
DISCRETE DIFFERENTIAL
GEOMETRY:

AN APPLIED INTRODUCTION
Keenan Crane • CMU 15-458/858

Keenan Crane • CMU 15-458/858

DISCRETE DIFFERENTIAL
GEOMETRY:

AN APPLIED INTRODUCTION

LECTURE 2B:
INTRODUCTION TO MANIFOLDS

Today: What is a “Mesh?”
•Many possibilities…

•Simplicial complex

•Abstract vs. geometric simplicial complex

•Oriented, manifold simplicial complex

•Application: topological data analysis

•Cell complex

•Poincaré dual, discrete exterior calculus

•Data structures:

• adjacency list, incidence matrix, halfedge

Connection to Differential Geometry?

topological space abstract simplicial complex

Simplicial Manifold

Manifold—First Glimpse
Very rough idea: notion of “nice” space in geometry.

(Which one is “nice”?)

Manifold—First Glimpse
Key idea: manifold locally “looks like”

manifold nonmanifold

Simplicial Manifold—Visualized
Which of these simplicial complexes look “manifold?”

(E.g., where might it be hard to put a little xy-coordinate system?)

Simplicial Manifold—Definition

link (k=2) link (k=3)link (k=1)

*i.e., is homeomorphic to.

Definition. A simplicial k-complex is manifold if the link of every vertex looks
like* a (k-1)-dimensional sphere.

Aside: How hard is it to check if a given simplicial complex is manifold?
•(k=1) easy—is the whole complex just a collection of closed loops?
•(k=2) easy—is the link of every vertex a closed loop?
•(k=3) easy—is each link a 2-sphere? Just check if V-E+F = 2 (Euler’s formula)
•(k=4) is each link a 3-sphere? …Well, it’s known to be in NP! [S. Schleimer 2004]

Manifold Triangle Mesh
Key example: manifold triangle mesh (k=2)

•every edge is contained in exactly two triangles
•…or just one along the boundary

•every vertex is contained in a single “loop” of triangles
•…or a single “fan” along the boundary

nonmanifold edge nonmanifold vertex

Manifold Meshes—Motivation
•Why might it be preferable to work with a manifold mesh?

•Analogy: 2D images

•Lots of ways you could arrange pixels…

•A regular grid does everything you need

•Very simple (always have 4 neighbors)

•Same deal with manifold meshes

•Could allow arbitrary meshes…

•Manifold mesh often does everything you need

•Very simple (predictable neighborhoods)

•E.g., leads to nice data structures

Topological Data Structures

Topological Data Structures—Adjacency List
• Store only top-dimensional simplices

• Pros: simple, small storage cost

• Cons: hard to iterate over, e.g., edges;
expensive to access neighbors

Q: How might you list all edges touching a given vertex? What’s the cost?

Example. (“hollow” tetrahedron)

0

1

2

30 2 1
0 3 2
3 0 1
3 1 2

Topological Data Structures—Incidence Matrix

0 0

2
1 3

0

1

2

3

4
5

1

2

3
Example.

Q: What is the cost of finding edges incident on a given vertex?

Aside: Sparse Matrix Data Structures

(0,0) -> 4
(0,1) -> 2
(1,2) -> 3
(2,1) -> 7

(row,col) val

(0,4) (1,2)

(2,3)

(1,7)

0:

1:

2:

(col,val)

row

(col,val)

4,2,7,3

0,0,2,1

1,3,4

values

row indices

cumulative
entries
by column

• Enormous waste to explicitly store zeros (O(n) vs. O(n2))
• Instead use a sparse matrix data structure
• Associative array from (row, col) to value

• easy to lookup/set entries (e.g., hash table)
• harder to do matrix operations (e.g., multiply)

• Array of linked lists
• conceptually simple
• slow access time; incoherent memory access

• Compressed column format
• hard to add/remove entries
• fast for actual matrix operations (e.g., multiply)

• In practice: build “raw” list of entries first, then convert
to final (e.g., compressed) data structure

Data Structures—Signed Incidence Matrix

Example.

A signed incidence matrix is an incidence matrix where the sign of each
nonzero entry is determined by the relative orientation of the two simplices
corresponding to that row/column.

(Closely related to discrete exterior calculus.)

Topological Data Structures—Half Edge Mesh

H
a
l
f
e
d
g
e

twin

e
d
g
e

next

vertex

face

struct Halfedge
{
 Halfedge* twin;
 Halfedge* next;
 Vertex* vertex;
 Edge* edge;
 Face* face;
};

struct Vertex
{
 Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
 Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
 Halfedge* halfedge;
};

ha
lf
ed
ge

Face

Basic idea: each edge gets split into two oppositely-oriented half edges.
• Half edges act as “glue” between mesh elements.
• All other elements know only about a single half edge.

(You will use a half edge data structure in your assignments!)

Half Edge—Algebraic Definition

v0

e0

e1

e2e3

e4

h0

h1

h6

h7

f0f1

h8

h9

h2

h3
h4

h5

v1

v3 v2
“next”

“twin”

Half Edge—Smallest Example
Example. Consider just two half edges h0, h1 twin

next next

Other Data Structures—Quad Edge

(L. Guibas & J. Stolfi, “Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams”)

e

sym(e)
rot(e)

Dual Complex

Dual Mesh—Visualized

Primal vs. Dual

primal

dual

2-simplex

Motivation: record measurements of flux through vs. circulation along elements.

0-simplex 1-simplex

2-cell 1-cell 0-cell

simplicial complex

Poincaré Duality
Poincaré dual (cell complex)

Note: we have said nothing (so far) about where the dual vertices are—only connectivity.

Poincaré Duality in Nature

Thanks!

Keenan Crane • CMU 15-458/858

DISCRETE DIFFERENTIAL
GEOMETRY:

AN APPLIED INTRODUCTION

