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Curves, Surfaces, and Volumes

* In general, ditferential geometry studies n-dimensional manifolds; we’ll focus
mostly on low dimensions: curves (n=1), surfaces (n=2), and volumes (n=3)

e Why? Geometry we encounter in “every day life” (Common in applications!)
e Low-dimensional manifolds are not baby stuff! :-)
e n=1: unknot recognition (open as of July 2017)

e n=2: Willmore conjecture (2012 for genus 1) -
e n=3: Geometrization conjecture (2003, $1 million)
* Serious intuition gained by studying low-dimensional manifolds

* Conversely, problems involving very high-dimensional manifolds (e.g., statistics/
machine learning) involve less "deep" geometry than you might imagine!

® fiber bundles, Lie groups, curvature flows, spinors, symplectic structure, ...

* Moreover... curves and surfaces are beautiful! (And sometimes boring for large n...)



Curves & Surfaces

e Much of the geometry we encounter in life well-described by curves and surfaces*

(Curves) & = R

*Or solids... but the boundary of a solid is a surface! (Surfaces)



Smooth Descriptions of Curves & Surfaces

 height function over tangent plane vt

* Jocal parameterization

e Christoffel symbols — coordinates/indices

—
e differential forms — “coordinate free” 3

e moving frames — change in adapted frame d dw

e Riemann surfaces (local); Quaternionic functions (global)
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e People can get very religious about these different “dialects”... best to be multilingual!

e We'll dive deep into one description (differential forms) and touch on others



Discrete Descriptions of Curves & Surfaces

* Also many ways to discretize a surface
* For instance:
e implicit —e.g., zero set of scalar function on a grid
e cood for changing topology, high accuracy
e expensive to store/adaptivity is harder

e hard to solve sophisticated equations on surface

>0
* explicit — e.g., polygonal surface mesh 4
* changing topology, high-order continuity is harder 70
* cheaper to store / adaptivity is much easier —
* more mature tools for equations on surfaces explicit implicit

* Don’t be “religious”; use the right tool for the job!



Curves & Surfaces — Quverview

e Goal: understand curves & surfaces from complementary smooth and discrete points
of view.

* Smooth setting:
* express geometry via differential forms
e will first need to think about vector-valued forms

* Discrete setting:

e use explicit mesh as domain
* express geometry via discrete differential forms

e Payoff: will become very easy to switch back & forth between smooth setting
(scribbling in a notebook) and discrete setting (running algorithms on real data!)



Vector Valued Differential Forms



Vector Valued k-Forms

* 5o far, we've defined a k-form as a linear map from k vectors to a real number

e For working with curves and surfaces in R, it will be essential to generalize this
definition to vector-valued k-forms.

* In particular, a vector-valued k-form is a multi-linear map from k vectors in a vector
space V to some other vector space U (not necessarily U=V)

e So far, for instance, all of our forms have been R-valued k-forms on R? (V=R",U=R)

* A R3-valued 2-form on R2 would instead be a multilinear, fully-antisymmetric map
from a pair of vectors u,v in R? to a single vector in R3:

x: R* x R? —» R’ a(u,v) = —u(v,u)
o (au + wa) = ax(u,w) + ba(v,w), Vu,v,w & ]R‘?‘a,b c R

Q: What kind of object is a R?-valued 0-form on R??



Vector-Valued k-forms—Example

Consider for instance the following R3-valued 1-form on R2:

1 4
ni= | 2 el+ 5 | ¢
- 3 i - 6 —

Q: What do we get if we evaluate this 1-form on the vector

U.—=e1 —e

A: Evaluation is not much different from real-valued forms:

1 1_4_ 1 1
a(u) = 2 | el =6>)+ | D o> =65 = | 2
3 6 3

Key idea: coefficients just have a different type

N U1 =~




Wedge Product of Vector-Valued k-Forms

e Most important change is how we evaluate wedge product for vector-valued forms.

* Consider for instance a pair of R3-valued 1-forms:
x,B:V — R
e To evaluate their wedge product on a pair of vectors u,v we would normally write:
(@A B)(u,v) = a(u)p(v) — a(v)p(u)

o If a and 3 were real-valued, then a(u), B(v), a(v), (1), would just be real numbers, so
we could just multiply the two pairs and take their difference.

e But what does it mean to take the “product” of two vectors from R3?

e Many possibilities (e.g., dot product), but if we want result to be an R3-valued 2-form,
the product we choose must produce another 3-vector!



Wedge Product of R3-Valued k-Forms

* Most common case for our study of surtaces: Y
* k-forms are R3-valued Lru

* use cross product to multiply 3-vectors

x,B:V = R

xANB:VxV =R

(@A B)(u,v) := a(u) x B(v) —a(v) X B(u)




R3-valued 1-forms: Antisymmetry & Symmetry

With real-valued forms, we observed antisymmetry in both the wedge product of 1-
forms as well as the application of the 2-form to a pair of vectors, i.e.,

(@A B)(u,v) = —(aAB)(v,u)
(BAa)(u,v) = —(aAB)(u,0)

What happens w/ R3-valued 1-forms? Since cross product is antisymmetric, we get

B(u) x a(v) — B(v) x a(u)
a(u) x p(v) —a(v) x p(u)
(@A B)(u,)

= |a\NBp=P N«

a(v) x B(u) —a(u) x B(v) (BAa)(u,v)
—(a(u) x B(v) —a(v) x B(u))
= | (@A B)(u,v) = —(a A B)(0v, u)

(no change)

(@A B) (v, u)

(big change!)



R3-valued 1-forms: Self-Wedge

Likewise, we saw that wedging a real-valued 1-form with itself yields zero:

x A\ =0

Q: What was the geometric interpretation?

A: Parallelogram spanned by two copies of the same vector has zero area!

/ X
...But, no longer true with (R3, x)-valued 1-forms:

(@ ANa)(u,v) =a(u) Xa(v) —a(v) X a(u) =2ua(u) x a(v) #0

Geometric meaning will become clearer as we work with surfaces.



Vector-Valued Differential k-Forms

e Just as we distinguished between a k-form (value at a single point) and a differential k-
form (value at ever point in space), we will also say that a vector-valued differential k-
form is a vector-valued k-form at each point of space.

e Just like any differential form, a vector-valued ditferential k-form gets evaluated on k
vector fields X, ..., Xk

e Example: an R3-valued differential 1-form on R2 (with coordinates u,v):

0 0
x:= 1| 1 |du+1| 0 | dov
- O i - 1 —

Q: What does this 1-form do to any given vector field X on the plane?
A: It simply “copies” it to the yz-plane in 3D.



Exterior Derivative on Vector-Valued Forms

Unlike the wedge product, not much changes with the exterior derivative.
For instance, if we have an R"-valued k-form we can simply imagine we have
n real-valued k-forms and ditferentiate as usual.

Example.

Consider an R*-valued differential O-form P(xy)

Then d¢ = g—idx | gqybdy: Zyx dx + 2 dy

Example.

Consider an R?-valued differential 1-form o

X,Y)

Thend(x:< 2 dx + V dy)/\dx+< g

dx +

B

Y

dx N\ dy
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Parameterized Plane Curve

e A parameterized plane curve is a map* taking each point in an interval
[0,L] of the real line to some point in the plane R?:

v:]0,L] = R?

*Continuous, differentiable, smooth...



Curves in the Plane — Example

* As an example, we can express a circle as a parameterized curve V:
A

v :10,271) — R?%; s +— (cos(s),sin(s)) 1

0 27T

The circle is an example of a closed curve, meaning that endpoints meet.



Differential of a Curve

[f we think of a parameterized curve as an R2-valued 0-form on an
interval of the real line, then the differential (or exterior derivative)
says how vectors on the domain get mapped into the plane:




Iangent of a Curve

e Informally, a vector is tangent to a curve if it
“just barely grazes” the curve. v(s)

e More formally, the unit tangent (or just \T( )
tangent) of a regular curve is the map

obtained by normalizing its first derivative:

T(s) = £7(s) /| 7()| = dv(£) [ |dr(4)

e If the derivative already has unit length, then we say the curve is arc-

length parameterized and can write the tangent as just

T(s):= gv(s) =dy(g)



Tangent of a Curve—Example
e Let's compute the unit tangent of a circle:
v :]0,271) = R?; s — (cos(s), sin(s) 1 \

= (—sin(s), cos(s))ds /
dy(§) = (=sin(s),cos(s)) Ll fn ____________________



Reparameterization of a Curve

e We can reparameterize a curve y : R O I — IR by composing it with

a bijection 7 : I — I to obtain a new parameterized curve

S

v(s) :=7(1(s))
e The image of the new curve is the same, even
though the map itself changes. For example:

v(s) := (1 +s)(cos(7s),sin(7Ts))




Reqular Curve | Immersion

* A parameterized curve is reqular (or immersed) if the differential is
nonzero everywhere, i.e., if the curve “never slows to zero”

e Without this condition, a parameterized curve may look non-smooth
but actually be differentiable everywhere, or look smooth but fail to
have well-defined tangents.



Irreqular Curve — Example

e Consider the reparameterization of a piecewise linear curve:

S,S S < - 53,83 S > U,
n(s):=s>  (s) = {Es,)s) ] i 8 v(s) = {253,23) S i 8

eEven though the reparameterized curve has a continuous first
derivative, this derivative goes to zero at s = 0:

Cou 07
0S 0S

e Hence, (still) can’t define tangent at zero.



Embedded Curve

e Roughly speaking, an embedded curve
does not cross itself

* More precisely, a curve is embedded
if it is a continuous and bijective map
from its domain to its image, and the
inverse map is also continuous

e Q: What’'s an example of a continuous
injective curve that is not embedded?

 A: A half-open interval mapped to a
circle (inverse is not continuous)

embedded

/.

27T

not embedded



Normal of a Curve

e Informally, a vector is normal to a curve if it N(s)
“sticks straight out” of the curve.

e More formally, the unit normal (or just normal) T(s)
can be expressed as a quarter-rotation 7 of the
unit tangent in the counter-clockwise direction:

N(s) := JT(s)

e In coordinates (x,y), a quarter-turn can be achieved by*
simply exchanging x and y, and then negating v:
J,
(6 y) = (=Y, x)

*Why does this work?



Normal of a Curve —Example

¢ Let’'s compute the unit normal of a circle: \
v :10,271) = R?; s — (cos(s),sin(s))

T(s) = (—sin(s),cos(s))
N(s) =JT(s) = (—cos(s), —sin(s)) ------

Note: could also adopt the ™\ | /
convention N = —JT. —

(Just remain consistent!) ./ l .




Curvature of a Plane Curove

e Informally, curvature describes “how much a curve bends”

e More formally, the curvature of an arc-length parameterized plane
curve can be expressed as the rate of change in the tangent

k(s) == (N(s), £ T(s))

= (N(s), L9(s))
d N6

Equivalently: ;
K(s) = %9(5)

Here the angle brackets denote the usual dot product, i.e., ((a,b), (x,v)) := ax + by.



Fundamental Theorem of Plane Curves

Fact. Up to rigid motions, an arc-length parameterized plane curve is
uniquely determined by its curvature.

Q: Given only the curvature function, how can we recover the curve?

A: Just “invert” the two relationships %9 = K, %7 =T
S
First integrate curvature to get angle: 0(s) := /() x(t) dt

Then evaluate unit tangents: T(s) := (cos(6),sin(6))
S
Finally, integrate tangents to get curve: Y(8) := /o I'(t) dt

Q: What about the rigid motion? Will this work for closed curves?



Turning and Winding Numbers

e For a closed regular curve in the plane...

¢ The turning number k is the number of counter-
clockwise turns made by the tangent

e The winding number 7 is the number of times
the curve goes around a particular point p k=19

e can also be viewed as the total signed length of
the projection of the curve onto a unit-length
circle around p

|
-
I|
I|
I|

n
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Whitney-Graustein Theorem

e (Whitney-Graustein) Two curves have the same turning number k if and only if
they are related by reqular homotopy, i.e., if one can continuously “deform” into
the other while remaining regular (immersed).

“Regular Homotopies in the Plane” — https://youtu.be/fKFH3c7b57s



https://youtu.be/fKFH3c7b57s

Application: Generalized Winding Numbers

e For messy, “real world” data (instead of
perfect closed curves) can still measure
notion of how much a curve, surface, etc.,
“wraps around” a point

e Just sum up signed projected lengths (or
areas)

* Fractional winding number gives good
indication of which points are inside/
outside

e Useful for a wide variety of practical tasks:
extracting “watertight” mesh, tetrahedral
meshing, constructive solid geometry
(booleans), ...

Jacobson et al, “Robust Inside-Outside Segmentation using Generalized Winding Numbers” (2013)






Parameterized Space Curve

e A parameterized space curve is a map™ taking each point in an interval
[0,L] of the real line to some point in R>

v:[0,L] = R’

*Continuous, differentiable, smooth...



Pushforward of Vectors on a Space Curve

Suppose we apply the differential of a parameterized space curve to
a vector field X on its domain:

v:=(x,y,2z), x,y,z:[0,L] = R
X::aa% a:|0,L] - R

d
dy = (gjscf az az)ds

ox 9Y 0
dy(X) = a(55, 357 55 ) J
Q: What's the geometric meaning?
51_ 52
=y

0  X(s1) X(s2)L



Parameterized Space Curve

e A parameterized space curve is a map™ taking each point in an interval
[0,L] of the real line to some point in R>

o Its differential takes vectors on R to vectors in R

v
——————————————— |—0_X()SZ}IR
0 ° L

v:[0,L] = R’

*Continuous, differentiable, smooth...



Curvature and Torsion of a Space Curve

eFor a plane curve, curvature captured the notion of “bending”

eFor a space curve we also have torsion, which captures “twisting”

Intuition: torsion 1s
“out of plane bending” ————————————— [1C1eASING 075101 =}



Frenet Frame

e Each point of a space curve has a I(s) :
natural coordinate frame called the N(s) :
Frenet frame, which depends only on
the local geometry

e Asin the plane, the tangent T is found
by differentiating the curve, and
differentiating the tangent yields the
curvature times the normal N

e The binormal B then completes an

orthonormal basiswith Tand N |



Frenet-Serret Equation

e Curvature k and torsion 7 can be defined in terms of the change

in the Frenet frame as we move along the curve:

T 0 —x 0 T
4/ N|=|x 0 -t ||N
B 0 T 0 B

e Most importantly, change in the tangent describes bending
(curvature); change in binormal describes twisting (torsion)

k=—(N, LT)
t= (N, 4B)




Example — Helix

e[et's compute the Frenet frame, curvature, and torsion for a helix*

v(s) := (acos(s),asin(s), bs) B(s) = T(s) x N(s) =
4~ (s) = (—asin(s),acos(s),b) (—bsin(s),bcos(s), —a)
‘%,ﬂ __ \/LZZ L2 =1 %B(S) — —b(cos(s),sin(s),O)

= T(s) = §7(5) T =

4T (s) = —a(cos(s),sin(s), 0) @‘M
ds
”r(t)k> B

= k(s) = —a, N(s) = (cos(s),sin(s),0)

*For simplicity, let’s pick a,b such that a2+ b2=1. (



Fundamental Theorem of Space Curuves

e The fundamental theorem of space curves tells us we can also go the
other way: given the curvature and torsion of an arc-length
parameterized space curve, we can recover the curve itself

*In 2D we just had to integrate a single ODE; here we integrate a
system of three ODEs—namely, Frenet-Serret!

K

Nl >

I 0 —x 0 I T
4/ N|=|x 0 -t ||N
B 0 T 0 B

B /T



Adapted Frames on Curves

e Q: If our curve has a straight piece, is the Frenet frame well-defined?
e A: No, we don’t have a clear normal /binormal (since, e.g., dT /ds = 0)
e However, there are many ways to choose an adapted frame
e Any orthonormal frame including T AKX Pt
e E.q., least-twisting frame (Bishop)

e Unlike Frenet, ¢global rather than local
o First example of moving frames 3

° ' | '
e (Will see more later for surfaces...) o ol



Thanks!

AN
\'0

DISCRETE DIFFERENTIAL

(GEOMETRY:
AN APPLIED INTRODUCTION

Keenan Crane * CMU 15-458/858




