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Discrete Models of Surfaces

e Two primary models of surfaces in discrete differential geometry:
* Simplicial
— surfaces are simplicial 2-manifolds

— natural fit with discrete exterior calculus

* Nets

— surfaces are piecewise integer lattices

— natural fit with discrete integrable systems

e Simplicial surfaces more common in applications; focus of our course



Simplicial Surface— Short Story

* [oosely speaking, a simplicial surface is

“1ust a triangle mesh” ~
e N\

. Bqt, being more caretful abqut definitions \\\\ %%QJQ //‘
will allow us to connect “triangle meshes” ‘Wgégi
to concepts from differential geometry (‘v&ﬁj%}%x%\v

e As with smooth surfaces, will also add ‘N:v \/ \‘

some conditions that make life easier. E.g.,

e mesh connectivity is manifold
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e vertex coordinates describe a simplicial
1mmersion
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Abstract Simplicial Surface

* An (abstract) simplicial surface is a
manifold simplicial 2-complex

e highest-degree simplices are triangles

* every edge contained in two triangles
(or one, along boundary)

* every vertex contained in a single edge- <
connected cycle of triangles \
(or path, along boundary)

e Will typically denote by K=(V,E,F)

* No “shape” —just connectivity



Stmplicial Map

e How do we give a “shape” to an
abstract simplicial surface?

e Assign coordinates f; to each vertex
(discrete R"-valued 0-form)

e Linearly interpolate over each triangle
via barycentric coordinates

e Image of each simplex in our abstract
surface is now a simplex in R”

 Any map from simplices to simplices
is called a simplicial map

p1=(0,1,0)

po = (1,0,0)



Simplicial Map, continued

e What's really going on here? E.g., K= (4L D G G il )
what’s the domain of our map f? bR Lis ] l

* Abstract simplicial complex is just a
set of subsets... How do we talk
about points “inside” a simplex?

* Barycentric coordinates etfectively
associate each abstract simplex with
a a copy of the standard simplex

e Domain of fis then the (disjoint)
union of all these simplices, “glued”
together along shared edges™

“Formally: quotient space w.r.t. equivalence on barycentric coordinates



Discrete Differential

e Map fis given by a discrete, R"-valued 0-form ]

* Discrete differential df is just discrete exterior
derivative

* What does it mean, geometrically? \f
1

* Recall that a discrete 1-form represents the
integral of a smooth 1-form over a 1-simplex™:

(df)ij:/df(fs)dSZ/dfz f=fi—f

0;q 0;q an]'

 In other words, discrete differential is nothing more than the edge vectors!

e Like any other 1-form, antisymmetric w.r.t. orientation: df;; = —df;

*Here we can imagine o is the standard 1-simplex



Discrete Immersion

e In smooth setting, a map fis an
immersion if differential is
nondegenerate, i.e., if it maps
nonzero vectors to nonzero vectors

* In discrete setting, a nondegenerate
(discrete) differential just means no
zero edge lengths

e Doesn't faithfully capture
important features of smooth
immersions! E.g., no branch points




Stmplicial Immersion

e In smooth setting, a map fis an
. C e . : . YES
immersion if its differential df is S
injective % 1%'

e In the discrete setting, a simplicial 335{\
map f is a discrete immersion if %
the map itself is locally injective NO
o s NO
* Fact. A simplicial map is locally fo AN
injective if and only if every e b
vertex star is embedded 4
fs f2
</

Note: “no degenerate elements/angles” is necessary but NOT sufficient! /1 %



ete Gauss Mayp

£ AWt st aNt gwt gt et gt




Discrete Gauss Map

e For a discrete immersion, the Gauss
map is simply the triangle normals

* Most naturally viewed as a dual
discrete R3-valued O-form (vector per
triangle)

e Visualize as points on the unit sphere

* Connecting adjacent normals by arcs
corresponds to family of normals
orthogonal to edge




Discrete Vertex Normal?

* Discrete Gauss map still doesn’t detine
normals at vertices (or edges)

e Can take ad-hoc approach, but may
behave poorly

e E.¢g., uniformly averaging face normals

yields results that depend on
tessellation rather than geometry

e Better approach: start in the smooth

setting & apply principled discretization




Discrete Vector Area

* Recall smooth vector area: / NdA = ; / df Ndf =5 | f xdf
() () 0()

* Idea: Integrate NdA over dual cell to get normal at vertex p

20 d() %2
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%Z > X (fij— fi) = %Zflel
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Q: What kind of quantity is the final expression? Does that matter? 0()




Other Natural Definitions

* area-weighted vertex normal

e sum of triangle normals times triangle areas

e smooth setting: volume variation gives N dA

e angle weighted vertex normal

e sum of triangle normals times interior angles X
) 0; Nijx
e oives same result, independent of triangulation | /¥ \jansle

e ...Please, just anything but uniformly weighted!




Discrete Exterior Calculus on Curved Surfaces



Discrete Exterior Calculus on Curved Surfaces

¢ In the smooth setting, we first defined % N @ e
exterior calculus in R, then saw how to ‘& !’ | 5; -

11
1=10 0

augment it to work on curved surtfaces

e Key observation: only need to change the
Hodge star, which encodes all the metric
information (length, angle, area, ...)

e For simplicial surfaces in R3, life is in a sense
even easier since each simplex is already flat!

e Still need to think just a little about how to
define the discrete Hodge star...




Diagonal Hodge Star on a Surface

e Recall that on a simplicial surface, we can discretize the Hodge star via

diagonal matrices storing volume ratios (given by formulas below)

e Q: What happens if our mesh is no longer flat?
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Diagonal Hodge Star on a Curved Surface

e A: Nothing changes! As long we have a
discrete immersion, we can still apply the
same formulas—which depend only on
primal lengths and interior angles

e In the case of the 1-form Hodge star, we
are effectively taking a length ratio
involving the dual distance “along” the
surface

e Importantly, this means that our DEC

operators are purely intrinsic: depends
only on data that can be measured by an
observer “crawling along the surface”




Discrete Laplace-Beltrami Operator

* As aresult, we can immediately build discrete ditferential operators for
curved surfaces by just composing our existing discrete exterior
derivative and discrete Hodge star operators

e For instance, the Laplacian on 0-forms now becomes something known
as the Laplace-Beltrami operator (which we’ll talk much more about later!)

e Using our expressions for the discrete Hodge star, can write the discrete
Laplace-Beltrami operator via the famous cotan formula:

(Au); = % .X;E(cot wjj + cot ,Bi]-)(u]- — u;)
ije




Recovery of Discrete Surfaces



Recovery of Discrete Surfaces

e In a variety of situations, we’ve seen that shape can be recovered (up
to rigid motions) via “indirect” measurements (curvatures, etc.)

e Plane curves can be recovered from their curvature (exterior angle)
e Space curves can be recovered from their curvature and torsion
e Smooth surfaces can be recovered from 1st & 2nd fundamental form

e Convex surfaces can be recovered from Riemannian metric...

Q: What data is sufficient to describe a discrete surtace?




Surface Recovery from Discrete Gauss Map

e : Given only discrete Gauss map, can we recover

the immersion? (L.e., given only triangle normals, - e

can we get vertex positions?) N,
* A: Yes! Basic recipe:

* Cross product of normals gives edge directions

* Dot product of edges gives interior angles

* Angles + normals give triangles up to scale;
normals give orientation

e Build triangles one-by-one and “glue” together

e Q: Does this recipe always work?



Shape Recovery from Smooth Gauss Map?

e Q: Is it strange that we can recover a discrete
surface from Gauss map? Can we do something
similar in the smooth setting?

* Consider a simpler case: Gauss map on a curve
e N(s) := (cos(s), sin(s))

* Problem: unless we know curve is arc-length
parameterized, N is the Gauss map of any convex
curve! Need additional data (parameterization)

* Similar story for convex discrete curves, or
convex smooth surfaces

* So why don’t we need additional data for a
discrete surface?



Recovery from Metric

e Theorem. (Cohn-Vossen) Smooth convex surface is uniquely
determined (up to rigid motions) by its Riemannian metric.

e Theorem. (Alexandrov-Connelly) A convex polyhedron is uniquely
determined by its edge lengths.

e Not always true in nonconvex case:




Recovery From Discrete Metric
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Algorithm: Shape from Metric

e Recent algorithm (approximately!) recovers surface from edge lengths
e Chern et al, “Shape from Metric” (2018)

e Nice read if you want to get deeper into discrete surfaces: discrete
immersion, discrete spin structure...

http://page.math.tu-berlin.de/~chern/projects/ShapeFromMetric/


http://page.math.tu-berlin.de/~chern/projects/ShapeFromMetric/

Thanks!
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