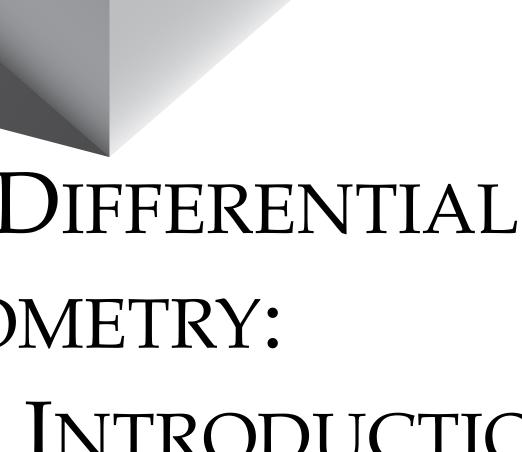
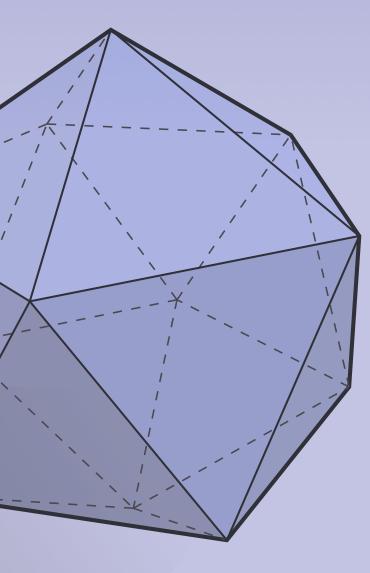
### DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858



# SUPPLEMENTAL: VECTOR-VALUED DIFFERENTIAL FORMS

### DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858



# Vector Valued k-Forms

• Originally defined *k*-form as linear map from *k* vectors to <u>real numbers</u> – To encode geometry, need functions that describe points in space – Will therefore generalize to <u>vector</u>-valued *k*-forms

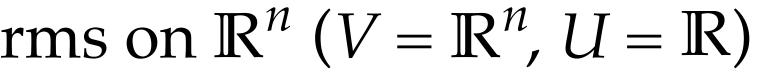
**Definition.** A *vector-valued k-form* is a fully antisymmetric multi-linear map from *k* vectors in a vector space *V* to another vector space *U*.

• Have already seen many  $\mathbb{R}$ -valued *k*-forms on  $\mathbb{R}^n$  ( $V = \mathbb{R}^n$ ,  $U = \mathbb{R}$ ) • A  $\mathbb{R}^3$ -valued 2-form on  $\mathbb{R}^2$  would instead be a multilinear, fully-antisymmetric map from a pair of vectors u,v in  $\mathbb{R}^2$  to a single vector in  $\mathbb{R}^3$ :

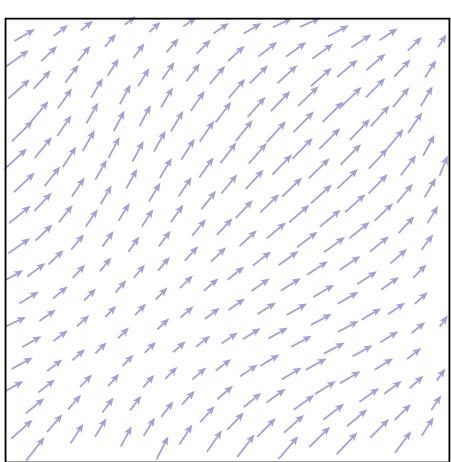
$$\alpha: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^3 \qquad \alpha(u, v) = -\alpha(v, u)$$

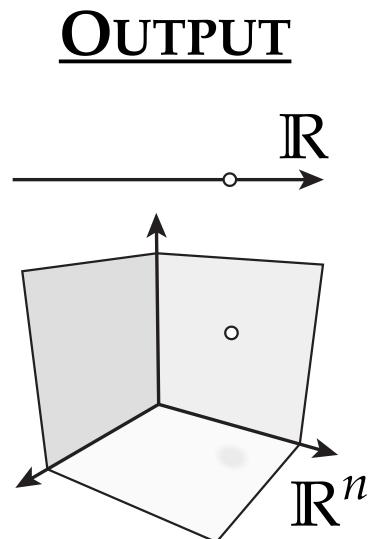
 $\alpha(au+bv,w) = a\alpha(u,w) + b\alpha(v,w),$ 

**Q**: What kind of object is a  $\mathbb{R}^2$ -valued 0-form on  $\mathbb{R}^2$ ?



$$\forall u, v, w \in \mathbb{R}^2, a, b \in \mathbb{R}$$





Vector-Valued k-forms—Example

Consider for instance the following  $\mathbb{R}^3$ -valued 1-form on  $\mathbb{R}^2$ :

 $\alpha := \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ 

**Q**: What do we get if we evaluate this 1-form on the vector

 $\mathcal{U}$  :=

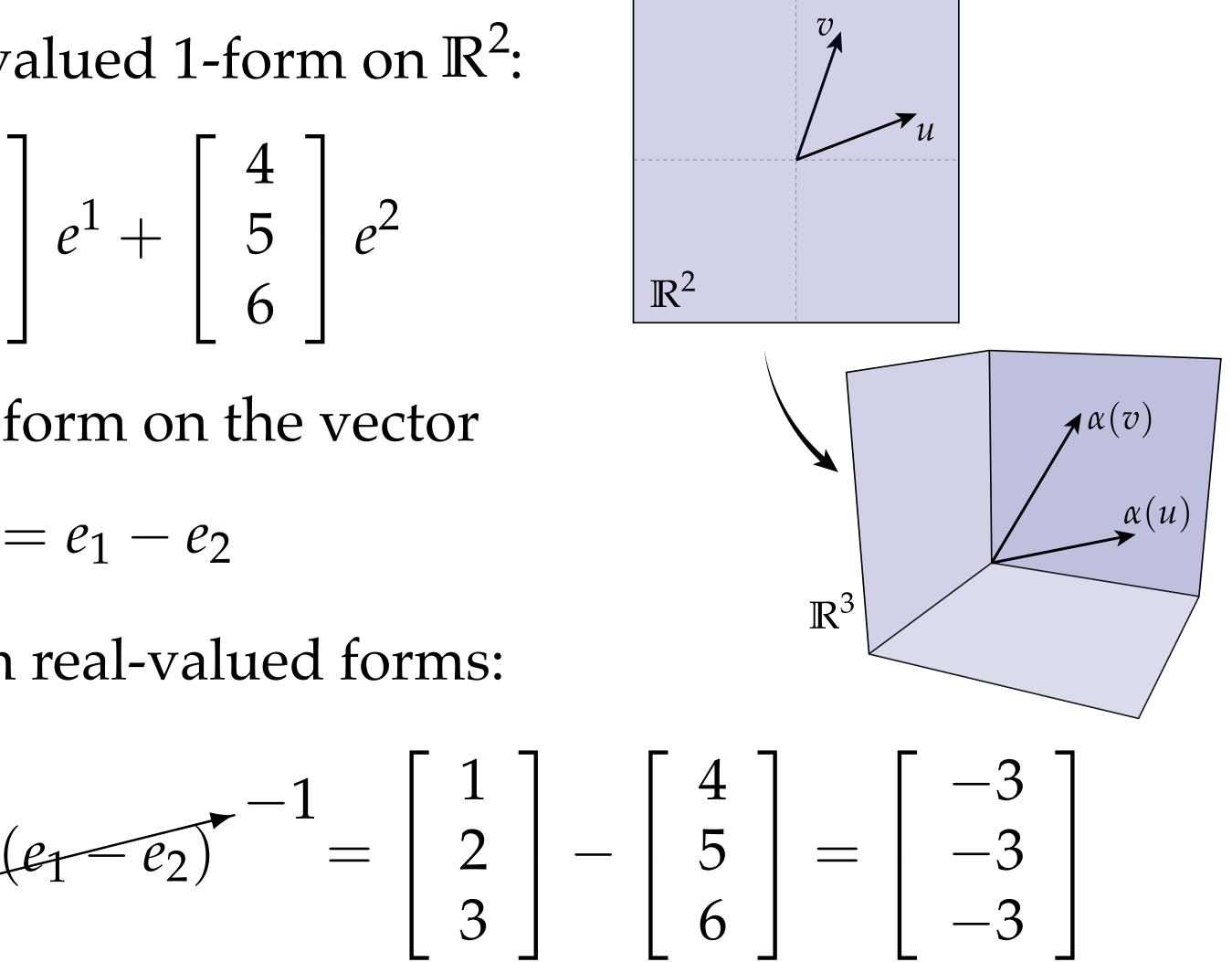
**A:** Evaluation is not much different from real-valued forms:

$$\alpha(u) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \underbrace{e^1(e_1 - e_2)}_{f} + \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \underbrace{e^2}_{f}$$

**Key idea:** most operations just look like scalar case, applied to each component

$$\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} e^2$$

$$= e_1 - e_2$$



Wedge Product of Vector-Valued k-Forms

- Most important change is how we evaluate wedge product for vector-valued forms.
- Consider for instance a pair of  $\mathbb{R}^3$ -valued 1-forms:  $\alpha, \beta: V \to \mathbb{R}^3$
- To evaluate their wedge product on a pair of vectors *u*,*v* we would normally write:  $(\alpha \wedge \beta)(u, v) = \alpha(u)\beta(v) - \alpha(v)\beta(u)$
- If  $\alpha$  and  $\beta$  were real-valued, then  $\alpha(u)$ ,  $\beta(v)$ ,  $\alpha(v)$ ,  $\beta(u)$ , would just be real numbers, so we could just multiply the two pairs and take their difference.
- But what does it mean to take the "product" of two vectors from  $\mathbb{R}^3$ ?
- Many possibilities (*e.g.*, dot product), but if we want result to be an  $\mathbb{R}^3$ -valued 2-form, the product we choose must produce another vector in  $\mathbb{R}^3$ !



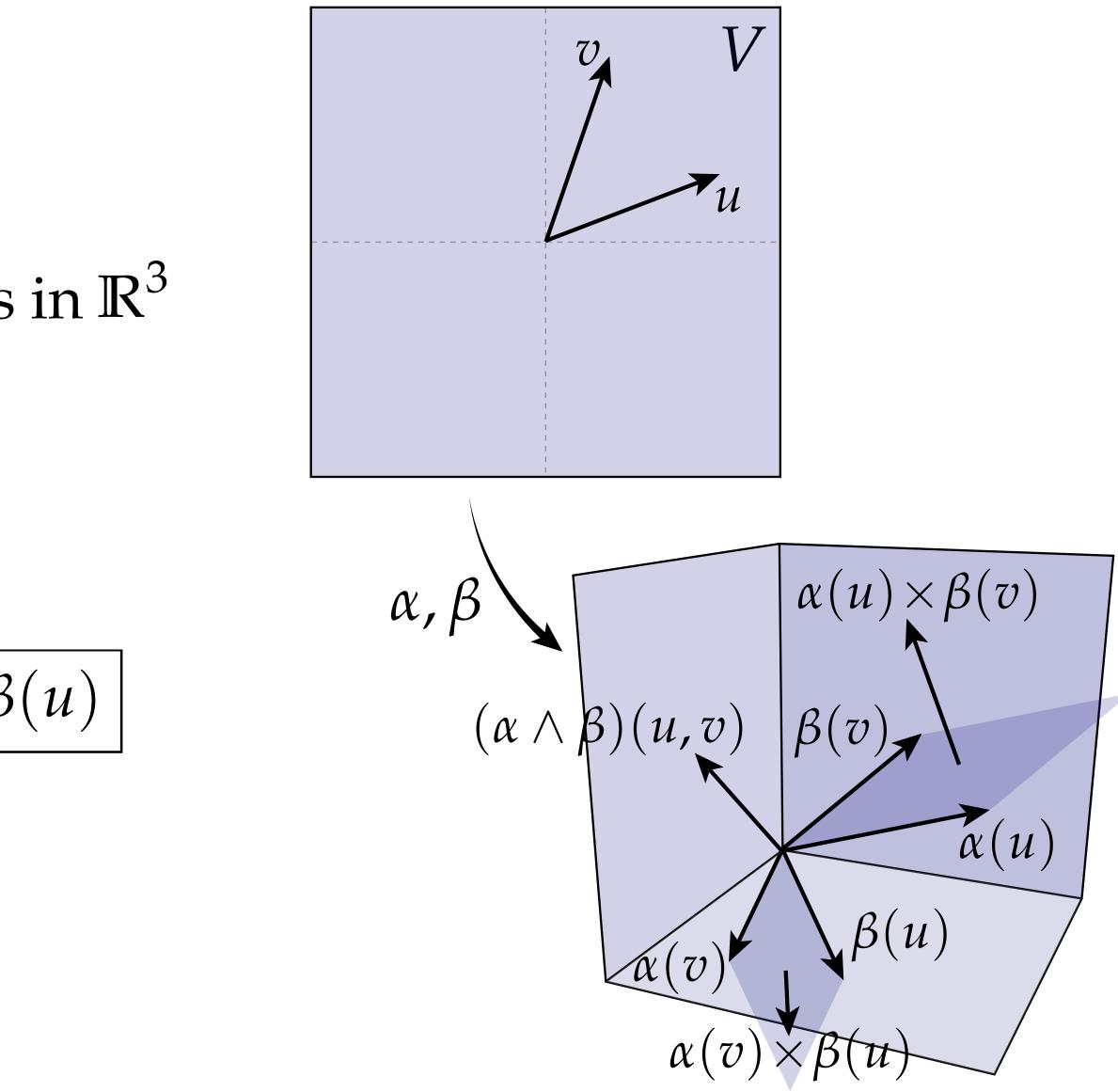


Wedge Product of  $\mathbb{R}^3$ -Valued k-Forms

- When working with 3D geometry:
  - -k-forms are  $\mathbb{R}^3$ -valued
  - use **cross product** to multiply vectors in  $\mathbb{R}^3$

$$\alpha, \beta: V \to \mathbb{R}^3$$
$$\alpha \land \beta: V \times V \to \mathbb{R}^3$$

 $(\alpha \wedge \beta)(u,v) := \alpha(u) \times \beta(v) - \alpha(v) \times \beta(u)$ 





 $\mathbb{R}^3$ -valued 1-forms: Antisymmetry & Symmetry

With real-valued forms, we observed antisymmetry in both the wedge product of 1forms as well as the application of the 2-form to a pair of vectors, *i.e.*,

What happens w /  $\mathbb{R}^3$ -valued 1-forms? Since cross product is antisymmetric, we get

(u))

$$(\alpha \wedge \beta)(v, u) = \alpha(v) \times \beta(u) - \alpha(u) \times \beta(v) = -(\alpha(u) \times \beta(v) - \alpha(v) \times \beta(v))$$

$$\Rightarrow \left| (\alpha \land \beta)(u,v) = -(\alpha \land \beta)(v,u) \right|$$

(same as with real-valued forms)

Key idea: "antisymmetries cancel"

 $(\alpha \wedge \beta)(u, v) = -(\alpha \wedge \beta)(v, u)$  $(\beta \wedge \alpha)(u, v) = -(\alpha \wedge \beta)(u, v)$ 

$$(\beta \wedge \alpha)(u, v) = \beta(u) \times \alpha(v) - \beta(v) \times$$
$$= \alpha(u) \times \beta(v) - \alpha(v) \times$$
$$= (\alpha \wedge \beta)(u, v)$$
$$\Rightarrow \boxed{\alpha \wedge \beta = \beta \wedge \alpha}$$
(no sign change)



 $\mathbb{R}^3$ -valued 1-forms: Self-Wedge

Likewise, we saw that wedging a real-valued 1-form with itself yields zero:

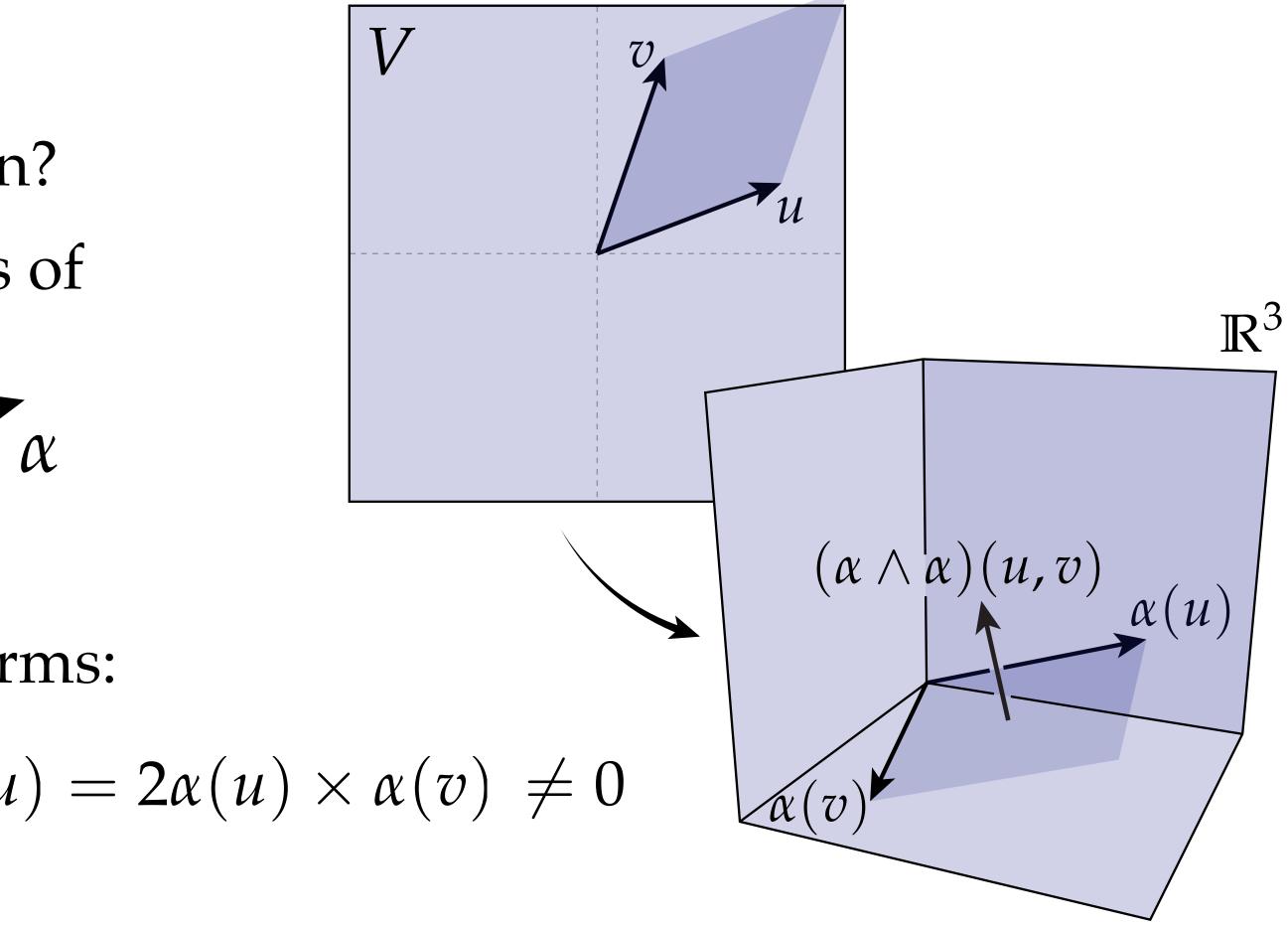
 $\alpha \wedge \alpha = 0$ 

**Q**: What was the *geometric* interpretation? A: Parallelogram made from two copies of the same vector has zero area!

No longer true with ( $\mathbb{R}^3$ , ×)-valued 1-forms:  $(\alpha \wedge \alpha)(u, v) = \alpha(u) \times \alpha(v) - \alpha(v) \times \alpha(u) = 2\alpha(u) \times \alpha(v) \neq 0$ 

**Q:** Geometric meaning?

A: Vector with (twice) area of "stretched out" parallelogram.



# Vector-Valued Differential k-Forms

- Just as we distinguished between a *k*-form (value at a single point) and a *differential k-form* (value at each point), will say that a vector*valued differential k-form* is a vector-valued *k*-form at each point.
- Just like any differential form, a vector-valued differential *k*-form gets evaluated on k vector fields  $X_1, ..., X_k$ .
- **Example:** an  $\mathbb{R}^3$ -valued differential 1-form on  $\mathbb{R}^2$ :

$$\alpha = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} dx + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} 0$$

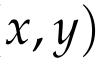
**Q**: What does  $\alpha$  do to a given vector field *U* in the plane? **A:** It turns it into a 3D vector field that "sticks out" of the plane.

dy

 $\alpha(U)(x,y)$ 







# Exterior Derivative on Vector-Valued Forms

Unlike the wedge product, not much changes with the exterior derivative. For instance, if we have an  $\mathbb{R}^n$ -valued *k*-form we can simply imagine we have *n* real-valued k-forms and differentiate as usual.

### Example.

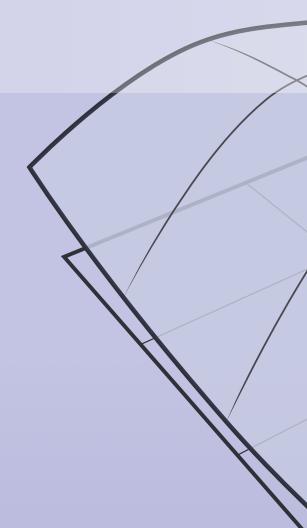
Consider an  $\mathbb{R}^2$ -valued differential 0-form

Then 
$$d\phi = \frac{\partial \phi}{\partial x}dx + \frac{\partial \phi}{\partial y}dy = \begin{bmatrix} 2x \\ y \end{bmatrix} dx + \begin{bmatrix} 0 \\ x \end{bmatrix}$$

Consider an 
$$\mathbb{R}^2$$
-valued differential 1-form  $\alpha_{(x,y)} := \begin{bmatrix} x^2 \\ xy \end{bmatrix} dx + \begin{bmatrix} xy \\ y^2 \end{bmatrix} dy$   
Then  $d\alpha = \left( \begin{bmatrix} 2x \\ y \end{bmatrix} dx + \begin{bmatrix} 0 \\ x \end{bmatrix} dy \right) \wedge dx + \left( \begin{bmatrix} y \\ 0 \end{bmatrix} dx + \begin{bmatrix} x \\ 2y \end{bmatrix} dy \right) \wedge dy = \begin{bmatrix} y \\ -x \end{bmatrix} dx \wedge dx$ 

$$\phi_{(x,y)} := \begin{bmatrix} x^2 \\ xy \end{bmatrix}$$
$$dy$$





### DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

