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Integration of Differential k-Forms



Integration and Differentiation

* Two big ideas in calculus:

[ fax= )~ f@

* integration

e linked by fundamental theorem of calculus

e Exterior calculus generalizes these ideas
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e integration of k-forms (measure volume) / M oM

e linked by Stokes’ theorem

e Goal: integrate differential forms over meshes to get discrete exterior calculus (DEC)



Review — Integration of Area




Review — Integration of Scalar Functions
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Integration of a 2-Form

w — differential 2-form on ()
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Key idea: integration always involves differential forms!



Integration of Differential 2-forms— Example

e Consider a differential 2-form on the unit square in the plane:
w = (x +xy)dx N\ dy
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e In this case, no different from usual “double
integration” ot a scalar function.




Integration on Curves
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Integration on Curves
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Integration on Curves —Example

e Now consider a 1-form in the plane, which we will integrate over the unit circle:
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(Why does this result make sense geometrically?) . . 0,271) — R%;s — (cos(s), sin(s))
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Boundary
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Basic idea: at an interior point p of a k-dimensional set the intersection of an open
ball around p with the set looks like* an open k-ball; at a boundary point it doesn’t.

*...is homeomorphic to, in the subspace topology.



Boundary of a Boundary

Q: Which points are in the boundary of the boundary?

A: No points! Boundary of a boundary is always empty.




Boundary of a Boundary

Q: Which points are in the boundary of the boundary?
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A: No points! Boundary of a boundary is always empty.
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Review: Fundamental Theorem of Calculus




Stokes” Theorem
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Analogy: fundamental theorem of calculus



Divergence Theorem

Example
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Example: Green’s Theorem
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What goes around comes around!
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Fundamental Theorem of Calculus & Stokes’

/ ad)dx = ¢(a)
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..for any Q (no matter how small!)
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Unique linear map d : OF — QFF1 such that

differential d¢ = 99 dx' + - 4 99 dx"
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Integration & Stokes” Theorem - Summary

* Integration
* break domain into small pieces
e measure each piece with k-form

¢ Stokes’ theorem
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e super useful—Ilets us “skip” a derivative LI IO
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e special cases: divergence theorem, Green’s theorem, NSSARRRN S
fundamental theorem of calculus, Cauchy’s integral NN RSOGO
theorem... and many more! B

* Gets used over and over again in geometric computing
¢ finite element methods, boundary element methods, ... /
X
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e discrete exterior calculus M




Inner Product on Differential k-Forms



Inner Product — Review

e Recall that a vector space V is any collection of “arrows” that can be added, scaled, ...

* Q: What's an inner product on a vector space?

* A: Loosely speaking, a way to talk about lengths, angles, etc., in a vector space

* More formally, a symmetric positive-definite bilinear map: \u
(«,-): VXV =R \\

(u,v) = (v, u) e

(u+ov,w) = (u,w) + (v, w)

(u,v) = |ul|v|cosb
(au,v) = a(u,v) 1
(u,u) >0; (u,u) =0 <= u=20

for all vectors u,v,w in V and scalars a. (Geometric interpretation of these rules?)



Euclidean Inner Product — Review

* Most basic inner product: inner product of two vectors in Euclidean R

e Just sum up the product of components:

1 n
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v =ole; +--- + v,

Example. g
u = 3eq + 2e»
v = 2e1 +4e» e1

(u,v) =3.24+2-4=14

(Does this operation satisfy all the requirements of an inner product?)



L2 Inner Product of Functions | O-forms

e Remember that in many situations, functions are also vectors
e What does it mean to measure the inner product between functions?

e Want some notion of how well two functions “line up”

®* One idea: mimic what we did for vectors in R”. E. gm
f :10,1] = R

0 1
f
0 1

e Called the L2 inner product. (Note: f and ¢ must each be square-integrable!)

¢ Does this capture notion of “lining up”? Does it obev rules of inner product?
P g up y P



Inner Product on k-Forms

Definition. Let a, f € OF be any two differential k-forms. Their (L?) inner
product is defined as®

(o, ) := [ xanp

Q: What happens when k=0?

A: We just get the usual L? inner product on functions.
Q: What's the degree (k) of the integrand? Why is that important?

A: Integrand is always an n-form, which is the only thing we can integrate in n-D!

*Some authors define the integrand as « A xf; our convention is consistent with
the convention that in 2D the 1-form Hodge star is a counter-clockwise rotation.



Inner Product of 1-Forms— Example

oo Example. Consider two 1-forms on the unit square
e 0,1] x |0,1] given by
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Exterior Calculus— Summary

 What we’ve seen so far:

e Exterior algebra: language of volumes (k-vectors)

® k-form: measures a k-dimensional volume

e Differential forms: k-form at each point of space

e Exterior calculus: differentiate/integrate forms »

e Simplicial complex: mesh made of vertices, edges, triangles...
* Next up: )

e Put all this machinery together
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e [ntegrate to get discrete exterior calculus (DEC)




Thanks!
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