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A Unified Picture of Discrete Curvature

e By making some connections between smooth and
discrete surfaces, we get a unified picture of many

different discrete curvatures scattered throughout the
literature

e To tell the full story we’ll need a few pieces:
* geometric derivatives
* Steiner polynomials
* sequence of curvature variations
e assorted theorems (Gauss-Bonnet, Schlafli, Af = 2HN)

o Start with integral viewpoint (1st lecture), then cover
variational viewpoint (2nd lecture).
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Discrete Geometric Derivatives



Discrete Geometric Derioatives

e Practical technique for calculating derivatives
of discrete geometric quantities

* Basic question: how does one geometric quantity
change with respect to another?

e E.¢., what's the gradient of triangle area with
respect to the position of one of its vertices?

* Don’tjust grind out partial derivatives!

* Do follow a simple geometric recipe:

e First, in which direction does the quantity change quickest?
e Second, what's the magnitude of this change?

e Together, direction & magnitude give us the gradient vector



Dangers of Partial Derivatives

e Why not just take derivatives
“the usual way?”

 usually takes way more work!
e can lead to expressions that are
* inefficient
e numerically unstable
e hard to interpret

e Example: gradient of angle
between two segments (b,a), (c,a)
w.r.t. coordinates of point a

8= a = {al, a2, a3};
b= {bl, b2, b3};
g= {el,; €2, e3);
(a-b).(c-Db) ]
I

V(a-b).(a-b) V(c-b).(c-b)
FullSimplify[{0.10, 020, 0.361}] a

6 = ArcCos[

Out[62}= {(al b2%? +alb3®-a2b2 (al+bl-2cl) -a3b3 (al +bl -2cl) +a2% (bl -cl) +a3? (bl -cf) -b2%cl -

b3%cl+a2 (al-bl)c2-alb2c2+blb2c2+a3 (al—bl)c3—a1b303+b1b3c3)/

((al -b1)? + (a2 -b2)? + (a3—b3)2)3/2\/(b1—cl)2 £ (B2 -62)2 5 (b3 -63)2

: ((al -bl) (-bl +cl) + (a2 -b2) (-b2 +c2) + (a3 -b3) (-b3 +c3))?
((al-bl)2+ (a2-b2)2+ (a3-b3)2) ((bl-cl)2+ (b2-c2)2+ (b3-c3)2) '

(a32 b2 - a3 b2b3 +blb2cl +al? (b2 - c2) ~a3?’c2-bl’c2+2a3b3c2-b3%c2-
al (a2 (bl-cl) +b2 (bl+cl) -2blc2) +a2 (bl (bl-cl) - (a3 -b3) (b3-¢c3)) -a3b2c3+

b2 b3 c3)/

. ({al - BI) {-BI +¢¥1) 4 (a2 -b2) (-b2+ 62) & (a3 - b3) {-b3 +¢3))?2
((al-bl)2 + (a2-b2)2+ (a3-b3)2) ((bl-cl)2+ (b2-c2)2+ (b3 -c3)2) '

((al-b1)? + (a2 -b2)? + (a3—b3)2)3/2\/(b1—cl)2 + (b2 -c2)% + (b3 -c3)?

(b3 (blecl+ (a2 -b2) (a2 -c2)) +a3 (bl (bl -cl) - (a2 -b2) (b2-c2)) +al® (b3 -c3) -

(b1? + (a2 -b2)?) €3 - al (a3 (bl -cl) +b3 (bl +cl) —2blc3))/

((al-b1)? + (a2 -b2)? + (a3—b3)2)3/2\/(b1—c1)2 + (b2 -c2)? + (b3 -c3)?

. ((al -bl) (-bl +cl) + (a2 -b2) (-b2 +c2) + (a3 -b3) (-b3 +c3))?2 }
((al-bl)2+ (a2-b2)2+ (a3-b3)2) ((bl-cl)2+ (b2-c2)2+ (b3-c3)2)



Geometric Derivation of Angle Derivative

* Instead of taking partial derivatives, let’s
break this calculation into two pieces:

1. (Direction) What direction can we move the
point a to most quickly increase the angle 67?

A: Orthogonal to the segment ab.

2. (Magnitude) How much does the angle
change if we move in this direction?

A: Moving around a whole circle changes the
angle by 21t over a distance 2mtr, where v = | b-
al. Hence, the instantaneous change is 1/ 1 b-al.

e Multiplying the unit direction by the
magnitude yields a final gradient expression.

— e —




Gradient of Triangle Area

Q: What's the gradient of triangle area with respect to one of its vertices p?

A: Can express via its unit normal N and vector e along edge opposite p:

\ X ¢




GGeometric Derivation

* In general, can lead to some pretty slick expressions (give it a try!)
P

v ‘

_ v—(v,b—a)(b—a)
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Aside: Automatic Differentiation

Geometric approach to differentiation greatly
simplifies “small pieces” (gradient of a
particular, angle, length, area, volume, ...)

For larger expressions that combine many
small pieces, approach of automatic
differentiation is extremely useful”

Basically does nothing more than automate
repeated application of chain rule

Simplest implementation: use pair that store
both a value and its derivative; operations on
these tuples apply operation & chain rule

*More recently known as backpropagation

Example.

// define how multiplication and sine

// operate on (value,derivative) pairs
// (usually done by an existing library)
(a,a’")*(b,b’") := (a*b,a*b’'+b*a’)
sin((a,a’)) := (sin(a),a’'*cos(a))

// to evaluate a function and its
// derivative at a point, we first
// construct a pair corresponding to the

// identity function f(x) = X at the
// desired evaluation point
x = (5,1) // derivative of x w.r.t x is 1

// now all we have to do is type a

// function as usual, and it will yield
// the correct value/derivative pair

fx = sin(x*x) // (-0.132352, 9.91203)







Schldfli Formula

e Consider a closed polyhedron in R3 with edge lengths /;; and dihedral
angles @;i. Then for any motion of the vertices,

Y Lijar@ij =0
1]€E




ature Variations

£ AWt st aNt gwt gt et gt




Sequence of Variations (Smooth)

For a smooth surface f: M — R3 (without boundary), let

V()]ume(f) — %/MN fdA mean(f) — ,/MHdA

area(f) := /M dA Gauss(f) := /MKdA = 271X

How can we move the surface so that each of these quantities changes as quickly as
possible? Remarkably enough...

0 volume(f) = 2N
0area(f) =2HN
0 mean(f) = 2KN
0 Gauss(f) =0

) ) ) )
volume Hf area 4 mean %f (Gauss Hf 0




Discrete Normal via Volume Variation

o Recall that we still don’t have a clear definition for discrete
normals at vertices, where the surface is not differentiable

e However, in the smooth setting we know that the normal is
equal to (half) the volume gradient

* Idea: Since volume is pertectly well-defined for a discrete
surface, why not use volume gradient to define vertex
normals?

* Now just need to calculate the gradient of volume with
respect to motion of one of the vertices, which we can do
using our “geometric approach”...



Volume Enclosed by a Smooth Surface

e What's the volume enclosed by a smooth surface f? dA

* One way: pick any point p, integrate volume of
“infinitesimal pyramids” over the surface
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e For a pyramid with base area b and height /, the °p
volume is V = bh /3 (no matter what shape the
base is)

1 N -
e For our infinitesimal pyramid, the height is the 3 Ju(f —p)-NdA

distance from the surface f to the point p along the 1 NAA_ b 0_
normal direction: h = (f — p) - N 3 f Mf P W

1
e The area of the base is just the infinitesimal surface 3 / “” f-NdA
area dA. Now we just integrate. ..

Notice: doesn’t depend on choice of point p!



Volume Enclosed by a Discrete Surface

e What's the volume enclosed by a discrete surface?

e Simply apply our smooth formula to a discrete f! ﬁ
e Exercise. Show that the volume enclosed by a
simplicial surface can be expressed as f

%Z fi < fr)

11k e

Volume




Discrete Volume Gradient

e Taking the gradient of enclosed volume with respect to the position f; of
some vertex i should now give us a notion of vertex normal:

Vivolume(f) = gV ), fi- (fix fi) = 5 ). fix fi

i1k F z]kEF

e But wait—this expression is the same as the discrete area vector!

e In other words: taking the gradient of discrete volume gave us exactly
the same thing as integrating the normal over the dual cell.

o Agrees with the first expression in our sequence of variations:

ovolume(f) = N



Total Area of a Discrete Surface

e Total area of a discrete surface is simply the sum of the triangle areas:

]

S\

Q: Suppose fis not a discrete immersion. Is area well-defined? Ditferentiable?



Discrete Area Gradient

e Recall that the gradient of triangle area with respect to position p of a
vertex is just half the normal cross the opposite edge: p

VPA:%NXE M\ X e

e By summing contribution of all triangles touching a

given vertex, can show that gradient of total surface

area with respect to vertex coordinate f; is
vfi area (f) — Z % (COt Ojj + cot ,31]) (fl — f])
i
e Agrees with second expression in our sequence:
barea(f) = HN = 2 Af




Total Mean Curvature of a Discrete Surface

e From our Steiner polynomial, we know the total
mean curvature of a discrete surface is

mean( f Z Cii @i

Z]EJ

(In fact, total volume and area used for the previous
two calculations also agree with Steiner polynomial...)



Discrete Mean Curvature Gradient

e What's the gradient of total mean curvature with respect to a
particular vertex position f;?

Vgmean(f) = § ¥ Vg (6igy) =

e 0 (Schlzfli)
2 2 (Vilip)gij + 6V 5937) =
1€ E
?i
% Z ](f f]) Vfigi]'
1€ E gl]

e Agrees with third expression in our sequence:

dmean(f) = KN




Total Gauss Curvature

e Total Gauss curvature of a discrete surface is sum
of angle defects:

Gauss(f) = ) (27{ — Zégk)

icV ik

e From (discrete) Gauss-Bonnet theorem, we know
this sum is always equal to just 2ty = 21t(V-E+F)

e Gradient with respect to motion of any vertex is
therefore zero—sequence ends here!



Discrete Curvature —

Smooth Discrete Algebraic
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Thanks!
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