

DISCRETE DIFFERENTIAL GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

LECTURE 9: DISCRETE EXTERIOR CALCULUS

DISCRETE DIFFERENTIAL
GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

Review — Discrete Differential Forms

- A *discrete differential k-form* amounts to a value stored on each oriented *k*-simplex
- **Discretization:** integrate (continuous) differential *k*-form over each oriented *k*-simplex
- **Interpolation:** take linear combinations of *Whitney bases* to get continuous differential *k*-form
- How do we actually "do stuff" with this data?
- This lecture: calculus on discrete differential forms
 - differentiation—discrete exterior derivative
 - -key tool: Stokes' theorem
 - -integration—just take sums!
 - -Hodge star—approximate integral over dual cells

Discrete Exterior Derivative

Reminder: Exterior Derivative

- Recall that in the smooth setting, the exterior derivative:
 - -maps differential k-forms to differential (k+1)-forms
 - -satisfies a product rule: $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$
 - yields zero when you apply it twice: $d \circ d = 0$
 - -is similar to the *gradient* when applied to a 0-form
 - -is similar to *curl* when applied to a 1-form
 - -is similar to *divergence* when composed w/ Hodge star
- To get **discrete** exterior derivative, we will imagine that we apply the exterior derivative to a continuous *k*-form and integrate the result over (oriented) simplices

 $d\alpha$

Discrete Exterior Derivative (0-Forms)

 $\hat{\phi}$ — discrete 0-form (values of $\hat{\phi}$ at vertices)

 $\widehat{d\phi}$ — discrete 1-form (integrals of $d\phi$ along edges)

$$(\widehat{d\phi})_e = \int_e d\phi = \int_{\partial e} \phi = \widehat{\phi}_2 - \widehat{\phi}_1$$

Key idea: even if we only know ϕ at endpoints, can <u>exactly</u> integrate derivative along whole edge

Discrete Exterior Derivative (1-Forms)

 $\hat{\alpha}$ — primal 1-form (integrals of α along edges)

 $\widehat{d\alpha}$ — primal 2-form (integrals of d α over triangles)

$$(\widehat{d\alpha})_{\sigma} = \int_{\sigma} d\alpha = \int_{\partial\sigma} \alpha = \sum_{i=1}^{3} \int_{e_i} \alpha = \sum_{i=1}^{3} \widehat{\alpha}_i$$

In general: discrete exterior derivative is coboundary operator for cochains.

Discrete Exterior Derivative—Examples

When applying discrete exterior derivative, must carefully consider orientation

Example (0-form)

Note: exterior derivative has *nothing* to do with geometry!

Example (1-form)

$$3-9-7=-13$$

$$9+2+(-5)=6$$

Discrete Exterior Derivative—Matrix Representation

- The discrete exterior derivative on discrete k-forms, denoted by d_k , is a linear map from values on k-simplices to values on (k+1)-simplices:
 - $-d_0$ maps values on vertices to values on edges
 - $-d_1$ maps values on edges to values on triangles
 - $-d_2$ maps values on triangles to values on tetrahedra
 - **—** . . .
 - -stops at k = n-1 (where n is dimension)
- Can encode each operator as a matrix, by assigning indices to mesh elements
- Matrix representations of exterior derivatives are then just the *signed incidence matrices*

$$E^{0} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 3 & 0 & 1 & 0 & -1 \\ 4 & 0 & -1 & 1 & 0 \end{bmatrix}$$

$$E^{1} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & \begin{bmatrix} 1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Discrete Exterior Derivative d₀—Example

- To build the exterior derivative on 0-forms, we first need to assign an index to each *vertex* and each *edge*
 - -A discrete 0-form is a vector of |V| values (one per vertex)
 - A discrete 1-form is a vector of |E| values (one per edge)
- The discrete exterior derivative d_0 is therefore a $|E| \times |V|$ matrix, taking values at vertices to values at edges

$$\begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ e_5 & 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{bmatrix}$$

$$d_0 \qquad \phi \qquad \alpha$$

Discrete Exterior Derivative d₁—Example

- To build the exterior derivative on 1forms, we first need to assign an index to each *edge* and each *face*
 - A discrete 1-form is a list of |E| values (one per edge)
 - A discrete 2-form is a list of |F| values (one per face)
- The discrete exterior derivative d_1 is therefore a $|F| \times |E|$ matrix, taking values at edges to values at faces

$$f_1 = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 \ 0 & 0 & -1 & -1 & -1 \ 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} lpha_1 \ lpha_2 \ lpha_3 \ lpha_4 \ lpha_5 \end{bmatrix} = \begin{bmatrix} \omega_1 \ \omega_2 \ lpha_2 \end{bmatrix}$$

Exterior Derivative Commutes w/ Discretization

By construction, discrete exterior derivative satisfies an important property:

Taking the **smooth** exterior derivative and then discretizing yields the same result as *discretizing* and then applying the **discrete** exterior derivative.

Corollary: applying discrete *d* twice yields zero (why?)

Exactness of Discrete Exterior Derivative—Example

To verify that applying discrete exterior derivative twice yields zero, could also just multiply exterior derivative matrices for 0- and 1-forms:

$$d_1d_0 = \left[\begin{array}{ccccc} 0 & 0 & -1 & -1 & -1 \\ 1 & 1 & 1 & 0 & 0 \end{array}\right] \left[\begin{array}{cccccc} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right] = \left[\begin{array}{ccccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Another interpretation: coboundary of coboundary is always zero!

Reminder: Poincaré Duality

Dual Discrete Differential k-Form

Just as a discrete differential *k*-form was a value per *k*-simplex, a *dual discrete differential k-form* is a value per **dual** *k*-cell:

- a dual 0-form is a value per dual vertex
- a dual 1-form is a value per dual edge
- a dual 2-form is a value per dual cell

dual 2-form

(Can also formalize via dual chains, dual cochains...)

Primal vs. Dual Discrete Differential k-Forms

Let's compare primal and dual discrete k-forms on a triangle mesh (n=2):

	primal	dual
0-forms	vertices	dual vertices (triangles)
1-forms	edges	dual edges (edges)
2-forms	triangle	dual cells (vertices)

Note: no such thing as "primal" and "dual" forms in smooth setting!

Q: Is the number of values stored for a primal and dual *k*-form always the same?

A: No! In practice, store dual values on primal mesh (e.g., dual 0-forms on triangles)

Dual Exterior Derivative

- Discrete exterior derivative on *dual* k-forms works in essentially the same way as for primal forms:
 - To get the derivative on a (k+1)-cell, sum up values on each k-cell along its boundary
 - Sign of each term in the sum is determined by relative orientation of (k+1)-cell and k-cell

Example.

Let α be a dual discrete 1-form (one value per dual edge)

Then $d\alpha$ is a value per 2-cell, obtained by summing over dual edges

(As usual, relative orientation matters!)

$$-7 + 7 - 2 + (-3) + 5 - 5 + 3 = -2$$

Notice: as with primal d, we don't need lengths, areas, ...

Dual Forms: Interpolation & Discretization

- Easy to interpolate primal *k*-forms:
 - -k-simplices have clear geometry: convex hull of vertices
 - -k-forms have straightforward basis: Whitney forms
- Not so clear cut for dual forms!
 - -e.g., can't interpolate dual 0-form with linear function
 - -nonconvex cells even more challenging...
 - -leads to generalized barycentric coordinates (no free lunch)
 - -k-cells may not sit in a k-dimensional linear subspace
 - -e.g., 2-cells in 3D can be non-planar
- Nonetheless, still easy to work with dual forms
 - –e.g., discrete *d* still gives exact result, via Stokes' theorem

Discrete Hodge Star

Reminder: Hodge Star (*)

Analogy: orthogonal complement

 $k \mapsto (n - k)$

Geometry of Dual Complex

- For exterior derivative, needed only connectivity of the mesh
- For Hodge star, will also need a specific geometry
- Many possibilities, but typically use circumcentric dual
- circumcenter center of smallest sphere through all vertices
 - 2-simplex: triangle circumcenter
 - 1-simplex: edge midpoint
 - 0-simplex: vertex itself
- Fact: primal & dual cells meet orthogonally
- Can yield negative signed lengths/areas/volumes

Discrete Hodge Star—Basic Idea

- Consider a k-simplex σ and dual (n-k)-cell σ^*
- Integrating a k-form α over σ yields a value $\hat{\alpha}$
- Integrating $\star \alpha$ over σ^{\star} yields a value $\widehat{\star \alpha}$
- Q: What, if anything is the relationship between these two values?
- **A**: Well, if α is constant, then they are the same up to a volume ratio
- If α is very smooth (or mesh elements small), this approximation will be reasonably good
- Hence, if we know integrals of α , we can get a good approximation of integrals of α^*

flux through σ^*

$$\hat{\alpha} = \int_{\sigma} \alpha \qquad \widehat{\star \alpha} = \int_{\sigma} \alpha$$

If α is constant:

$$\frac{\widehat{\star}\widehat{\alpha}}{\widehat{\alpha}} = \frac{|\sigma^{\star}|}{|\sigma|}$$

Discrete Hodge Star—1-forms in 2D

dual 1-form (flux)

Discrete Hodge Star—2-forms in 3D

 A_{ijk} — area of triangle ijk ℓ_{ab} — length of dual edge ab

dual 1-form

primal 2-form

Diagonal Hodge Star

Definition. Let Ω_k and Ω_{n-k}^* denote the primal k-forms and dual (n-k) forms (respectively on an n-dimensional simplicial manifold M. The *diagonal Hodge star* is a map $\star: \Omega_k \to \Omega_{n-k}^*$ determined by

$$\widehat{\star}\widehat{\alpha}(\sigma^{\star}) = \frac{|\sigma^{\star}|}{|\sigma|}\widehat{\alpha}(\sigma)$$

for each k-simplex σ in M, where σ^* is the corresponding dual cell, and $|\cdot|$ denotes the volume of a simplex or cell.

 σ —triangle

 σ^{\star} —dual edge

Key idea: divide by primal area, multiply by dual area. (Why?)

Matrix Representation of Diagonal Hodge Star

Since the diagonal Hodge star on *k*-forms just multiplies each discrete *k*-form value by a constant (the volume ratio), it can be encoded via a *diagonal* matrix

$$\star_k := \left[egin{array}{ccc} rac{|\sigma_1^\star|}{|\sigma_1|} & 0 \ 0 & rac{|\sigma_N^\star|}{|\sigma_N|} \end{array}
ight] \in \mathbb{R}^{N imes N}$$

 $\sigma_1, \ldots, \sigma_N - k$ -simplices in the primal mesh $\sigma_1^{\star}, \ldots, \sigma_N^{\star} - (n-k)$ -cells in the dual mesh $|\cdot|$ — volume of a simplex or cell $\star_k \in \mathbb{R}^{N \times N}$ — matrix for Hodge star on primal k-forms

Computing Volumes

- Building Hodge star boils down to computing dual/primal volume ratios
- Often have simple expressions in terms of lengths & angles (<u>don't</u> compute circumcenters!)

Example: 2D circumcentric dual

$$\frac{\ell_{\text{dual}}}{\ell_{\text{primal}}} = \frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij})$$

$$\frac{A_{\text{dual}}}{1} = \frac{1}{8} \sum_{ijk \in F} (\ell_{ij}^2 \cot \alpha_k^{jk} + \ell_{ik}^2 \cot \alpha_j^{ki})$$

$$\frac{1}{A_{ijk}} = \frac{1}{\sqrt{s(s-\ell_{ij})(s-\ell_{jk})(s-\ell_{ki})}}$$

$$s = \frac{1}{2}(\ell_{ij} + \ell_{jk} + \ell_{ki})$$

Possible Choices for Discrete Hodge Star

• Many choices—none give exact results!

• Volume ratio

- diagonal matrix; most typical choice in DEC (Hirani, Desbrun et al)
 - -typical choice: circumcentric dual (Delaunay / Voronoi)
 - -more general orthogonal dual (weighted triangulation/power diagram)
 - can also use barycentric dual (e.g., Auchmann & Kurz, Alexa & Wardetzky)
 - -easy, dual volumes are always positive, but no orthogonality (less accurate)

• Galerkin Hodge star

- *L*₂ norm on Whitney forms
 - non-diagonal, but still sparse; standard in, e.g., FEEC (Arnold et al).
 - appropriate "mass lumping" again yields circumcentric Hodge star

(Thanks: Fernando de Goes)

Discrete Exterior Calculus—Basic Operators

Basic operators can be summarized in a very useful diagram (here in 2D):

 Ω_k — primal k-forms

 Ω_k^{\star} — dual k-forms

Composition of Operators

By composing matrices, we can easily solve equations involving operators like those from vector calculus (grad, curl, div, Laplacian...) but in much greater generality (e.g., curved surfaces, k-forms...) and on complicated domains (meshes)

grad
$$\longrightarrow d_0$$

$$\operatorname{curl} \longrightarrow \star_2 d_1$$

$$\operatorname{div} \longrightarrow \star_0^{-1} d_0^T \star_1$$

$$\Delta \longrightarrow \star_0^{-1} d_0^T \star_1 d_0$$

$$\Delta_k \longrightarrow d_{k-1} \star_{k-1}^{-1} d_{k-1}^T \star_k + \star_k^{-1} d_k^T \star_{k+1} d_k$$

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.

Applications

• Lots! (And growing.) We'll see many as we continue with the course.

Other Discrete Operators

- Many other operators in exterior calculus (wedge, sharp, flat, Lie derivative, ...)
- E.g., wedge product on two discrete 1-forms:

(More broadly, many open questions about how to discretize exterior calculus...)

Discrete Exterior Calculus - Summary

- integrate *k*-form over *k*-simplices
 - result is *discrete k*-form
 - sign changes according to orientation
- can also integrate over dual elements (dual forms)
- Hodge star converts between primal and dual (approximately!)
 - multiply by ratio of dual/primal volume
- discrete exterior derivative is just a sum
 - gives exact value (via Stokes' theorem)
- Next up: apply these tools to geometry!

DISCRETE DIFFERENTIAL GEOMETRY AN APPLIED INTRODUCTION