

GEOMETRY:

An Applied Introduction

CMU 15-458/858• Keenan Crane

Lecture 21:

GEODESICS

DISCRETE DIFFERENTIAL
GEOMETRY:
An Applied Introduction
CMU 15-458/858 • Keenan Crane

Geodesics-Overview

- Geodesics generalize the notion of a "line" to curved spaces
- Two basic features:

1. straightest - no curvature/acceleration
2. shortest - (locally) minimize length

- Can have very different behavior from Euclidean lines!
- No parallel lines (spherical)
- Multiple parallel lines through a point (hyperbolic)
- Part of the "origin story" of differential geometry...
- Also important in physics: all of life is motion along a geodesic!

Examples of Geodesics

- Many familiar examples of geodesics:
- straight line in the plane
- great arc on circle (airplane trajectory)
- shortest path in maze (path planning)
- shortest path in thickened graph
- light paths (gravitational lensing)

Aside: Geodesics on Domains with Boundary

- On domains with boundary, shortest path will not always be along a "straight" curve
- On the interior, path will still be both shortest \& straightest
- May also "hug" pieces of the boundary (curvature will match boundary curvature, acceleration will match boundary normal)
- (For simplicity, we will mainly consider domains without boundary)

Isometry Invariance of Geodesics

- Isometries are special deformations of curves, surfaces, etc., that don't change the "intrinsic" geometry, i.e., anything that can be measured using the Riemannian metric g
- For instance, rolling or folding up a map doesn't change the angle between tangent vectors pointing "north" and "south"
- Geodesics are also intrinsic: for instance, the shortest path between two cities will not change just because we roll up the map

Discrete Geodesics

- How can we approach a definition of discrete geodesics?
- Play "The Game" of DDG and consider different smooth starting points:
- zero acceleration
- locally shortest
- no geodesic curvature
- harmonic map from interval to manifold
- gradient of distance function
- Each starting point will have different consequences

- E.g., for simplicial surfaces will see that shortest and straightest disagree

Shortest

Locally Shortest Paths

- A Euclidean line segment can be characterized as the shortest path between two distinct points
- How can we characterize a whole Euclidean line?
- Say that it's locally shortest: for any two "nearby" points on the path*, can't find a shorter route
- This description directly gives us one possible definition for (smooth) geodesics
- Note that locally shortest doesn't imply globally shortest! (But still critical points...)

Shortest Planar Curve - Variational Perspective

Consider an arc-length parameterized planar curve $\gamma(\mathrm{s}):[a, b] \longrightarrow R^{2}$. Its squared length is given by the Dirichlet energy

$$
L^{2}(\gamma)=\int_{a}^{b}|d \gamma|^{2}
$$

- We can get the shortest path between two points by minimizing this energy subject to fixed endpoints $\gamma(a)=p$ and $\gamma(b)=q$
-For planar curves, "setting the derivative to zero" yields a simple 1D Poisson equation.
- Q : What's the solution? Why does it make sense?

$$
\frac{d^{2}}{d s^{2}} \gamma(s)=0
$$

s.t. $\quad \gamma(a)=p$

$$
\gamma(b)=q
$$

Shortest Geodesic - Variational Perspective

- In exactly the same way, we can characterize geodesics on curved manifolds as lengthminimizing paths
- E.g., let M be a surface with Riemannian metric g , and let $\gamma:[\mathrm{a}, \mathrm{b}] \longrightarrow \mathrm{M}$ be an arclength parameterized curve. Its squared length is again given by the Dirichlet energy

$$
L(\gamma):=\int_{a}^{b}|d \gamma|^{2}=\int_{a}^{b} g\left(d \gamma\left(\frac{d}{d s}\right), d \gamma\left(\frac{d}{d s}\right)\right) d s
$$

- Geodesics are still critical points (harmonic)
- But when M is curved, critical points no longer found by solving easy linear equations...
- In general, really need numerical algorithms!

Discrete Shortest Paths - Boundary Value Problem

- How can we find a shortest path in the discrete case?
- Dijkstra's algorithm obviously comes to mind, but a shortest path in the edge graph is almost never geodesic (even if you refine the mesh!)

- One can still start with a Dijkstra path and iteratively shorten local pieces until path is locally shortest
- However, no reason local shortening should always give a globally shortest
 path...

Discrete Shortest Paths - Vertices

- Even locally straightest paths near vertices require some care-behave differently depending on angle defect Ω
- Flat $(\Omega=0)$

Can lay out in plane; shortest path simply goes straight through vertex

- Cone $(\Omega>0)$

Always faster to go around one side or the other

$$
\Omega_{i}=2 \pi-\sum_{i j k} \theta_{i}^{j k}
$$

- Saddle $(\Omega<0)$

Always faster to go through the vertex, but not unique!

Algorithms for Shortest Polyhedral Geodesics

- Algorithms for shortest polyhedral geodesics largely based on two closely related methods:

1. Mitchell, Mount, Papadimitrou (MMP)
"The Discrete Geodesic Problem" (1986) —O($\left.n^{2} \log n\right)$
2.Chen \& Han (CH)
"Shortest Paths on a Polyhedron" (1990) —O(n^{2})

- Basic idea: track intervals or "windows" of common geodesic paths
- Great deal of work on improving efficiency by pruning windows, approximation, ... though still fairly expensive.
- Good intro in Surazhsky et al.
"Fast Exact and Approximate Geodesics on Meshes" (2005)

Shortest Geodesics - Smooth vs. Discrete

- Smooth: two minimal geodesics γ_{1}, γ_{2} from a source p to distinct points p_{1}, p_{2} (resp.) intersect only if $\gamma_{1} \subseteq \gamma_{2}$ or $\gamma_{2} \subseteq \gamma_{1}$
- Discrete: many geodesics can coincide at saddle vertex (" $p s e u d o-s o u r c e ")$

N.B. Shortest polyhedral geodesics may not faithfully capture behavior of smooth ones!

Closed Geodesics

- Theorem. (Birkhoff 1917) Every smooth convex surface contains a simple closed geodesic, i.e., a geodesic loop that does not cross itself ("Birkhoff equator")
- Theorem. (Luysternik \& Shnirel'man 1929) Actually, there are at least three-and this result is sharp (only three on some smooth surfaces).
- Theorem. (Galperin 2002) Most convex polyhedra do not have simple closed geodesics (in the sense of discrete shortest geodesics).

A shortest discrete geodesic can't pass through convex vertices; by discrete Gauss-Bonnet, has to partition vertices into two sets that each have total angle defect of exactly 2π.

Cut Locus

- Given a source point p on a smooth surface M, the cut locus is the set of all points q such that there is not a unique (globally) shortest geodesic between p and q.
- E.g., on a sphere the cut locus of any point $+p$ is just the antipodal point $-p$.
- In general can be much more complicated...

Discrete Cut Locus

-What does cut locus look like for polyhedral surfaces?

- Recall that it's always shorter to go "around" a conelike vertex (i.e., vertex with positive curvature $\Omega_{i}>0$)
- Hence, polyhedral cut locus will contain every cone vertex in the entire surface
- Can look very different from smooth cut locus!
- E.g., sphere vs. polyhedral sphere?

Medial Axis

- Similar to the cut locus, the medial axis of a curve or surface $M \subset R^{n}$ is the set of all points q that do not have a unique closest point on M
- A medial ball is a point on the medial axis, with radius given by the distance to the closest point
- Typically three branches (why?)
- Provides a "dual" representation: can recover original shape from
- medial axis
- radius function

Discrete Medial Axis

- What does the medial axis of a discrete domain look like?
- Let's start with a square. (What did the medial axis for a circle look like?)
- What about a rectangle? (What did an ellipse look like?)
- How about a nonconvex polygon?

Discrete Medial Axis

- In general, medial axis touches every convex vertex
- May not look much like true (smooth)
 medial axis!
- One idea: "filter" using radius function...
- still hard to say exactly which pieces should remain
- lots of work on alternative "shape skeletons" for discrete curves \& surfaces

Computing the Medial Axis

- Many algorithms for computing/approximating medial axis \& other "shape skeletons"
- One line of thought: use Voronoi diagram as starting point:
- densely sample boundary points
- compute Voronoi diagram
- keep "short" facets of tall/ skinny cells
- Works in 2D, 3D, ...
- Very similar algorithm gives surface reconstruction from points

Amenta et al, "A New Voronoi-Based Surface Reconstruction Algorithm"

Medial Axis - Applications

- Many applications of medial axis
- shape skeletons
- local feature size
- fast collision detection
- fluid particle re-seeding
- . . .

(1) Giesen et al, "The Scale Axis Transform"
(2) Adams et al, "Adaptively Sampled Particle Fluids"
(3) Peters \& Ledoux, "Robust approximation of the Medial Axis Transform of LiDAR point clouds"

(4) Bradshaw \& Sullivan, "Adaptive Medial-Axis Approximation for Sphere-Tree Construction"

Straightest

Straightest Paths

- A Euclidean line can be characterized as a curve that is "as straight as possible"
- Q: How can we make this statement more precise?
- geometrically: no curvature
- dynamically: no acceleration
- How can we generalize to curves in manifolds?
- geometrically: no geodesic curvature
- dynamically: zero covariant derivative

Straightness-Geometric Perspective

- Consider a curve $\gamma(s)$ with tangent T in a surface with normal N, and let $B:=T \times N$.
- Can decompose "bending" into normal curvature κ_{n} and geodesic curvature κ_{g} :

$$
\begin{aligned}
\kappa_{n} & :=\left\langle N, \frac{d}{d s} T\right\rangle \\
\kappa_{g} & :=\left\langle B, \frac{d}{d s} T\right\rangle
\end{aligned}
$$

- Curve is "forced" to have normal curvature due to curvature of M
- Any additional bending beyond this minimal amount is geodesic curvature
- Geodesic is curve such that $\kappa_{g}=0$

large κ_{g}; small \mathcal{K}_{n}

large κ_{n}; small κ_{g}

Discrete Curves on Discrete Surfaces

- To understand straightest curves on discrete surfaces, first have to define what we mean by a discrete curve
- One definition: a discrete curve in a simplicial surface M is any continuous curve γ that is piecewise linear in each simplex
- Doesn't have to be a path of edges: could pass through faces, have multiple vertices in one face, ...
- Practical encoding: sequence of $k-$ simplices (not all same dimension), and barycentric coordinates for each simplex

Discrete Geodesic Curvature

- For planar curve, one definition of discrete curvature was exterior angle (or π-interior)
- Since most points of a simplicial surface are intrinsically flat, can adopt this same definition for discrete geodesic curvature
- Faces: just measure angle between segments

- Edges: "unfold" and measure angle
- Vertices: not as simple-can't unfold!
- Recall trouble w/ shortest geodesics...

Discrete Straightest Geodesics

- In the smooth setting, characterized geodesics as curves with zero geodesic curvature
- In the discrete setting, have a hard time defining geodesic curvature at vertices
- Alternative smooth characterization: just have same angle on either side of the curve
- Translates naturally to the discrete setting: equal angle sum on either side of the curve
- Provides definition of discrete straightest geodesics (Polthier \& Schmies 1998)

Exponential Map

- At a point p of a smooth surface M, the exponential map $\exp _{p}: T_{p} M \rightarrow M$ takes a tangent vector X to the point reached by walking along a geodesic in the direction $X /|X|$ for distance $|X|$
- Can also view as a map "wrapping" the tangent plane around the surface
- Q: Is this map surjective? Injective?
- Injectivity radius at p is radius of largest ball where $\exp _{p}$ is injective

Discrete Exponential Map

- Not so hard to evaluate exponential map on discrete surface
- Given point and tangent vector, start walking along vector
- "walking" amounts to 2D ray tracing
- At vertices, straightest definition tells us how to continue
- (Still have to think about what it means to start at a vertex-what are tangent vectors?)
- Q: How big is the injectivity radius?
- A: Just the distance to the closest vertex!
- Q: Is the discrete exponential map surjective?
- A: No! Consider a saddle vertex...

Straightness - Dynamic Perspective

- Dynamically, geodesic has zero tangential acceleration
- How exactly do we define "tangential acceleration"?
- Consider curve $\gamma(t):[a, b] \longrightarrow M$ (not necessary arc-length parameterized)
- Tangential velocity is simply the tangent to the curve
- Tangential acceleration should be something like the "change in the tangent," but:
- extrinsically, change in tangent is not a tangent vector
- intrinsically, tangents belong to different vector spaces
- So, how do we measure acceleration?

Covariant Derivative

- Since geodesics are intrinsic, can define "straightness" using only the metric g
- Covariant derivative ∇ measures the change of one tangent vector field along another.
- For any function ϕ, tangent vector fields X, Y, Z, operator ∇ uniquely determined by

$$
\begin{aligned}
\nabla_{Z}(X+Y) & =\nabla_{Z} X+\nabla_{Z} X \\
\nabla_{X+Y} Z & =\nabla_{X} Z+\nabla_{Y} Z \\
\nabla_{f X} Y & =f \nabla_{X} Y \\
\nabla_{X}(f Y) & =d f(X) Y+f \nabla_{X} Y
\end{aligned}
$$

$$
\nabla_{Z} g(X, Y)=g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z} Y\right)
$$

Can really "solve" these equations for ∇ in terms of g (Christoffel symbols). We won't!

Geodesic Equation

Covariant derivative provides another, quite classic characterization of geodesics:

tangent to curve

$$
\nabla_{\dot{\gamma}} \dot{\gamma} \dot{\gamma}=0
$$

Q: Does this characterization suggest another approach to discrete geodesics?
A: Maybe—though to go down that road we'll need discrete connections (later...)

Geodesics - Shortest vs. Straightest, Smooth vs. Discrete

- In smooth setting, several equivalent characterizations:
- shortest (harmonic)
- straightest (zero curvature, zero acceleration)
- In discrete setting, characterizations no longer agree!
- shortest natural for boundary value problem

straightest

smooth
- convex: shortest paths are straightest (but not vice versa)
- nonconvex: shortest may not even be straightest! (saddles)
- Neither definition faithfully captures all smooth behavior:
- (shortest) cut locus/medial axis touches every convex vertex
- (straightest) exponential map is not surjective
- Use the right tool for the job (and look for other definitions!)

Thanks!

DISCRETE DIFFERENTIAL

GEOMETRY:

AN ApPLIED INTRODUCTION
CMU 15-458/858 • Keenan Crane

