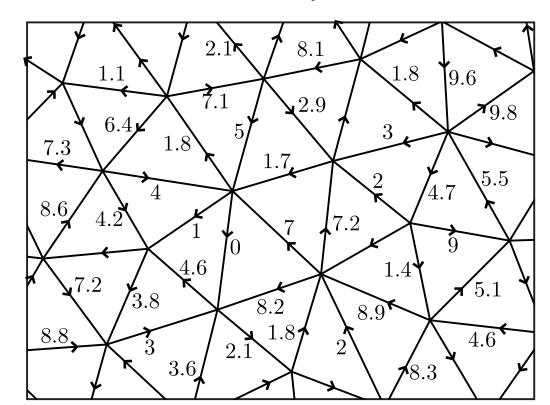
• Goal: integrate differential forms over meshes to get discrete exterior calculus (DEC)

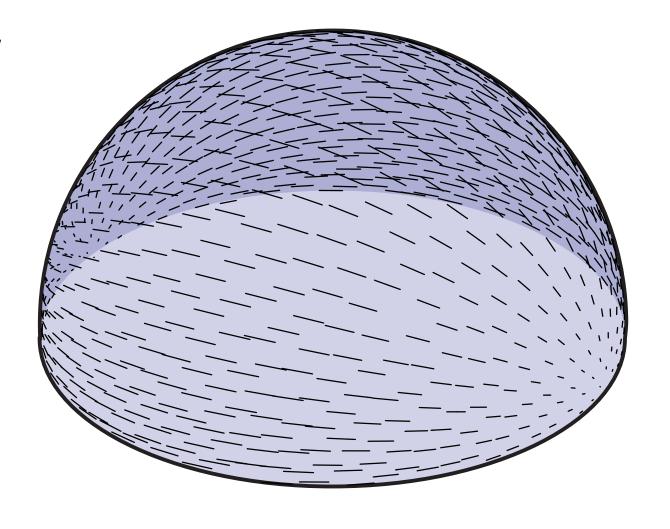
Motivation for Exterior Calculus

- Why generalize vector calculus to exterior calculus?
 - Hard to measure change in volumes using basic vector calculus
 - Duality clarifies the distinction between different concepts / quantities
 - **Topology**: notion of differentiation that does not require metric (e.g., cohomology)
 - Geometry: clear language for calculus on curved domains (Riemannian manifolds)
 - Physics: clear distinction between physical quantities (e.g., velocity vs. momentum)
 - Computer Science: Leads directly to discretization/computation!





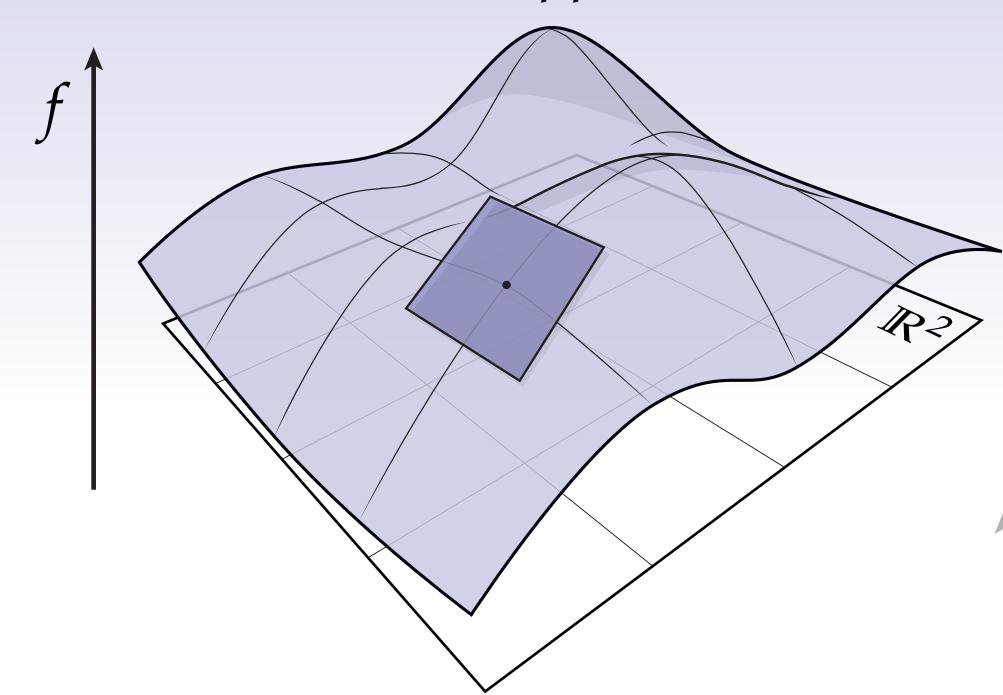




Exterior Derivative

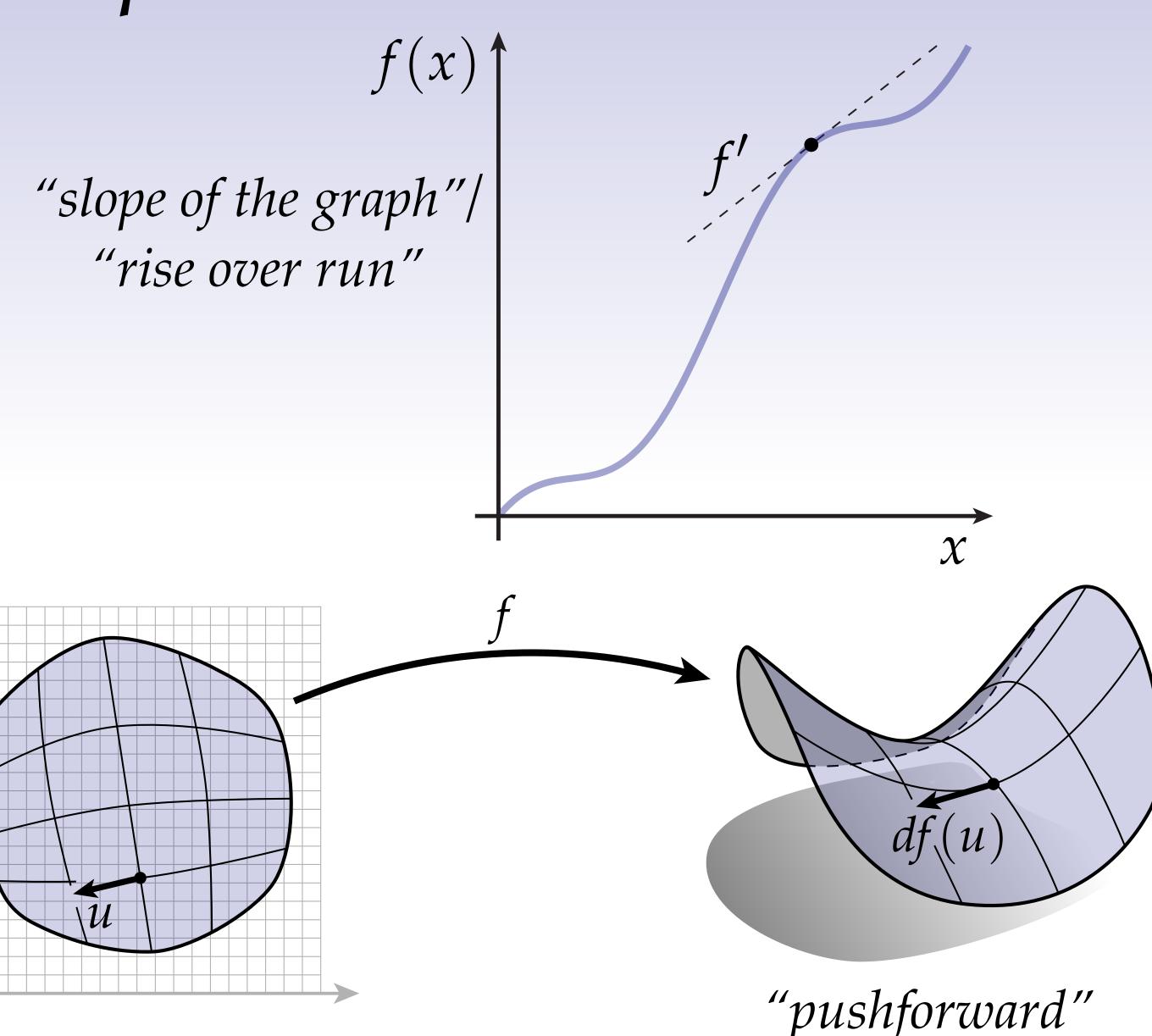
Derivative—Many Interpretations...

"best linear approximation"

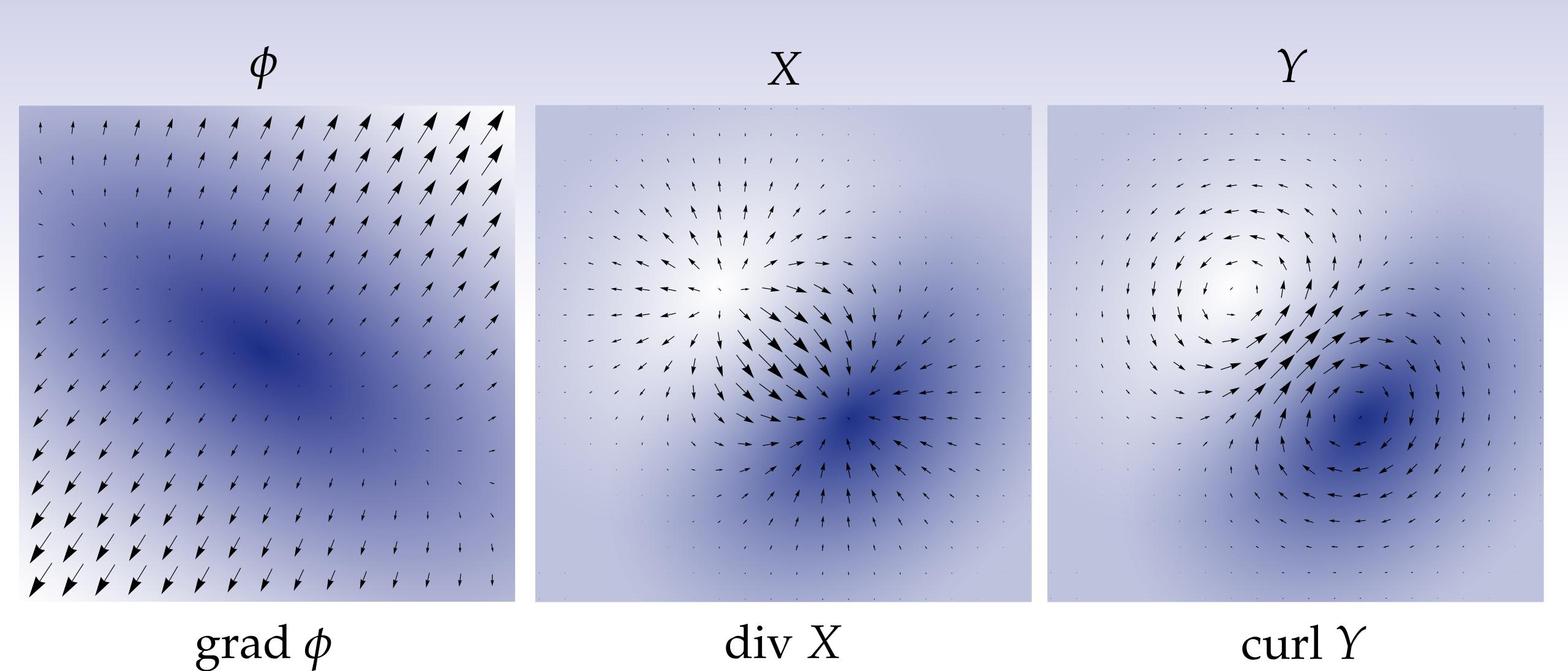


$$f'(x) := \lim_{\varepsilon \to 0} \frac{f(x + \epsilon) - f(x)}{\varepsilon}$$

"rate of change"



Review: Vector Derivatives



Review: Vector Derivatives in Coordinates

How do we express grad, div, and curl in coordinates?

Consider a scalar function $\phi: \mathbb{R}^3 \to \mathbb{R}$ and a vector field

$$X = u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z}$$

where $u, v, w : \mathbb{R}^n \to \mathbb{R}$ are coordinate functions that vary over the domain, and $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial u}$, $\frac{\partial}{\partial z}$ are the standard basis vector fields.

grad

$$\nabla \phi = \frac{\partial \phi}{\partial x} \frac{\partial}{\partial x} + \frac{\partial \phi}{\partial y} \frac{\partial}{\partial y} + \frac{\partial \phi}{\partial z} \frac{\partial}{\partial z}$$

div

$$\nabla \cdot X = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

<u>curl</u>

$$\nabla \times X = \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \frac{\partial}{\partial x} + \frac{\partial w}{\partial z} \frac{\partial}{\partial y} + \frac{\partial w}{\partial z} \frac{\partial}{\partial y} \frac{\partial}{\partial y} + \frac{\partial w}{\partial z} \frac{\partial}{\partial z} - \frac{\partial u}{\partial y} \frac{\partial}{\partial z} + \frac{\partial w}{\partial z} \frac{\partial}{\partial z}$$

Exterior Derivative

 $(\Omega^k$ — space of all differential k-forms)

Unique *linear* map $d: \Omega^k \to \Omega^{k+1}$ such that

differential for
$$k=0$$
, $d\phi(X)=D_X\phi$

product rule $d(\alpha \wedge \beta)=d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$

exactness $d\circ d=0$

Where do these rules come from? (What's the *geometric* motivation?)

Exterior Derivative—Differential

Review: Directional Derivative

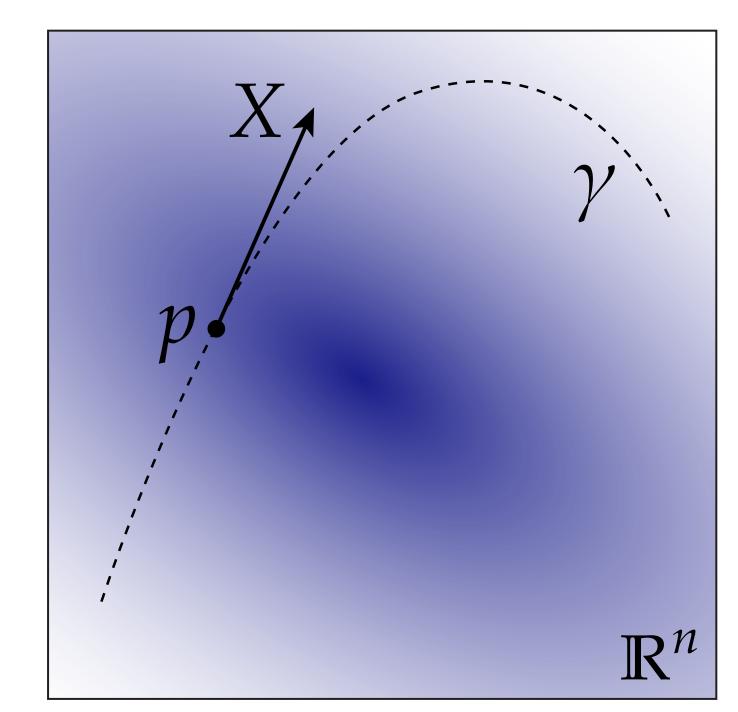
- The *directional derivative* of a scalar function ϕ at a point p with respect to a vector X is the rate at which that function increases as we walk away from p with velocity X.
- More precisely:

$$D_X \phi \Big|_{p} := \lim_{\varepsilon \to 0} \frac{\phi(p + \varepsilon X) - \phi(p)}{\varepsilon}$$

• Alternatively, suppose that *X* is a *vector field*, rather than just a vector at a single point. Then we can write just:

$$D_X \phi$$

• The result is a *scalar function*, whose value at each point p is the directional derivative along the vector X(p).



 $\phi: \mathbb{R}^n \to \mathbb{R}$

Intuition: as we walk along a curve γ tangent to X, how fast will an observed quantity ϕ change as we pass through p?

Review: Gradient

Let $\phi : \mathbb{R}^n \to \mathbb{R}$. What is the *gradient* of ϕ ?

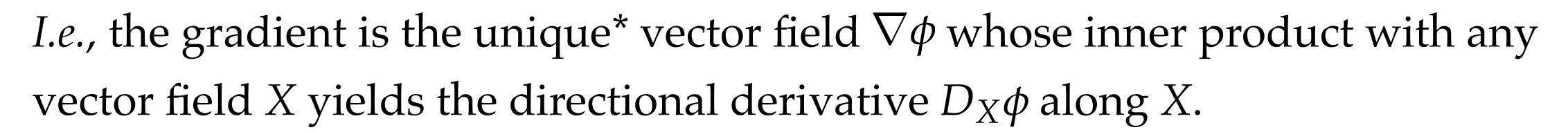
Geometric intuition. "Uphill direction."

Coordinate approach. In Euclidean \mathbb{R}^n , list of partials:

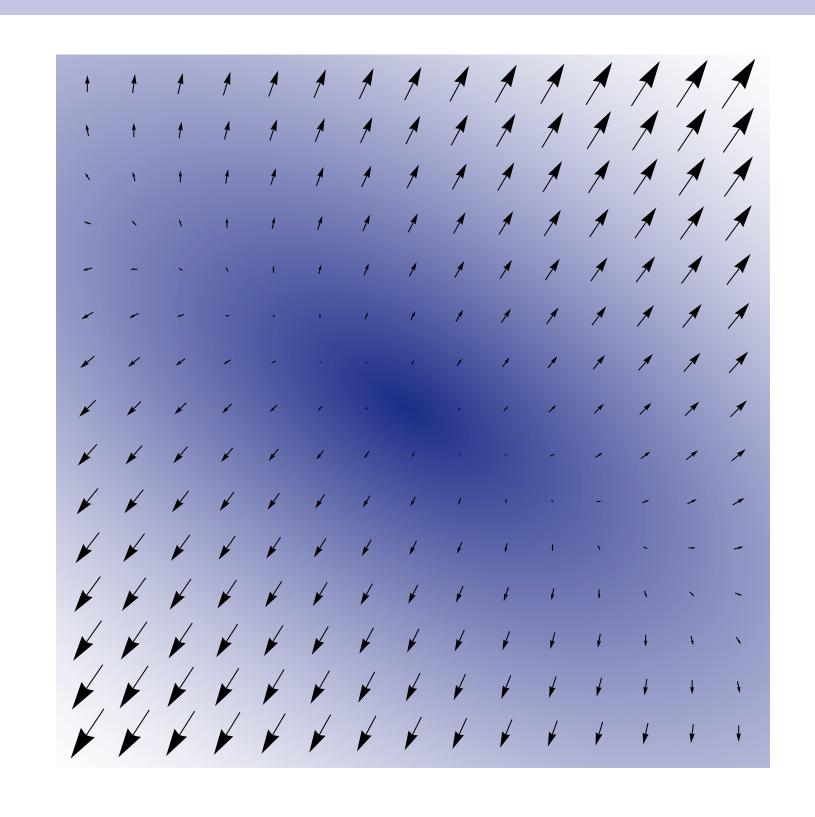
$$\nabla \phi = \frac{\partial \phi}{\partial x^1} \frac{\partial}{\partial x^1} + \dots + \frac{\partial \phi}{\partial x^n} \frac{\partial}{\partial x^n} = \left[\frac{\partial \phi}{\partial x^1} + \dots + \frac{\partial \phi}{\partial x^n} \right]^\mathsf{T}$$

Coordinate-free approach.

$$\langle \nabla \phi, X \rangle = D_X \phi$$
 for all X



^{*}If it exists! I.e., assuming the function is differentiable.



Differential of a Function

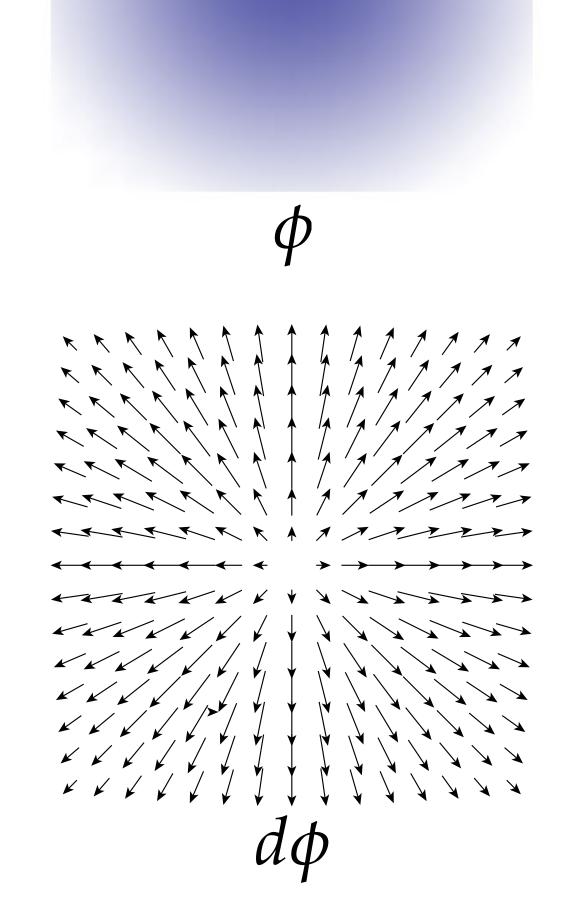
- Recall that differential 0-forms are just ordinary scalar functions
- Change in a scalar function can be measured via the differential
- Two ways to define differential:
 - 1. As unique 1-form such that applying to any vector field gives directional derivative along those directions:

$$d\phi(X) = D_X \phi$$

2. In coordinates:

$$d\phi := \frac{\partial \phi}{\partial x^1} dx^1 + \dots + \frac{\partial \phi}{\partial x^n} dx^n$$

...but wait, isn't this just the same as the gradient?



Gradient vs. Differential

• Superficially, gradient and differential look quite similar (but not identical!):

$$\langle \nabla \phi, X \rangle = D_X \phi$$

$$d\phi(X) = D_X \phi$$

• Especially in \mathbb{R}^n :

$$\nabla \phi = \frac{\partial \phi}{\partial x^1} \frac{\partial}{\partial x^1} + \dots + \frac{\partial \phi}{\partial x^n} \frac{\partial}{\partial x^n} \qquad d\phi = \frac{\partial \phi}{\partial x^1} dx^1 + \dots + \frac{\partial \phi}{\partial x^n} dx^n$$

$$d\phi = \frac{\partial \phi}{\partial x^1} dx^1 + \dots + \frac{\partial \phi}{\partial x^n} dx^n$$

- So what's the difference?
 - For one thing, one is a vector field; the other is a differential 1-form
 - More importantly, gradient depends on inner product; differential doesn't

$$(d\phi)^{\sharp} = \nabla\phi \iff \boxed{d\phi(\cdot) = \langle \nabla\phi, \cdot \rangle} \iff (\nabla\phi)^{\flat} = d\phi$$

Makes a *big* difference when it comes to curved geometry, numerical optimization, ...

Exterior Derivative—Product Rule

Exterior Derivative

Unique *linear* map $d: \Omega^k \to \Omega^{k+1}$ such that

differential for k = 0, $d\phi(X) = D_X \phi$

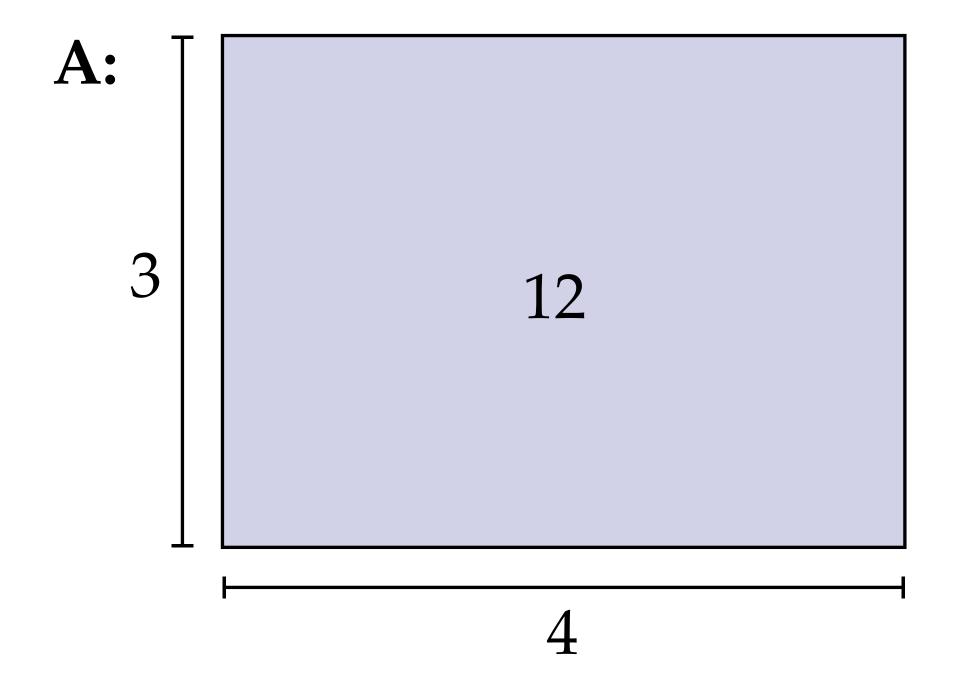
product rule $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$

exactness $d \circ d = 0$

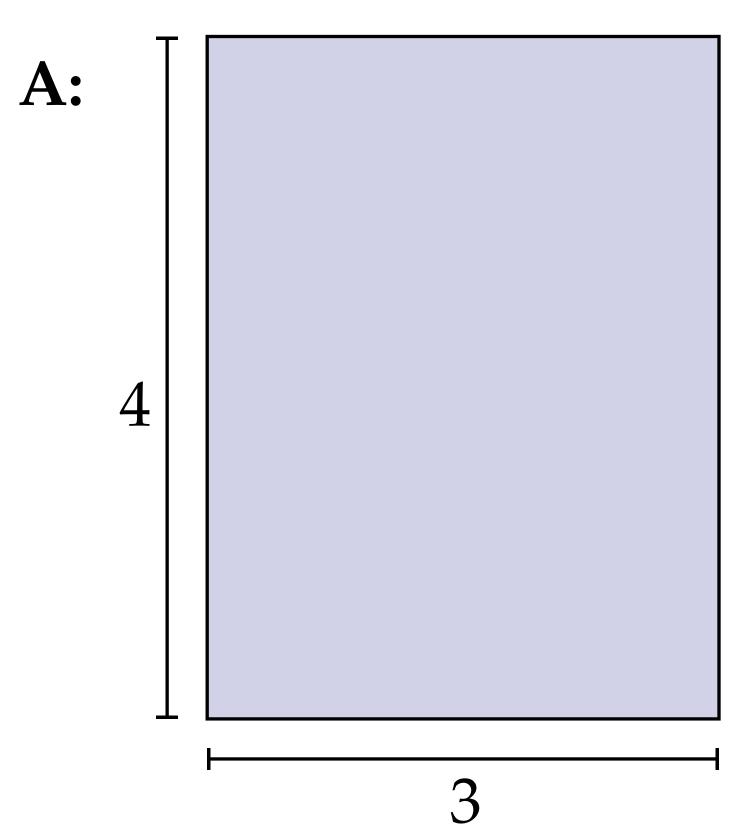
Review: Product of Numbers

Q: Why is it true that ab = ba for any two real numbers a, b?

Q: What's the geometric interpretation of the statement " $4 \times 3 = 12$ "?



Q: How about " $3 \times 4 = 12$ "?



Product Rule—Derivative

For any differentiable functions $f, g : \mathbb{R} \to \mathbb{R}$, (fg)' = f'g + fg'.

Q: Why? What's the *geometric* interpretation?

$$(fg)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$f(x)g(x)$$

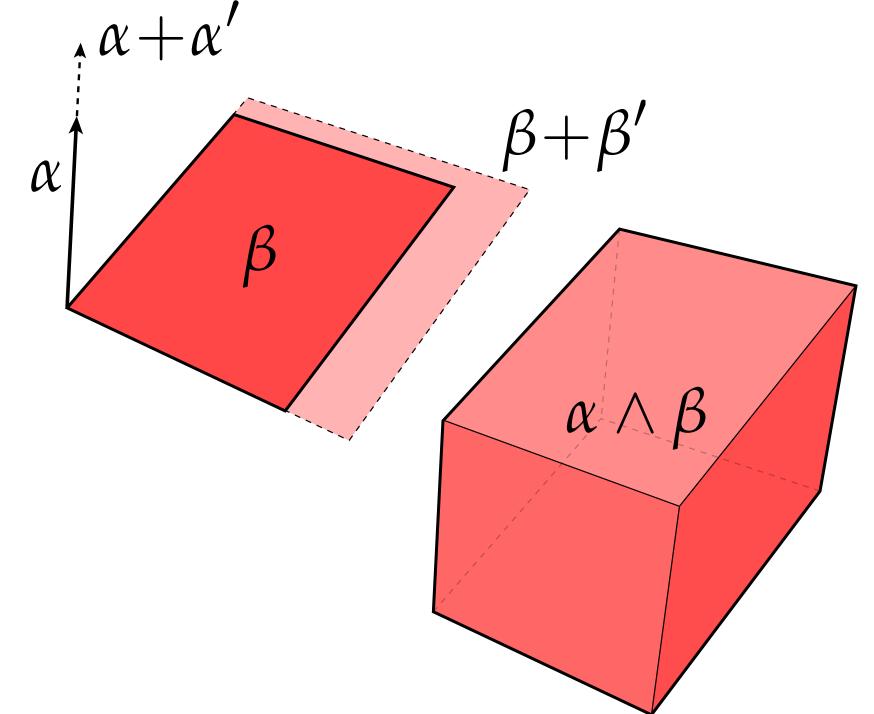
$$f(x) = \int_{h}^{g(x+h)} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

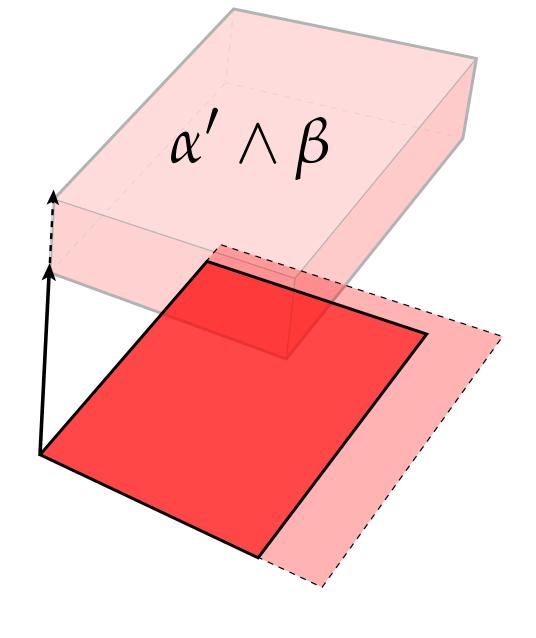
Product Rule—Exterior Derivative

Let α be a k-form and let β be an ℓ -form. Then

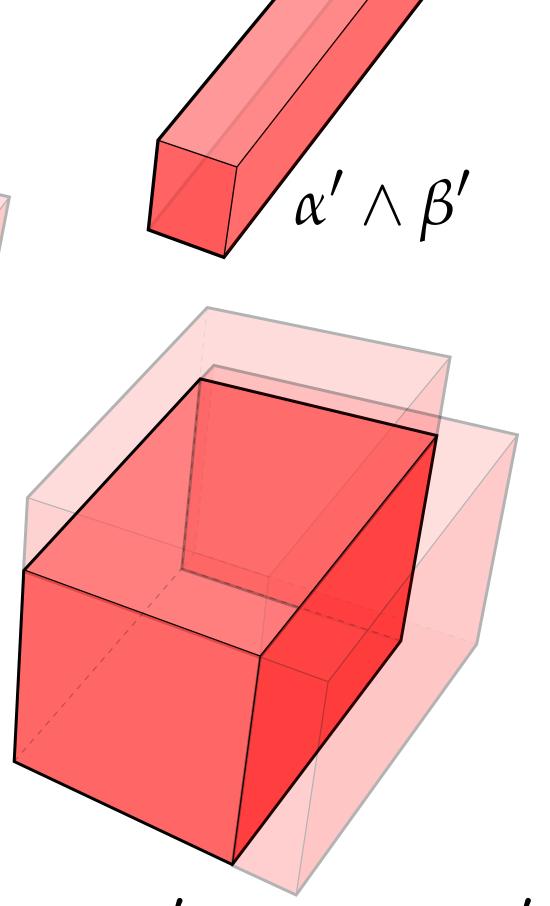
$$d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^k \alpha \wedge (d\beta).$$

Q: Geometric intuition?









(Does this cartoon depict the exterior derivative? Or a directional derivative?)

 $\alpha \wedge \beta + \alpha' \wedge \beta + \alpha \wedge \beta'$

Product Rule—"Recursive Evaluation"

Example. Let $\alpha := u \, dx$, $\beta := v \, dy$, and $\gamma := w \, dz$ be differential 1-forms on \mathbb{R}^n , where $u, v, w : \mathbb{R}^n \to \mathbb{R}$ are 0-forms, *i.e.*, scalar functions. Also, let $\omega := \alpha \land \beta$. Then

$$d(\omega \wedge \gamma) = (d\omega) \wedge \gamma + (-1)^2 \omega \wedge (d\gamma).$$

We can then "recursively" evaluate derivatives that appear on the right-hand side:

$$d\omega = (d\alpha) \wedge \beta + (-1)^{1}\alpha \wedge (d\beta),$$

$$d\alpha = (du) \wedge dx + (-1)^{0}u(ddx),$$

$$d\beta = (dv) \wedge dy + (-1)^{0}v(ddy),$$

$$d\gamma = (dw) \wedge dz + (-1)^{0}w(ddz).$$

Key idea: The "base case" is the 0-forms, *i.e.*, computing the final result boils down to taking the differential of ordinary scalar functions.

Exterior Derivative—Examples

Example. Let
$$\phi(x,y) := \frac{1}{2}e^{-(x^2+y^2)}$$
. Then $d\phi = \frac{\partial \phi}{\partial x}dx + \frac{\partial \phi}{\partial y}dy$
$$= -2\phi(xdx + ydy)$$

Example. Let $\alpha(x,y) = xdx + ydy$. Then $d\alpha = (\frac{\partial x}{\partial x}dx + \frac{\partial x}{\partial y}dy) \wedge dx + (\frac{\partial y}{\partial x}dx + \frac{\partial y}{\partial y}dy) \wedge dy$

 $= dx \wedge dx + dy \wedge dy = 0 + 0 = 0.$

Example. Again let $\alpha(x,y) = xdx + ydy$. Then $d \star \alpha = d(x \star dx + y \star dy)$ = d(xdy - ydx) $= dx \wedge dy - dy \wedge dx$ $= 2dx \wedge dy.$

Exterior Derivative—Exactness

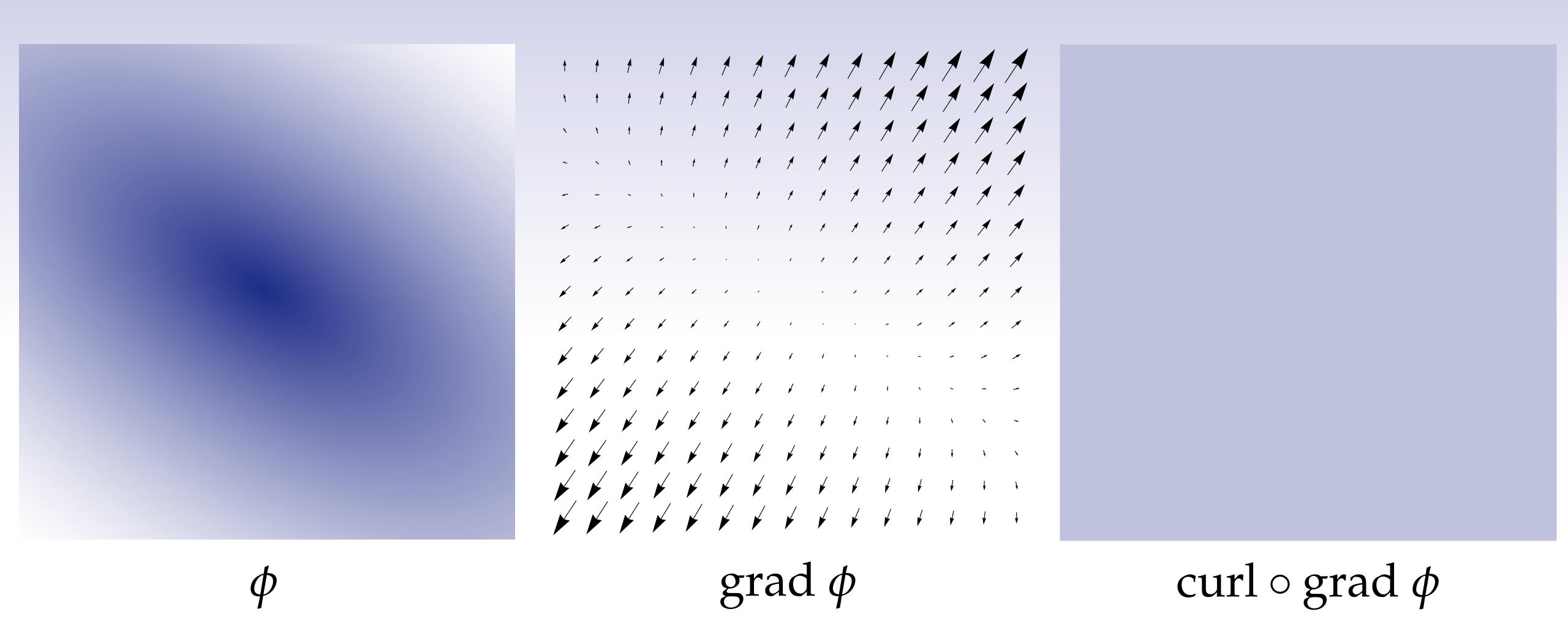
Exterior Derivative

Unique *linear* map $d: \Omega^k \to \Omega^{k+1}$ such that

differential for
$$k=0$$
, $d\phi(X)=D_X\phi$
product rule $d(\alpha \wedge \beta)=d\alpha \wedge \beta+(-1)^k\alpha \wedge d\beta$

exactness $d \circ d = 0$

Review: Curl of Gradient



Key idea: exterior derivative should capture a similar idea.

What Happens if $d \circ d = 0$?

 $= \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}\right) dy \wedge dz + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}\right) dz \wedge dx + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) dx \wedge dy.$

Q: Consider a 1-form $\alpha = udx + vdy + wdz$, where the coefficients u, v, w are each scalar functions $\mathbb{R}^3 \to \mathbb{R}$. What is the exterior derivative $d\alpha$ in coordinates x, y, z?

A:
$$d\alpha = d(udx + vdy + wdz) = du \wedge dx + uddx + dv \wedge dy + vddy + dw \wedge dz + wddz^{-0}$$

$$(\frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy + \frac{\partial u}{\partial z}dz) \wedge dx + (\frac{\partial u}{\partial x}dx \wedge dx + \frac{\partial u}{\partial y}dy \wedge dx + \frac{\partial u}{\partial z}dz \wedge dx) +$$

$$= (\frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy + \frac{\partial v}{\partial z}dz) \wedge dy + (\frac{\partial v}{\partial x}dx \wedge dy + \frac{\partial v}{\partial y}dy \wedge dx + \frac{\partial w}{\partial z}dz \wedge dy) +$$

$$(\frac{\partial w}{\partial x}dx + \frac{\partial w}{\partial y}dy + \frac{\partial w}{\partial z}dz) \wedge dz$$

$$(\frac{\partial w}{\partial x}dx \wedge dz + \frac{\partial w}{\partial y}dy \wedge dz + \frac{\partial w}{\partial z}dz \wedge dz)^{-0}$$

$$= -\frac{\partial u}{\partial y}dx \wedge dy + \frac{\partial u}{\partial z}dz \wedge dx + \frac{\partial v}{\partial x}dx \wedge dy - \frac{\partial v}{\partial z}dy \wedge dz - \frac{\partial w}{\partial x}dz \wedge dx + \frac{\partial w}{\partial y}dy \wedge dz$$

Q: Does this operation remind you of anything (perhaps from vector calculus)?

Exterior Derivative and Curl

Suppose we have a vector field

$$X := u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z}$$

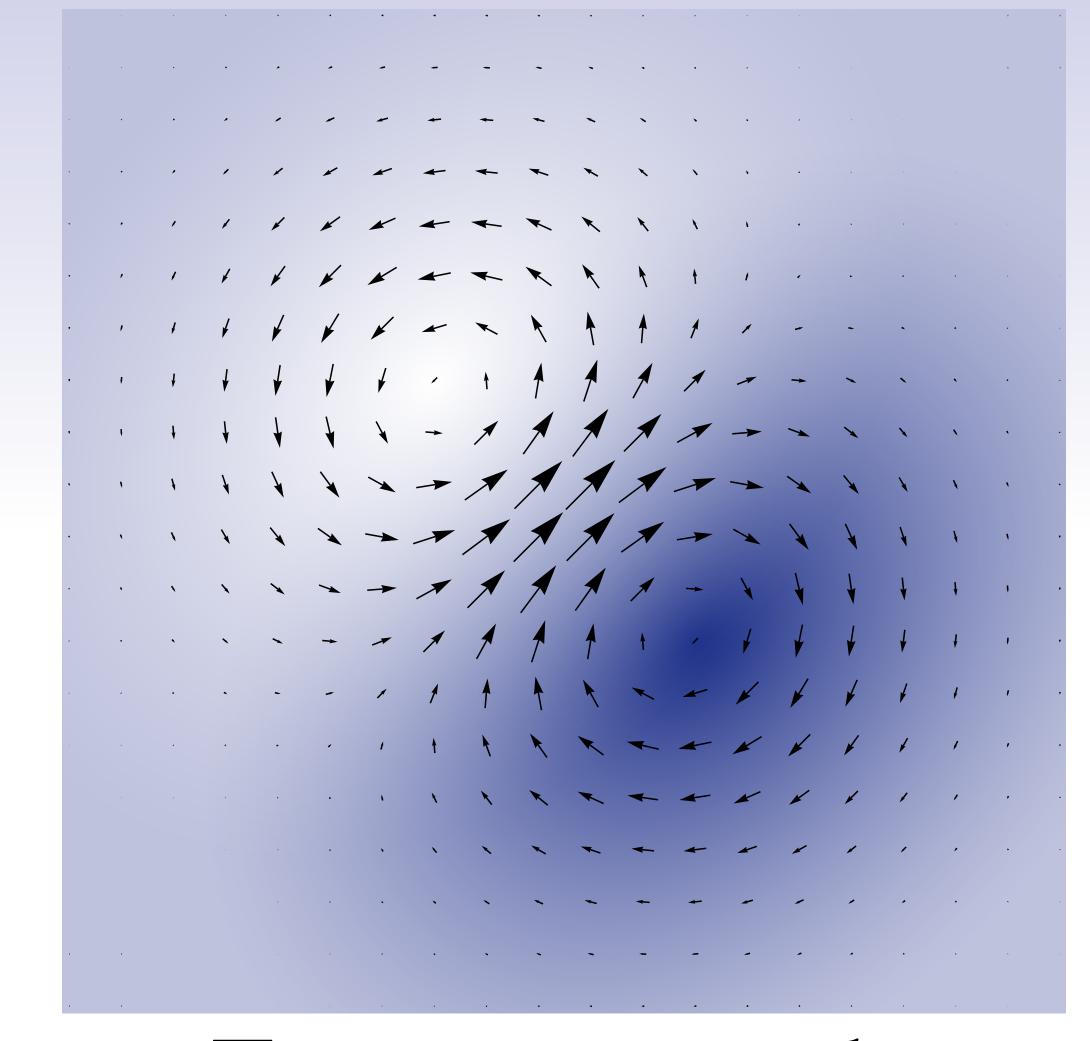
Its *curl* is then

$$(\partial w/\partial y - \partial v/\partial z) \frac{\partial}{\partial x} + \nabla \times X = (\partial u/\partial z - \partial w/\partial x) \frac{\partial}{\partial y} + (\partial v/\partial x - \partial u/\partial y) \frac{\partial}{\partial z}$$

Looks an awful lot like...

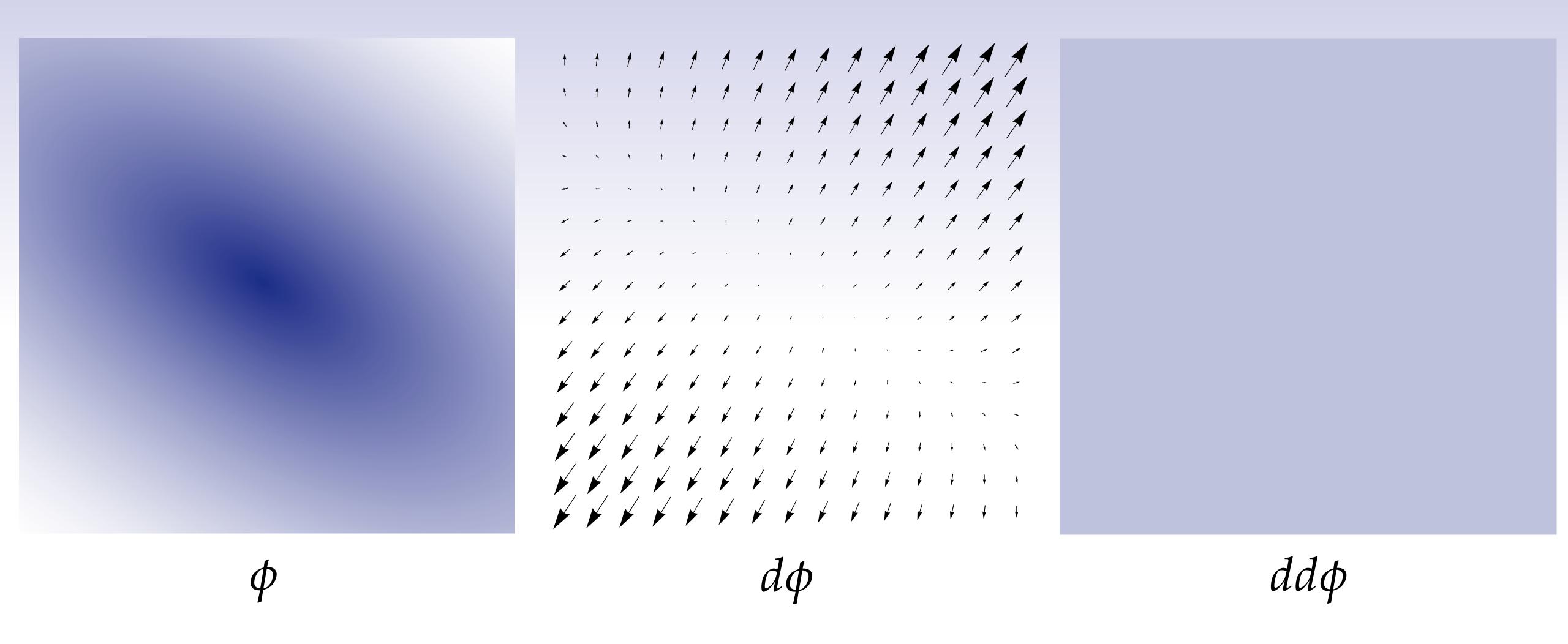
$$d\alpha = (\partial w/\partial y - \partial v/\partial z) \quad dy \wedge dz + d\alpha = (\partial u/\partial z - \partial w/\partial x) \quad dz \wedge dx + (\partial v/\partial x - \partial u/\partial y) \quad dx \wedge dy$$

Especially if we then apply the Hodge star.



$$\nabla \times X \iff \star d\alpha$$

$$\nabla \times X = (\star dX^{\flat})^{\sharp}$$



Intuition: in \mathbb{R}^n , first d behaves just like gradient; second d behaves just like curl.

Exterior Derivative in 3D (1-forms)

Q: How about $d \star \alpha$? (Still for $\alpha = udx + vdy + wdz$.)

A:
$$d \star \alpha = d(\star (udx + vdy + wdz))$$

 $= d(udy \wedge dz + vdz \wedge dx + wdx \wedge dy)$
 $= du \wedge dy \wedge dz + dv \wedge dz \wedge dx + dw \wedge dx \wedge dy$
 $= \frac{\partial u}{\partial x} dx \wedge dy \wedge dz + \frac{\partial v}{\partial y} dy \wedge dz \wedge dx + \frac{\partial w}{\partial z} dz \wedge dx \wedge dy$
 $= (\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}) dx \wedge dy \wedge dz$

Q: Does this operation remind you of anything (perhaps from vector calculus)?

Exterior Derivative and Divergence

Suppose we have a vector field

$$X := u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z}$$

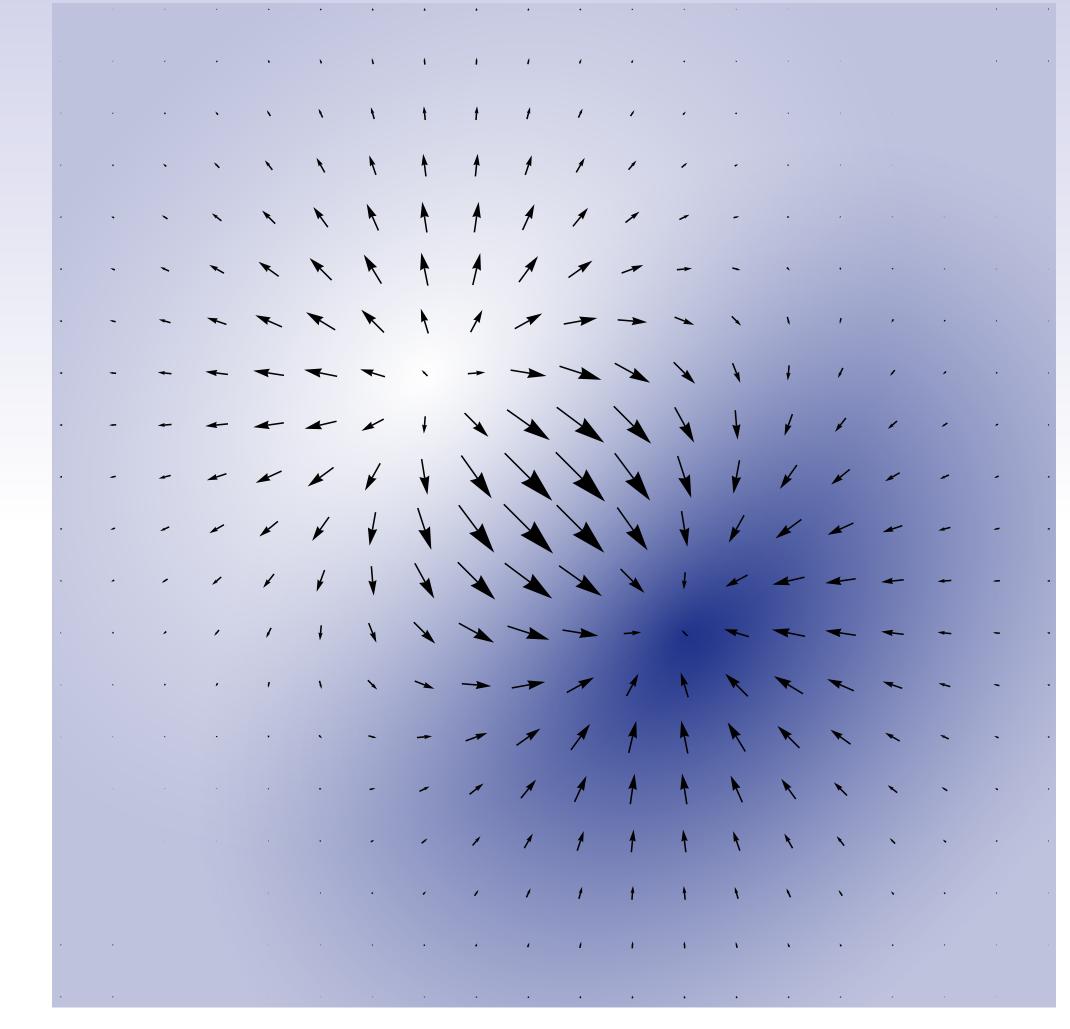
Its divergence is then

$$\nabla \cdot X = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial u} + \frac{\partial w}{\partial z}$$

Looks an awful lot like...

$$d \star \alpha = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right) dx \wedge dy \wedge dz$$

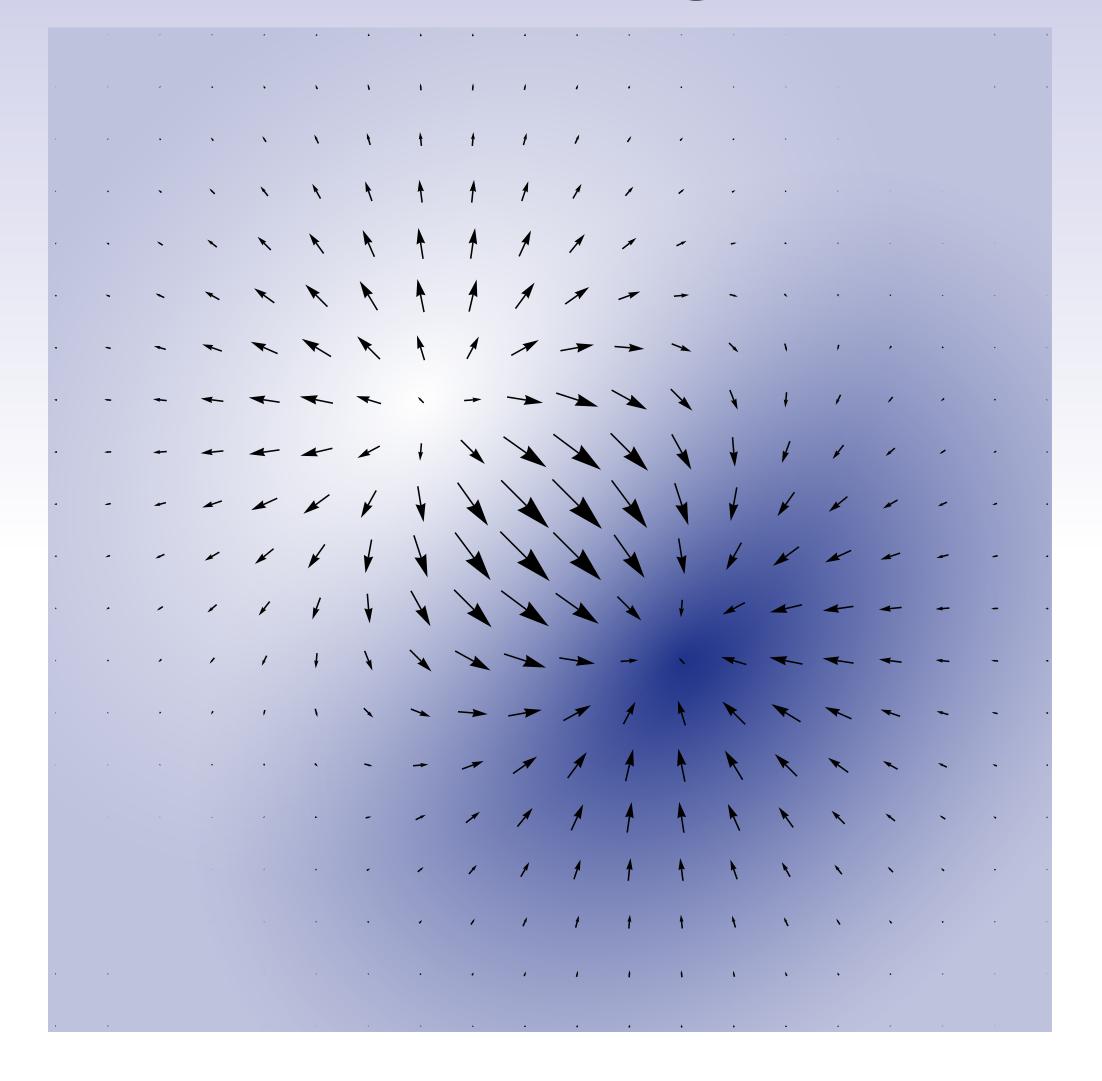
Especially if we then apply the Hodge star.



$$\nabla \cdot X \iff \star d \star \alpha$$

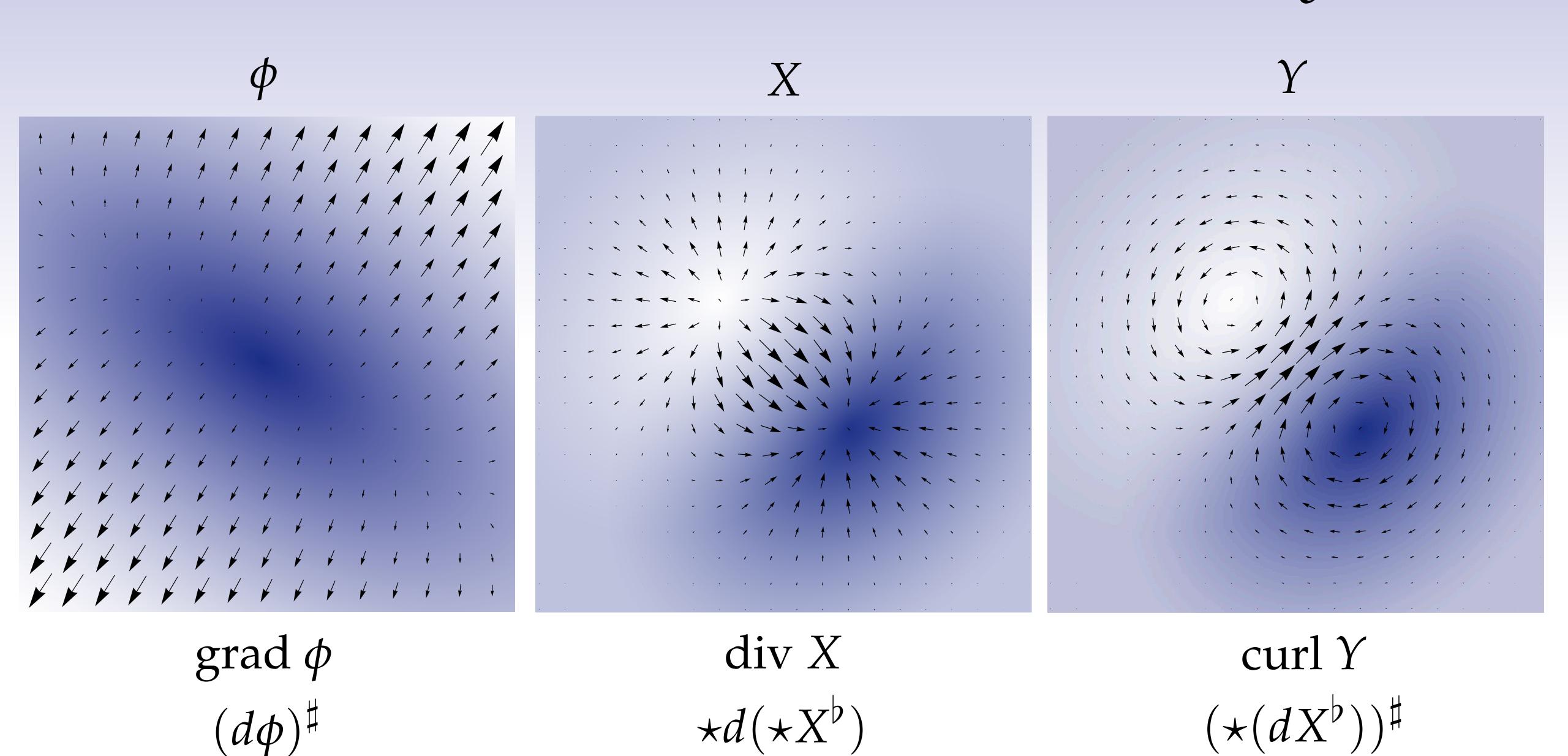
$$\nabla \cdot X = \star d \star X^{\flat}$$

Exterior Derivative - Divergence



$$\nabla \cdot X = \star d(\star X^{\flat})$$

Exterior vs. Vector Derivatives—Summary



Exterior Derivative—Summary

Exterior Derivative

Unique *linear* map $d: \Omega^k \to \Omega^{k+1}$ such that

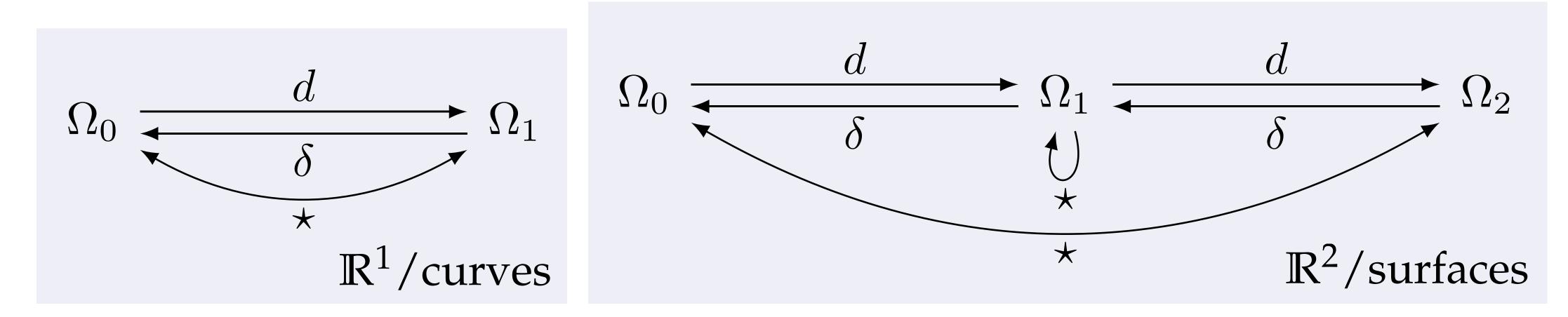
differential for
$$k=0$$
, $d\phi(X)=D_X\phi$

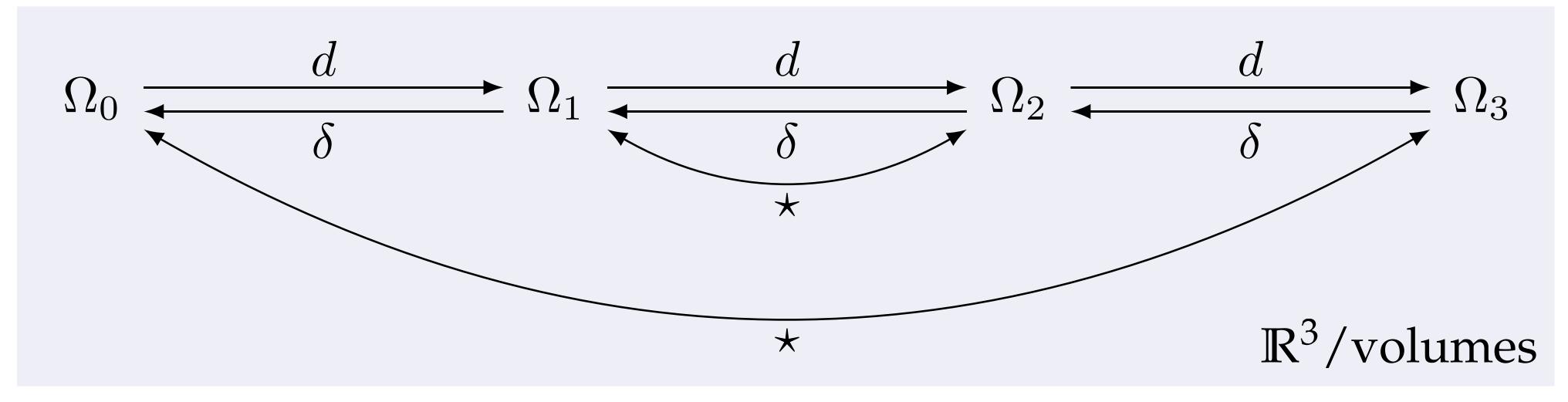
product rule $d(\alpha \wedge \beta)=d\alpha \wedge \beta + (-1)^k\alpha \wedge d\beta$

exactness $d\circ d=0$

Exterior Calculus—Diagram View

• Taking a step back, we can draw many of the operators seen so far as diagrams:





Laplacian

- Can now compose operators to get other operators
- E.g., Laplacian from vector calculus:

$$\Delta := \operatorname{div} \circ \operatorname{grad}$$

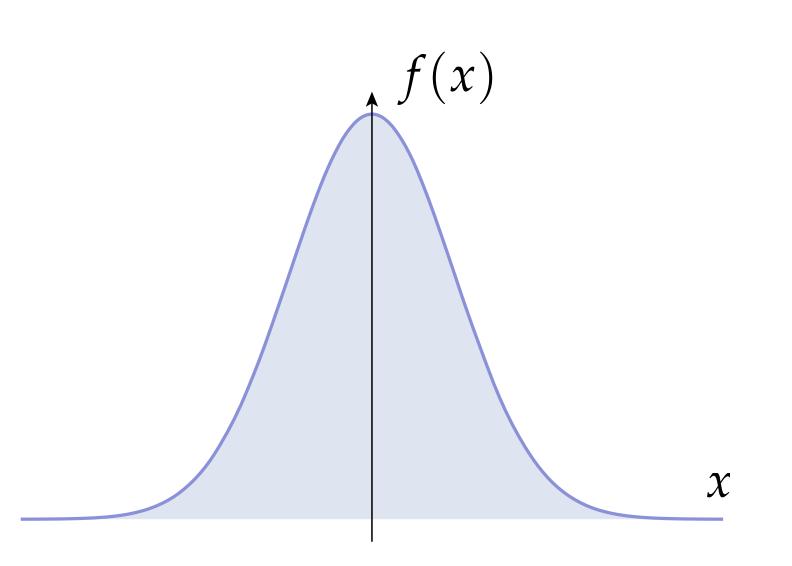
• Can express exact same operator via exterior calculus:

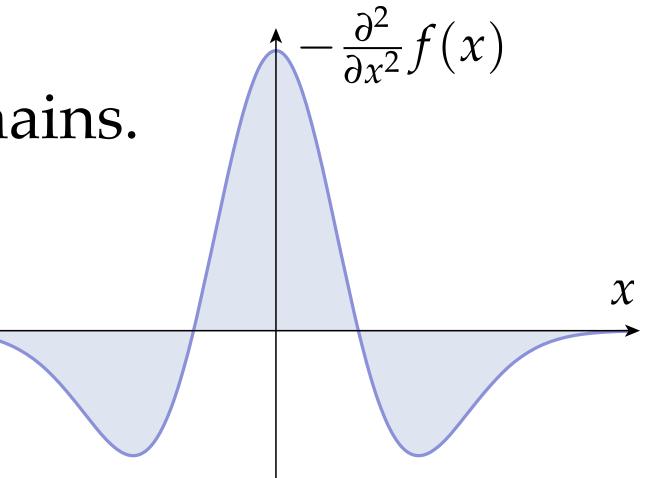
$$\Delta = \star d \star d$$

- ...except that this expression easily generalizes to curved domains.
- Can also generalize to *k*-forms:

$$\Delta := \star d \star d + d \star d \star$$

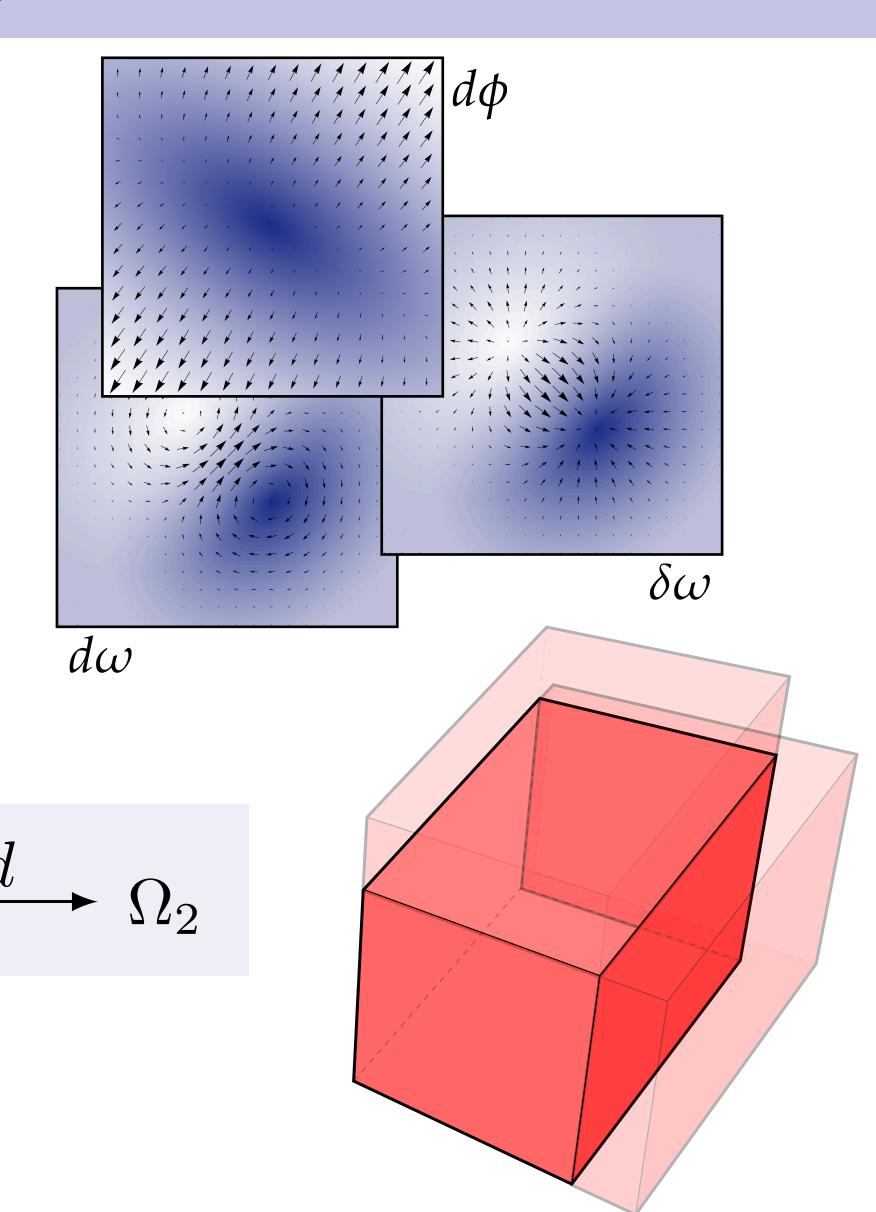
• Will have much more to say about the Laplacian later on!

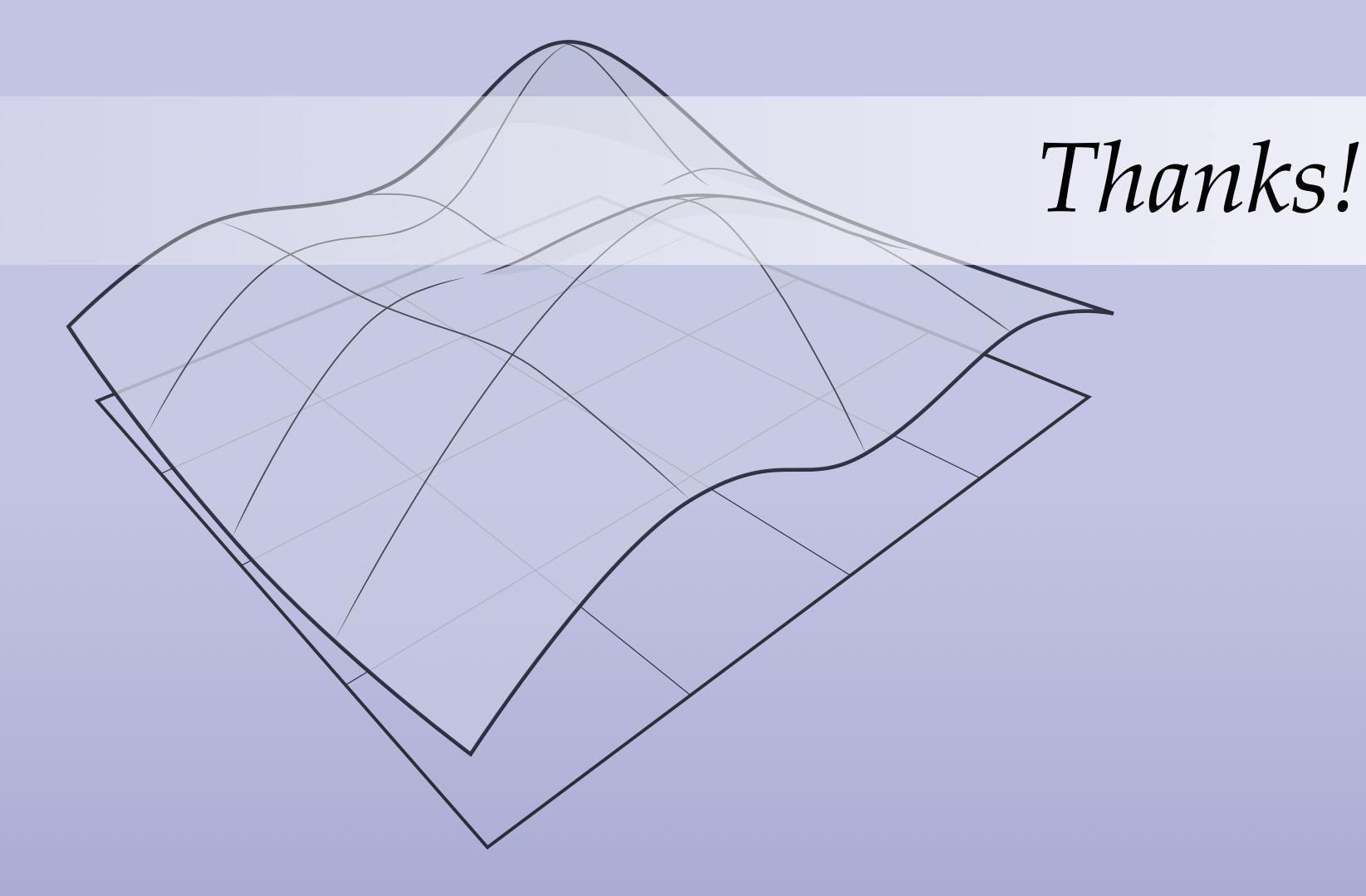




Exterior Derivative - Summary

- Exterior derivative d used to differentiate k-forms
 - 0-form: "gradient"
 - 1-form: "curl"
 - 2-form: "divergence" (codifferential δ)
 - and more...
- Natural product rule
- d of d is zero
 - Analogy: curl of gradient
 - More general picture (soon!) via Stokes' theorem





DISCRETE DIFFERENTIAL GEOMETRY AN APPLIED INTRODUCTION