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Curvature of Curves



Review: Curvature of a Plane Curve
• Informally, curvature describes “how much a curve bends”

• More formally, the curvature of an arc-length parameterized plane 
curve can be expressed as the rate of change in the tangent

Here the angle brackets denote the usual dot product, i.e.,                                            .

Equivalently:



Review: Curvature and Torsion of a Space Curve
•For a plane curve, curvature captured the notion of “bending”
•For a space curve we also have torsion, which captures “twisting”

increasing torsion
Intuition: torsion is 
“out of plane bending”



Fact. Up to rigid motions, an arc-length parameterized plane curve is 
uniquely determined by its curvature.

Q: Given only the curvature function, how can we recover the curve?

A: Just “invert” the two relationships

Review: Fundamental Theorem of Plane Curves

Then evaluate unit tangents:

Finally, integrate tangents to get curve:

Q: What about the rigid motion?  Will this work for closed curves?

First integrate curvature to get angle:



Review: Fundamental Theorem of Space Curves
•The fundamental theorem of space curves tells us we can also go the 

other way: given the curvature and torsion of an arc-length 
parameterized space curve, we can recover the curve itself

•In 2D we just had to integrate a single ODE; here we integrate a 
system of three ODEs—namely, Frenet-Serret!
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Algorithm: Recover Plane Curve from Curvature
Fact. Up to rigid motions, a regular discrete plane curve is uniquely 
determined by its edge lengths and turning angles.

Q: Given only this data, how can we recover the curve?

A: Mimic the procedure from the smooth setting:

Evaluate unit tangents:

Sum tangents to get curve:

Sum curvatures to get angles:

Q: Rigid motions?



Algorithm: Recover Space Curve from Curvature
TODO. Define discrete torsion, give algorithm.



Curvature of Surfaces



Weingarten Map
• The Weingarten map dN is the 

differential of the Gauss map N

• At each point, tells us the 
change in the normal vector 
along any given direction X

• Since change in unit normal 
cannot have any component in 
the normal direction, dN(X) is 
always tangent to the surface

• Can also think of it as a vector 
tangent to the unit sphere S2

Y

dN(Y)

Q: Why is dN(Y) “flipped”?



Weingarten Map—Example
• Recall that for the sphere, N = -f.  Hence, Weingarten map dN is just -df :

Key idea: computing the Weingarten map is no different 
from computing the differential of a surface.



Normal Curvature
• For curves, curvature was the rate of change of the tangent; for immersed surfaces, 

we’ll instead consider how quickly the normal is changing.*

*For plane curves, what would happen if we instead considered change in N?

• In particular, normal curvature is rate at 
which normal is bending along a given 
tangent direction:

• Equivalent to intersecting surface with 
normal-tangent plane and measuring the 
usual curvature of a plane curve



Normal Curvature—Example
Consider a parameterized cylinder:

Q: Does this result make sense geometrically?



Principal Curvature
• Among all directions X, there are two principal directions X1, X2 where 

normal curvature has minimum/maximum value (respectively)

• Corresponding normal curvatures are the principal curvatures

• Two critical facts*:

N
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Where do these relationships come from?



Shape Operator
• The change in the normal N is always tangent to the surface

• Must therefore be some linear map S from tangent vectors to tangent 
vectors, called the shape operator, such that

• Principal directions are the eigenvectors of S

• Principal curvatures are eigenvalues of S

• Note: S is not a symmetric matrix!  Hence, eigenvectors are not 
orthogonal in R2; only orthogonal with respect to induced metric g.



Shape Operator—Example
Consider a nonstandard parameterization of the cylinder (sheared along z):

Key observation: principal directions orthogonal only in R3.



Umbilic Points
• Points where principal curvatures are equal are called umbilic points

• Principal directions are not uniquely determined here

• What happens to the shape operator S?

• May still have full rank!

• Just have repeated eigenvalues, 2-dim. eigenspace

r

Could still of course choose (arbitrarily) an orthonormal pair X1, X2…



Principal Curvature Nets
• Walking along principal direction field yields principal curvature lines

• Collection of all such lines is called the principal curvature network



Separatrices and Spirals
• If we walk along a principal curvature line, where do we end up?
• Sometimes, a curvature line terminates at an umbilic point in both directions; these so-

called separatrices (can) split network into regular patches.
• Other times, we make a closed loop.  More often, however, behavior is not so nice!



Application—Quad Remeshing
• Recent approach to meshing: construct net roughly aligned with 

principal curvature—but with separatrices & loops, not spirals.

from Knöppel, Crane, Pinkall, Schröder, “Stripe Patterns on Surfaces”



Gaussian and Mean Curvature
Gaussian and mean curvature also fully describe local bending:

*Warning: another common convention is to omit the factor of 1/2

“developable”

“minimal”



Gaussian Curvature as Ratio of Ball Areas
• Originally defined Gaussian curvature as product of principal curvatures

• Can also view it as “failure” of balls to behave like Euclidean balls

Roughly speaking,

More precisely:



Gauss-Bonnet Theorem
• Recall that the total curvature of a 

closed plane curve was always 
equal to 2π times turning number k

• Q: Can we make an analogous 
statement about surfaces?

• A: Yes!  Gauss-Bonnet theorem says 
total Gaussian curvature is always 
2π times Euler characteristic χ

• For tori, Euler characteristic 
expressed in terms of the genus 
(number of “handles”)

k=1 k=2 k=3

g=0 g=1 g=2 g=3

Curves Surfaces



Total Mean Curvature?
Theorem (Minkowski): for a regular closed embedded surface,

Q: When do we get equality?
A: For a sphere.



Topological Invariance of Umbilic Count
Can classify regions around isolated umbilics into three types based on behavior 
of principal network: lemon, star, and monstar

lemon (k1) star (k2) monstar (k3)

Fact. If k1, k2, k3 are number of umbilics of each type, then



Curvature of a Curve in a Surface
• Earlier, broke the “bending” of a space 

curve into curvature (κ) and torsion (τ)

• For a curve in a surface, can instead break 
into normal and geodesic curvature:

• T is still tangent of the curve; but 
unlike the  Frenet frame, NM is the 
normal of the surface and BM := T × NM



Second Fundamental Form
• Second fundamental form is 

closely related to principal 
curvature

• Can also be viewed as change in 
first fundamental form under 
motion in normal direction

• Why “fundamental?”First & 
second fundamental forms play 
role in important theorem…



Fundamental Theorem of Surfaces
• Fact. Two surfaces in R3 are congruent if and only if they have the same 

first and second fundamental forms

• …However, not every pair of bilinear forms I, II on a domain U 
describes a valid surface—must satisfy the Gauss Codazzi equations

• Analogous to fundamental theorem of plane curves: determined up to 
rigid motion by curvature

• …However, for closed curves not every curvature function is valid (e.g., 
must integrate to 2kπ)



Fundamental Theorem of Discrete Surfaces
• Fact. Up to rigid motions, can recover a 

discrete surface from its dihedral angles and 
edge lengths.

• Fairly natural analogue of Gauss-Codazzi; 
data is split into edge lengths (encoding I) 
and dihedral angles (encoding II)

• Basic idea: construct each triangle from 
edge lengths; use dihedral angles to 
globally glue together

from Wang, Liu, and Tong,
“Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle Meshes”



Other Descriptions of Surfaces?
• Classic question in differential geometry:

• Many possibilities…

• First & second fundamental form (Gauss-Codazzi)

• Mean curvature and metric (up to “Bonnet pairs”)

• Convex surfaces: metric alone is enough (Alexandrov/Pogorolev)

• Gauss curvature essentially determines metric (Kazdan-Warner)

• …in general, still a surprisingly murky question!

“What data is sufficient to completely determine a surface in space?”



Open Challenges in Shape Recovery
• What other discrete quantities determine a 

surface?

• …and how can we (efficiently) recover a 
surface from this data?

• Lengths + dihedral angles work in general 
(fundamental theorem of discrete surfaces); 
lengths alone are sufficient for convex 
surfaces.  What about just dihedral angles?

• Have a variety of discrete curvatures.  
Which are sufficient, for which classes of 
surfaces?

• Why bother?  Offers new & different ways to 
analyze, process, edit, transmit, … curved 
surfaces digitally.

from Eigensatz & Pauly, “Curvature Domain Shape Processing”



Thanks!
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