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Review—Discrete Differential Forms
•A discrete differential k-form amounts to a value stored 

on each oriented k-simplex
•Discretization: integrate (continuous) differential k-

form over each oriented k-simplex
•Interpolation: take linear combinations of Whitney 

bases to get continuous differential k-form
•How do we actually “do stuff” with this data?
•This lecture: calculus on discrete differential forms

– differentiation—discrete exterior derivative
– key tool: Stokes’ theorem

– integration—just take sums!
– Hodge star—approximate integral over dual cells
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Discrete Exterior Derivative



Reminder: Exterior Derivative
•Recall that in the smooth setting, the exterior derivative:

– maps differential k-forms to differential (k+1)-forms

– satisfies a product rule:

– yields zero when you apply it twice:

– is similar to the gradient when applied to a 0-form

– is similar to curl when applied to a 1-form

– is similar to divergence when composed w/ Hodge star

•To get discrete exterior derivative, we will imagine that we 
apply the exterior derivative to a continuous k-form and 
integrate the result over (oriented) simplices



Discrete Exterior Derivative (0-Forms)

 — discrete 0-form (values of  at vertices)

 — discrete 1-form (integrals of  along edges)
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Key idea: even if we only know φ at endpoints, can exactly integrate derivative along whole edge



Discrete Exterior Derivative (1-Forms)
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 — primal 1-form (integrals of  along edges)

 — primal 2-form (integrals of  over triangles)
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âi

In general: discrete exterior derivative is coboundary operator for cochains.



Discrete Exterior Derivative—Examples
When applying discrete exterior derivative, must carefully consider orientation

Example (0-form)
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Note: exterior derivative has 
nothing to do with geometry!

Example (1-form)
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Discrete Exterior Derivative—Matrix Representation
•The discrete exterior derivative on discrete k-forms, 

denoted by dk, is a linear map from values on k-
simplices to values on (k+1)-simplices:

– d0 maps values on vertices to values on edges

– d1 maps values on edges to values on triangles

– d2 maps values on triangles to values on tetrahedra

– …

– stops at k = n–1 (where n is dimension)

•Can encode each operator as a matrix, by assigning 
indices to mesh elements

•Matrix representations of exterior derivatives are 
then just the signed incidence matrices



Discrete Exterior Derivative d0—Example
•To build the exterior derivative on 0-

forms, we first need to assign an index 
to each vertex and each edge

– A discrete 0-form is a vector of |V| 
values (one per vertex)

– A discrete 1-form is a vector of |E| 
values (one per edge)

•The discrete exterior derivative d0 is 
therefore a |E|x|V| matrix, taking 
values at vertices to values at edges
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Discrete Exterior Derivative d1—Example
•To build the exterior derivative on 1-

forms, we first need to assign an index 
to each edge and each face

– A discrete 1-form is a list of |E| 
values (one per edge)

– A discrete 2-form is a list of |F| 
values (one per face)

•The discrete exterior derivative d1 is 
therefore a |F|x|E| matrix, taking 
values at edges to values at faces

e1

e2
e3

e4

e5

f1 f2



Exterior Derivative Commutes w/ Discretization
By construction, discrete exterior derivative satisfies an important property:

Taking the smooth exterior derivative and then 
discretizing yields the same result as discretizing 
and then applying the discrete exterior derivative.

Corollary: applying discrete d twice yields zero (why?)



Exactness of Discrete Exterior Derivative—Example
To verify that applying discrete exterior derivative twice yields zero, 
could also just multiply exterior derivative matrices for 0- and 1-forms:

Another interpretation: coboundary of coboundary is always zero!



Dual Forms



Reminder: Poincaré Duality

dual

0-cell1-cell2-cell

primal

0-simplex 1-simplex 2-simplex



Dual Discrete Differential k-Form

(Can also formalize via dual chains, dual cochains…)

Just as a discrete differential k-form was a value per 
k-simplex, a dual discrete differential k-form is a value 
per dual k-cell:

dual 2-form

• a dual 0-form is a value per dual vertex
• a dual 1-form is a value per dual edge
• a dual 2-form is a value per dual cell



Primal vs. Dual Discrete Differential k-Forms

Note: no such thing as “primal” and “dual” forms in smooth setting!

Q: Is the number of values stored for a primal and dual k-form always the same?

Let’s compare primal and dual discrete k-forms on a triangle mesh (n=2):

primal dual

0-forms vertices dual vertices 
(triangles)

1-forms edges dual edges 
(edges)

2-forms triangle dual cells 
(vertices)

A: No!  In practice, store dual values on primal mesh (e.g., dual 0-forms on triangles)



Dual Exterior Derivative
•Discrete exterior derivative on dual k-forms works 

in essentially the same way as for primal forms:

•To get the derivative on a (k+1)-cell, sum up 
values on each k-cell along its boundary

•Sign of each term in the sum is determined by 
relative orientation of (k+1)-cell and k-cell

Example.

–7 + 7 – 2 + (–3) + 5 - 5 + 3 = –2
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Notice: as with primal d, we don’t need lengths, areas, …



•Easy to interpolate primal k-forms:
– k-simplices have clear geometry: convex hull of vertices
– k-forms have straightforward basis: Whitney forms

•Not so clear cut for dual forms!
– e.g., can’t interpolate dual 0-form with linear function

– nonconvex cells even more challenging…
– leads to generalized barycentric coordinates (no free lunch)

– k-cells may not sit in a k-dimensional linear subspace
– e.g., 2-cells in 3D can be non-planar

•Nonetheless, still easy to work with dual forms
– e.g., discrete d still gives exact result, via Stokes’ theorem

Dual Forms: Interpolation & Discretization
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Discrete Hodge Star



Reminder: Hodge Star

Analogy: orthogonal complement

w

u

v u ^ v

k 7! (n � k)

(?)



Geometry of Dual Complex
•For exterior derivative, needed only connectivity of the mesh

•For Hodge star, will also need a specific geometry

•Many possibilities, but typically use circumcentric dual

•circumcenter — center of smallest sphere through all vertices

•2-simplex: triangle circumcenter

•1-simplex: edge midpoint

•0-simplex: vertex itself

•Fact: primal & dual cells meet orthogonally

•Can yield negative signed lengths/areas/volumes
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Discrete Hodge Star—Basic Idea
•Consider a k-simplex  and dual (n-k)-cell 

•Integrating a k-form  over  yields a value 

•Integrating  over  yields a value 

•Q: What, if anything is the relationship 
between these two values?

•A: Well, if  is constant, then they are the 
same up to a volume ratio

•If  is very smooth (or mesh elements small), 
this approximation will be reasonably good

•Hence, if we know integrals of , we can get a 
good approximation of integrals of 

circulation along flux through 

If  is constant:



Discrete Hodge Star—1-forms in 2D

primal 1-form
(circulation)

dual 1-form
(flux)

`
`?



Discrete Hodge Star—2-forms in 3D
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Diagonal Hodge Star

Key idea: divide by primal area, 
multiply by dual area.  (Why?)



Matrix Representation of Diagonal Hodge Star
Since the diagonal Hodge star on k-forms just multiplies each discrete k-form value 
by a constant (the volume ratio), it can be encoded via a diagonal matrix



Computing Volumes
•Building Hodge star boils down to computing dual/primal volume ratios

•Often have simple expressions in terms of lengths & angles (don’t compute circumcenters!)

Example: 2D circumcentric dual



Possible Choices for Discrete Hodge Star
•Many choices—none give exact results!
•Volume ratio

•diagonal matrix; most typical choice in DEC (Hirani, Desbrun et al)
– typical choice: circumcentric dual (Delaunay/Voronoi)
– more general orthogonal dual (weighted triangulation/power diagram)
– can also use barycentric dual (e.g., Auchmann & Kurz, Alexa & Wardetzky)

– easy, dual volumes are always positive, but no orthogonality (less accurate)
•Galerkin Hodge star

•L2 norm on Whitney forms
•non-diagonal, but still sparse; standard in, e.g., FEEC (Arnold et al).
•appropriate “mass lumping” again yields circumcentric Hodge star

(Thanks: Fernando de Goes)



Summary



Discrete Exterior Calculus—Basic Operators
Basic operators can be summarized in a very useful diagram (here in 2D):



Composition of Operators
By composing matrices, we can easily solve equations involving operators like those 
from vector calculus (grad, curl, div, Laplacian…) but in much greater generality 
(e.g., curved surfaces, k-forms…) and on complicated domains (meshes)

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.
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Applications
•Lots! (And growing.) We’ll see many as we continue with the course.



Other Discrete Operators
•Many other operators in exterior calculus (wedge, sharp, flat, Lie derivative, …)

•E.g., wedge product on two discrete 1-forms:

(More broadly, many open questions about how to discretize exterior calculus…)



Discrete Exterior Calculus - Summary
•integrate k-form over k-simplices

•result is discrete k-form

•sign changes according to orientation

•can also integrate over dual elements (dual forms)

•Hodge star converts between primal and dual (approximately!)

•multiply by ratio of dual/primal volume

•discrete exterior derivative is just a sum

•gives exact value (via Stokes’ theorem)

•Next up: apply these tools to geometry!

i

j

i

j

s

e1

e2 e3



Thanks!
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