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Today: What is a “Mesh?”

* Many possibilities...
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* Simplicial complex

* Abstract vs. geometric simplicial complex
* Oriented, manifold simplicial complex

» Application: topological data analysis

* Cell complex

e Poincaré dual, discrete exterior calculus

epData structures:

* adjacency list, incidence matrix, halfedge



Connection to Differential Geometry?

topological space {<—>  abstract simplicial complex



plicial Manifold




Manifold — First Glimpse

Very rough idea: notion of “nice” space in geometry.

(Which one is “nice”?)



Manifold — First Glimpse

Key idea: manifold locally “looks like” IR”

manifold nonmanifold



Simplicial Manifold — Visualized

Which of these simplicial complexes look “manifold?”

(E.g., where might it be hard to put a little xy-coordinate system?)



Simplicial Manifold — Definition

Definition. A simplicial k-complex is manifold if the link of every vertex looks
like* a (k-1)-dimensional sphere.
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Aside: How hard is it to check if a given simplicial complex is manifold?
* (k=1) easy—is the whole complex just a collection of closed loops?
* (k=2) easy—is the link of every vertex a closed loop?
* (k=3) easy —is each link a 2-sphere? Just check if V-E+F = 2 (Euler’s formula)
*(k=4) is each link a 3-sphere? ...Well, it's known to be in NP! [S. Schleimer 2004]

*i.e., is homeomorphic to.



Manifold Triangle Mesh

Key example: manifold triangle mesh (k=2)

*every edge is contained in exactly two triangles

*...or just one along the boundary
*every vertex is contained in a single “loop” of triangles

*...or a single “fan” along the boundary
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Manifold Meshes— Motivation

e Why might it be preferable to work with a manifold mesh?

* Analogy: 2D images

(ilj_l)

* Lots of ways you could arrange pixels...

e A regular grid does everything you need

(i,3+1)
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e Very simple (always have 4 neighbors)

e Same deal with manifold meshes
e Could allow arbitrary meshes... ]\
e Manifold mesh often does everything you need

— N
e Very simple (predictable neighborhoods) 4‘ x

* L£.q., leads to nice data structures
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Topological Data Structures



Topological Data Structures — Adjacency List

* Store only top-dimensional simplices Example. (“hollow” tetrahedron)

* Pros: simple, small storage cost 3

e Cons: hard to iterate over, e.g., edges;
expensive to access neighbors
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Q: How might you list all edges touching a given vertex? What's the cost?




Topological Data Structures —Incidence Matrix

3
Example. 01 o s
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Definition. Let K be a simplicial complex, let 1, denote the number of k-simplices
in K, and suppose that for each k we give the k-simplices a canonical ordering so
that they can be specified via indices 1, ..., 1. The kth incidence matrix is then a
N1 X My matrix EX with entries EX. = 1 if the jth k-simplex is contained in the ith

1
(k + 1)-simplex, and Ef.‘]- — 0 otherwise.



Aside: Sparse Matrix Data Structures

* Enormous waste to explicitly store zeros (O(n) vs. O(n?))
* Instead use a sparse matrix data structure

e Associative array from (row, col) to value
y

* easy to lookup/set entries (e.g., hash table)
* harder to do matrix operations (e.g., multiply)

* Array of linked lists

* conceptually simple
e slow access time; incoherent memory access

* Compressed column format

e hard to add /remove entries
e fast for actual matrix operations (e.g., multiply)

e In practice: build “raw” list of entries first, then convert
to final (e.g., compressed) data structure
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Data Structures— Signed Incidence Matrix

A signed incidence matrix is an incidence matrix where the sign of each
nonzero entry is determined by the relative orientation of the two simplices
corresponding to that row / column.

Example.

0
o 1 2 3
1 -1 0 0°
1 0 1 0 o2
0 0 -1 1 g0 1 10
s 0o 1 0 -1 00 1
s 0 =1 1 0

(Closely related to discrete exterior calculus.)
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Topological Data Structures — Half Edge Mesh

Basic idea: each edge gets split into two oppositely-oriented half %

e Half edges act as “glue” between mesh elements.

e All other elements know only about a single half edge.

struct Halfedge
{ / /]
. ) struct Edge 0
Halfedge* twin; o e ey
Halfedge* next; 21T * o
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. Halfedge* halfedge; struct Face o
< }i { <

Vertex* vertex;

Edge* edge;
Halfedge* halfedge;

Face* face;
}i q }i
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vertex
struct Vertex
vertex {
Halfedge* halfedge;
}i

(You will use a half edge data structure in your assignments!)



Half Edge— Algebraic Definition

Definition. Let H be any set with an even number of elements, let p : H — H be
any permutation of H, and let 7 : H — H be an involution without any fixed points,
i.e., yony =id and y(h) # h for any h € H. Then (H, p,7) is a half edge mesh, the
elements of H are called half edges, the orbits of 77 are edges, the orbits of p are faces,
and the orbits of 77 o p are vertices.

Fact. Every half edge mesh describes a compact oriented topological surface (with-
out boundary).

. //\\
(hO/ IO /h9) — (hlthI hO/ h4/ h5/ h3/ h9/ h6/ h7/ h8) / \

“next”
| e,

2 f
h4
(o, .. ho) = (ha, he, Tz, o, hs, o, hy, ha, Ty, his) k \ %
rrin” \/




Half Edge— Smallest Example

Example. Consider just two half edges ho, h

twin

1(ho) =
n(h1) = ho




(L. Guibas & . Stolfi, “Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams”)






Dual Mesh— Visualized




Primal vs. Dual

0-simplex 1-simplex 2-simplex
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2-cell 1-cell 0-cell

Motivation: record measurements of flux through vs. circulation along elements.



Poincaré Duality

simplicial complex Poincaré dual (cell complex)
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Note: we have said nothing (so far) about where the dual vertices are—only connectivity.



Poincaré Duality in Nature
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