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Discrete Surfaces



• Two primary models of surfaces in discrete differential geometry:

• Simplicial

– surfaces are simplicial 2-manifolds

– natural fit with discrete exterior calculus

• Nets

– surfaces are piecewise integer lattices

– natural fit with discrete integrable systems

• Simplicial surfaces more common in applications; focus of our course

Discrete Models of Surfaces



Simplicial Surface—Short Story
• Loosely speaking, a simplicial surface is 

“just a triangle mesh”

• But, being more careful about definitions 
will allow us to connect “triangle meshes” 
to concepts from differential geometry

• As with smooth surfaces, will also add 
some conditions that make life easier.  E.g.,

• mesh connectivity is manifold

• vertex coordinates describe a simplicial 
immersion



Abstract Simplicial Surface
• An (abstract) simplicial surface is a 

manifold simplicial 2-complex

• highest-degree simplices are triangles

• every edge contained in two triangles 
(or one, along boundary)

• every vertex contained in a single edge-
connected cycle of triangles                     
(or path, along boundary)

• Will typically denote by K=(V,E,F)

• No “shape”—just connectivity



Simplicial Map
• How do we give a “shape” to an 

abstract simplicial surface?

• Assign coordinates fi to each vertex 
(discrete Rn-valued 0-form)

• Linearly interpolate over each triangle 
via barycentric coordinates

• Image of each simplex in our abstract 
surface is now a simplex in Rn

• Any map from simplices to simplices 
is called a simplicial map



Simplicial Map, continued
• What’s really going on here?  E.g., 

what’s the domain of our map f ?
• Abstract simplicial complex is just a 

set of subsets…  How do we talk 
about points “inside” a simplex?

• Barycentric coordinates effectively 
associate each abstract simplex with 
a a copy of the standard simplex

• Domain of f is then the (disjoint) 
union of all these simplices, “glued” 
together along shared edges*

K = { {i,j,k}, {j,k,l}, {i,j}, {j,k}, {k,i}, …}
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*Formally: quotient space w.r.t. equivalence on barycentric coordinates



Discrete Differential
• Map f is given by a discrete, Rn-valued 0-form
• Discrete differential df is just discrete exterior 

derivative
• What does it mean, geometrically?

• Recall that a discrete 1-form represents the 
integral of a smooth 1-form over a 1-simplex*:

*Here we can imagine σij is the standard 1-simplex

• In other words, discrete differential is nothing more than the edge vectors!
• Like any other 1-form, antisymmetric w.r.t. orientation:  dfji = –dfij



Discrete Immersion
• In smooth setting, a map f is an 

immersion if differential is 
nondegenerate, i.e., if it maps 
nonzero vectors to nonzero vectors

• In discrete setting, a nondegenerate 
(discrete) differential just means no 
zero edge lengths

• Doesn’t faithfully capture 
important features of smooth 
immersions! E.g., no branch points



Simplicial Immersion
• In smooth setting, a map f is an 

immersion if its differential df is 
injective

• In the discrete setting, a simplicial 
map f is a discrete immersion if 
the map itself is locally injective

• Fact. A simplicial map is locally 
injective if and only if every 
vertex star is embedded

Note: “no degenerate elements/angles” is necessary but NOT sufficient!
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NO

NO



Discrete Gauss Map



Discrete Gauss Map
• For a discrete immersion, the Gauss 

map is simply the triangle normals

• Most naturally viewed as a dual 
discrete R3-valued 0-form (vector per 
triangle)

• Visualize as points on the unit sphere

• Connecting adjacent normals by arcs 
corresponds to family of normals 
orthogonal to edge
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Discrete Vertex Normal?
• Discrete Gauss map still doesn’t define 

normals at vertices (or edges)

• Can take ad-hoc approach, but may 
behave poorly

• E.g., uniformly averaging face normals 
yields results that depend on 
tessellation rather than geometry

• Better approach: start in the smooth 
setting & apply principled discretization

?



• Recall smooth vector area:

• Idea: Integrate NdA over dual cell to get normal at vertex p

Discrete Vector Area

p
i

j

Q: What kind of quantity is the final expression?  Does that matter?



Other Natural Definitions
• area-weighted vertex normal

• sum of triangle normals times triangle areas

• smooth setting: volume variation gives N dA

• angle weighted vertex normal

• sum of triangle normals times interior angles

• gives same result, independent of triangulation

• …Please, just anything but uniformly weighted!



Discrete Exterior Calculus on Curved Surfaces



Discrete Exterior Calculus on Curved Surfaces
• In the smooth setting, we first defined 

exterior calculus in Rn, then saw how to 
augment it to work on curved surfaces

• Key observation: only need to change the 
Hodge star, which encodes all the metric 
information (length, angle, area, …)

• For simplicial surfaces in R3, life is in a sense 
even easier since each simplex is already flat!

• Still need to think just a little about how to 
define the discrete Hodge star…



Diagonal Hodge Star on a Surface
• Recall that on a simplicial surface, we can discretize the Hodge star via 

diagonal matrices storing volume ratios (given by formulas below)

• Q: What happens if our mesh is no longer flat?



Diagonal Hodge Star on a Curved Surface
• A: Nothing changes! As long we have a 

discrete immersion, we can still apply the 
same formulas—which depend only on 
primal lengths and interior angles

• In the case of the 1-form Hodge star, we 
are effectively taking a length ratio 
involving the dual distance “along” the 
surface

• Importantly, this means that our DEC 
operators are purely intrinsic: depends 
only on data that can be measured by an 
observer “crawling along the surface”



Discrete Laplace-Beltrami Operator
• As a result, we can immediately build discrete differential operators for 

curved surfaces by just composing our existing discrete exterior 
derivative and discrete Hodge star operators

• For instance, the Laplacian on 0-forms now becomes something known 
as the Laplace-Beltrami operator (which we’ll talk much more about later!)

• Using our expressions for the discrete Hodge star, can write the discrete 
Laplace-Beltrami operator via the famous cotan formula:



Recovery of Discrete Surfaces



Recovery of Discrete Surfaces
• In a variety of situations, we’ve seen that shape can be recovered (up 

to rigid motions) via “indirect” measurements (curvatures, etc.)

• Plane curves can be recovered from their curvature (exterior angle)

• Space curves can be recovered from their curvature and torsion

• Smooth surfaces can be recovered from 1st & 2nd fundamental form

• Convex surfaces can be recovered from Riemannian metric…



Surface Recovery from Discrete Gauss Map
• Q: Given only discrete Gauss map, can we recover 

the immersion? (I.e., given only triangle normals, 
can we get vertex positions?)

• A: Yes!  Basic recipe:
• Cross product of normals gives edge directions
• Dot product of edges gives interior angles
• Angles + normals give triangles up to scale; 

normals give orientation
• Build triangles one-by-one and “glue” together

• Q: Does this recipe always work?

N1

N2



Shape Recovery from Smooth Gauss Map?
• Q: Is it strange that we can recover a discrete 

surface from Gauss map?  Can we do something 
similar in the smooth setting?

• Consider a simpler case: Gauss map on a curve
• N(s) := (cos(s), sin(s))
• Problem: unless we know curve is arc-length 

parameterized, N is the Gauss map of any convex 
curve! Need additional data (parameterization)

• Similar story for convex discrete curves, or 
convex smooth surfaces

• So why don’t we need additional data for a 
discrete surface?



Recovery from Metric
• Theorem. (Cohn-Vossen) Smooth convex surface is uniquely 

determined (up to rigid motions) by its Riemannian metric.

• Theorem. (Alexandrov-Connelly) A convex polyhedron is uniquely 
determined by its edge lengths.

• Not always true in nonconvex case:



Recovery From Discrete Metric



Algorithm: Shape from Metric
• Recent algorithm (approximately!) recovers surface from edge lengths

• Chern et al, “Shape from Metric” (2018)

• Nice read if you want to get deeper into discrete surfaces: discrete 
immersion, discrete spin structure…

http://page.math.tu-berlin.de/~chern/projects/ShapeFromMetric/

http://page.math.tu-berlin.de/~chern/projects/ShapeFromMetric/


Thanks!
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