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Geodesics—Overview
• Geodesics generalize the notion of a “line” to curved spaces

• Two basic features:

1. straightest — no curvature/acceleration

2. shortest — (locally) minimize length

• Can have very different behavior from Euclidean lines!

• No parallel lines (spherical)

• Multiple parallel lines through a point (hyperbolic)

• Part of the “origin story” of differential geometry…

• Also important in physics: all of life is motion along a geodesic!



Examples of Geodesics
• Many familiar examples of geodesics:

• straight line in the plane

• great arc on circle (airplane trajectory)

• shortest path in maze (path planning)

• shortest path in thickened graph

• light paths (gravitational lensing)



Aside: Geodesics on Domains with Boundary
• On domains with boundary, shortest path 

will not always be along a “straight” curve

• On the interior, path will still be both 
shortest & straightest

• May also “hug” pieces of the boundary 
(curvature will match boundary curvature, 
acceleration will match boundary normal)

• (For simplicity, we will mainly consider 
domains without boundary)

p q



Isometry Invariance of Geodesics
• Isometries are special deformations of curves, 

surfaces, etc., that don’t change the 
“intrinsic” geometry, i.e., anything that can 
be measured using the Riemannian metric g

• For instance, rolling or folding up a map 
doesn’t change the angle between tangent 
vectors pointing “north” and “south”

• Geodesics are also intrinsic: for instance, the 
shortest path between two cities will not 
change just because we roll up the map



• How can we approach a definition of discrete geodesics?

• Play “The Game” of DDG and consider different smooth starting points:

– zero acceleration

– locally shortest
– no geodesic curvature

– harmonic map from interval to manifold

– gradient of distance function

– …

• Each starting point will have different consequences
• E.g., for simplicial surfaces will see that shortest and straightest disagree

Discrete Geodesics



Shortest



Locally Shortest Paths
• A Euclidean line segment can be characterized as 

the shortest path between two distinct points

• How can we characterize a whole Euclidean line?

• Say that it’s locally shortest: for any two “nearby” 
points on the path*, can’t find a shorter route

• This description directly gives us one possible 
definition for (smooth) geodesics

• Note that locally shortest doesn’t imply globally 
shortest!  (But still critical points…)

*i.e., within the injectivity radius
locally

shortest
globally
shortest



Shortest Planar Curve—Variational Perspective
Consider an arc-length parameterized planar curve γ(s): [a,b] ⟶ R2.  
Its squared length is given by the Dirichlet energy

•We can get the shortest path between two points 
by minimizing this energy subject to fixed 
endpoints γ(a) = p and γ(b) = q

•For planar curves, “setting the derivative to zero” 
yields a simple 1D Poisson equation.

•Q: What’s the solution? Why does it make sense?

p

q

γ(s)



Shortest Geodesic—Variational Perspective
• In exactly the same way, we can characterize geodesics on curved manifolds as length-

minimizing paths

• E.g., let M be a surface with Riemannian metric g, and let γ: [a,b] ⟶ M be an arc-
length parameterized curve.  Its squared length is again given by the Dirichlet energy

p

q

• Geodesics are still critical points (harmonic)

• But when M is curved, critical points no longer 
found by solving easy linear equations…

• In general, really need numerical algorithms!



Discrete Shortest Paths—Boundary Value Problem
• How can we find a shortest path in the 

discrete case?

• Dijkstra’s algorithm obviously comes 
to mind, but a shortest path in the 
edge graph is almost never geodesic 
(even if you refine the mesh!)

• One can still start with a Dijkstra path 
and iteratively shorten local pieces 
until path is locally shortest

• However, no reason local shortening 
should always give a globally shortest 
path…

Martínez et al, “Computing Geodesics on Triangular Meshes” (2005)



Discrete Shortest Paths—Vertices
• Even locally straightest paths near vertices 

require some care—behave differently 
depending on angle defect Ω

• Flat (Ω = 0)
Can lay out in plane; shortest path 
simply goes straight through vertex

• Cone (Ω > 0)
Always faster to go around one side or 
the other

• Saddle (Ω < 0)
Always faster to go through the vertex, 
but not unique!

Ω = 0

Ω > 0

Ω < 0



Algorithms for Shortest Polyhedral Geodesics
• Algorithms for shortest polyhedral geodesics largely based 

on two closely related methods:

1. Mitchell, Mount, Papadimitrou (MMP)                               
“The Discrete Geodesic Problem” (1986) — O(n2 log n)

2.Chen & Han (CH)                                                                 
“Shortest Paths on a Polyhedron” (1990) — O(n2)

•Basic idea: track intervals or “windows” of common 
geodesic paths

•Great deal of work on improving efficiency by pruning 
windows, approximation, … though still fairly expensive.

•Good intro in Surazhsky et al.                                                
“Fast Exact and Approximate Geodesics on Meshes” (2005)



Shortest Geodesics—Smooth vs. Discrete
• Smooth: two minimal geodesics γ1, γ2 from a source p to distinct points 

p1, p2 (resp.) intersect only if γ1 ⊆ γ2 or γ2 ⊆ γ1

• Discrete: many geodesics can coincide at saddle vertex (“pseudo-source”)

N.B. Shortest polyhedral geodesics may not faithfully capture behavior of smooth ones!



Closed Geodesics
• Theorem. (Birkhoff 1917) Every smooth convex 

surface contains a simple closed geodesic, i.e., a 
geodesic loop that does not cross itself (“Birkhoff 
equator”)

• Theorem. (Luysternik & Shnirel’man 1929) 
Actually, there are at least three—and this result 
is sharp (only three on some smooth surfaces).

• Theorem. (Galperin 2002) Most convex 
polyhedra do not have simple closed geodesics 
(in the sense of discrete shortest geodesics).

• Shortest characterization of discrete geodesics 
again fails to capture properties from smooth 
setting…

A shortest discrete geodesic can’t pass through 
convex vertices; by discrete Gauss-Bonnet, has to 
partition vertices into two sets that each have 
total angle defect of exactly 2π.



Cut Locus
• Given a source point p on a smooth 

surface M, the cut locus is the set of all 
points q such that there is not a unique 
(globally) shortest geodesic between p 
and q.

• E.g., on a sphere the cut locus of any 
point +p is just the antipodal point -p.

• In general can be much more 
complicated…

Image credit: S. Markvorsen and P.G. Hjorth (The Cut Locus Project)



Discrete Cut Locus
• What does cut locus look like for polyhedral surfaces?

• Recall that it’s always shorter to go “around” a cone-
like vertex (i.e., vertex with positive curvature Ωi > 0)

• Hence, polyhedral cut locus will contain every cone 
vertex in the entire surface

• Can look very different from smooth cut locus!

• E.g., sphere vs. polyhedral sphere?

Image adapted from Itoh & Sinclair, “Thaw: A Tool for Approximating Cut Loci on a Triangulation of a Surface”



Medial Axis
• Similar to the cut locus, the medial axis 

of a curve or surface M ⊂ Rn is the set 
of all points q that do not have a 
unique closest point on M

• A medial ball is a point on the medial 
axis, with radius given by the distance 
to the closest point

• Typically three branches (why?)

• Provides a “dual” representation: can 
recover original shape from

– medial axis
– radius function



Discrete Medial Axis
• What does the medial 

axis of a discrete domain 
look like?

• Let’s start with a square.  
(What did the medial axis 
for a circle look like?)

• What about a rectangle? 
(What did an ellipse look 
like?)

• How about a nonconvex 
polygon?



Discrete Medial Axis
• In general, medial axis touches every convex 

vertex

• May not look much like true (smooth) 
medial axis!

• One idea: “filter” using radius function…

– still hard to say exactly which pieces 
should remain

– lots of work on alternative “shape 
skeletons” for discrete curves & surfaces



Computing the Medial Axis
• Many algorithms for computing/approximating 

medial axis & other “shape skeletons”

• One line of thought: use Voronoi diagram as 
starting point:

– densely sample boundary points
– compute Voronoi diagram
– keep “short” facets of tall/skinny cells

• Works in 2D, 3D, …

• Very similar algorithm gives surface 
reconstruction from points

Amenta et al, “A New Voronoi-Based Surface Reconstruction Algorithm”



Medial Axis—Applications
• Many applications of medial axis

• shape skeletons

• local feature size

• fast collision detection

• fluid particle re-seeding

• …

(1) Giesen et al, “The Scale Axis Transform”
(2) Adams et al, “Adaptively Sampled Particle Fluids”
(3) Peters & Ledoux, “Robust approximation of the Medial Axis Transform of LiDAR point clouds”
(4) Bradshaw & Sullivan, “Adaptive Medial-Axis Approximation for Sphere-Tree Construction”

(3) (4)

(2)

(1)



Straightest



Straightest Paths
• A Euclidean line can be characterized as a curve 

that is “as straight as possible”

• Q: How can we make this statement more precise?

• geometrically: no curvature

• dynamically: no acceleration

• How can we generalize to curves in manifolds?

• geometrically: no geodesic curvature

• dynamically: zero covariant derivative



Straightness—Geometric Perspective
• Consider a curve γ(s) with tangent T in a 

surface with normal N, and let B := T × N.
• Can decompose “bending” into normal 

curvature κn and geodesic curvature κg:

• Curve is “forced” to have normal 
curvature due to curvature of M

• Any additional bending beyond this 
minimal amount is geodesic curvature

• Geodesic is curve such that κg = 0



Discrete Curves on Discrete Surfaces
• To understand straightest curves on 

discrete surfaces, first have to define 
what we mean by a discrete curve

• One definition: a discrete curve in a 
simplicial surface M is any continuous 
curve γ that is piecewise linear in each 
simplex

• Doesn’t have to be a path of edges: 
could pass through faces, have multiple 
vertices in one face, …

• Practical encoding: sequence of k-
simplices (not all same dimension), and 
barycentric coordinates for each simplex

simplex barycentric
coordinates



Discrete Geodesic Curvature
• For planar curve, one definition of discrete 

curvature was exterior angle (or π-interior)

• Since most points of a simplicial surface are 
intrinsically flat, can adopt this same 
definition for discrete geodesic curvature

• Faces: just measure angle between segments

• Edges: “unfold” and measure angle

• Vertices: not as simple—can’t unfold!

• Recall trouble w/ shortest geodesics…

unfold



Discrete Straightest Geodesics
• In the smooth setting, characterized geodesics 

as curves with zero geodesic curvature

• In the discrete setting, have a hard time 
defining geodesic curvature at vertices

• Alternative smooth characterization: just 
have same angle on either side of the curve

• Translates naturally to the discrete setting: 
equal angle sum on either side of the curve

• Provides definition of discrete straightest 
geodesics (Polthier & Schmies 1998)

θl
θr θl

θr

θl = θr
Image adapted from Polthier & Schmies, “Straightest Geodesics on Polyhedral Surfaces”



Exponential Map
• At a point p of a smooth surface M, the 

exponential map expp: TpM → M takes a 
tangent vector X to the point reached 
by walking along a geodesic in the 
direction X/|X| for distance |X|

• Can also view as a map “wrapping” 
the tangent plane around the surface

• Q: Is this map surjective? Injective?

• Injectivity radius at p is radius of largest 
ball where expp is injective



Discrete Exponential Map
• Not so hard to evaluate exponential map on discrete 

surface

• Given point and tangent vector, start walking along 
vector

• “walking” amounts to 2D ray tracing

• At vertices, straightest definition tells us how to continue
• (Still have to think about what it means to start at a 

vertex—what are tangent vectors?)
• Q: How big is the injectivity radius?

• A: Just the distance to the closest vertex!

• Q: Is the discrete exponential map surjective?
• A: No! Consider a saddle vertex…



Straightness—Dynamic Perspective
• Dynamically, geodesic has zero tangential acceleration

• How exactly do we define “tangential acceleration”?

• Consider curve γ(t): [a,b] ⟶ M (not necessary arc-length 
parameterized)

• Tangential velocity is simply the tangent to the curve

• Tangential acceleration should be something like the 
“change in the tangent,” but:

• extrinsically, change in tangent is not a tangent vector

• intrinsically, tangents belong to different vector spaces

• So, how do we measure acceleration?



Covariant Derivative
• Since geodesics are intrinsic, can define “straightness” using only the metric g
• Covariant derivative ∇ measures the change of one tangent vector field along another.
• For any function φ, tangent vector fields X, Y, Z, operator ∇ uniquely determined by

Can really “solve” these equations for ∇ in terms of g (Christoffel symbols).  We won’t!



Geodesic Equation

tangent to curve

“tangent doesn’t turn”

Covariant derivative provides another, quite classic 
characterization of geodesics:

Q: Does this characterization suggest another approach to discrete geodesics?
A: Maybe—though to go down that road we’ll need discrete connections (later…)



Summary



Geodesics—Shortest vs. Straightest, Smooth vs. Discrete
• In smooth setting, several equivalent characterizations:

• shortest (harmonic)
• straightest (zero curvature, zero acceleration)

• In discrete setting, characterizations no longer agree!
– shortest natural for boundary value problem
– straightest natural for initial value problem
– convex: shortest paths are straightest (but not vice versa)
– nonconvex: shortest may not even be straightest! (saddles)

• Neither definition faithfully captures all smooth behavior:
– (shortest) cut locus/medial axis touches every convex vertex
– (straightest) exponential map is not surjective

• Use the right tool for the job (and look for other definitions!)

shortest straightest

smooth

discrete



Thanks!
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