
User Guide for libDDG

Keenan Crane

October 3, 2011

1

Contents

1 Overview 4

2 Acknowledgements 5

3 Getting Started 6
3.1 Installing BLAS . 6
3.2 Installing SuiteSparse . 6
3.3 Installing OpenGL/GLUT . 7
3.4 Building libDDG . 7

4 Basic Routines and Data Structures 8
4.1 Geometry . 8

4.1.1 Mesh Attributes . 9
4.1.2 Boundaries . 10

4.2 Linear Algebra . 11
4.2.1 Automatic Indexing . 11
4.2.2 Fixed Variables . 12

4.3 Visualization . 15

5 Library Reference 16
5.1 DenseMatrix . 16

5.1.1 Class Reference . 16
5.2 Edge . 19

5.2.1 Class Reference . 19
5.3 Face . 20

5.3.1 Class Reference . 20
5.4 HalfEdge . 21

5.4.1 Class Reference . 21
5.5 Image . 22

5.5.1 Class Reference . 22
5.6 LinearContext . 23

5.6.1 Class Reference . 23
5.7 LinearEquation . 24

5.7.1 Class Reference . 24
5.8 LinearPolynomial . 25

5.8.1 Class Reference . 25
5.9 LinearSystem . 27

5.9.1 Class Reference . 27
5.10 Mesh . 28

5.10.1 Class Reference . 28
5.11 MeshIO . 30

5.11.1 Class Reference . 30
5.12 Shader . 31

5.12.1 Class Reference . 31

2

5.13 Quaternion . 33
5.13.1 Class Reference . 33

5.14 SparseMatrix . 37
5.14.1 Class Reference . 37

5.15 Variable . 41
5.15.1 Class Reference . 41

5.16 Vector . 43
5.16.1 Class Reference . 43

5.17 Vertex . 46
5.17.1 Class Reference . 46

3

1 Overview

“Premature optimization is the
root of all evil.”

Donald Knuth

libDDG is a collection of C++ classes designed for use in the Discrete Dif-
ferential Geometry (DDG) course at the California Institute of Technology and
the University of Göttingen. Emphasis is placed on pedagogy, readability, and
simplicity – the goal is to help students quickly prototype and experiment with
geometry processing algorithms, and experiment with the design of mesh data
structures. Note that libDDG is not production-ready code! In some cases per-
formance and generality have been compromised for the sake of simplicity and
legibility – students learning differential geometry have enough to worry about
without decrypting template metaprograms.

The primary function of libDDG is to build and solve linear algebra problems
based on polygonal meshes. libDDG also includes some facilities for visualiza-
tion via OpenGL. The basic idea is that students are given “bare bones” data
structures and slowly build up additional functionality over the duration of the
course. Certain tasks (such implementing a high-performance, general purpose
linear solver) are not the focus of the course – these components are instead
supported by external libraries.

4

2 Acknowledgements

Thanks to Peter Schröder for feedback on library syntax and to Clarisse Weischedel
for early beta testing and build support on Linux.

5

3 Getting Started

To build libDDG you will first need to install and/or build several dependencies:
BLAS and SuiteSparse for linear algebra, GLUT and OpenGL for visualization.
libDDG is designed to be used in a POSIX environment (Linux, BSD, Mac OS
X, etc.) using the GNU toolchain. On Windows your best option may be to
use MinGW or Cygwin. (If you are determined to use VisualStudio, see Evgenii
Rudnyi’s article on building SuiteSparse.)

3.1 Installing BLAS

Most platforms include a BLAS implementation by default. If you do not appear
to have BLAS on your system (or do not know where it lives), take a look at

http://www.netlib.org/blas/faq.html

On Windows/Cygwin, simply (re-)run the Cygwin installer and select all
the LAPACK packages in the Math category.

3.2 Installing SuiteSparse

The exact details of SuiteSparse installation may vary from system to system,
but this guide should get you started. Note that SuiteSparse is installed by
default on certain distributions of Linux. On Windows/Cygwin you can simply
select the SuiteSparse packages in the Cygwin installer (and skip the instructions
below); however, you may find that you need to manually download the file
SuiteSparseQR.hpp from the SuiteSparse home page and place it in C:
cygdrive
usr
include
suitesparse.

1. Download SuiteSparse from

http://www.cise.ufl.edu/research/sparse/SuiteSparse/current/SuiteSparse.
tar.gz

2. Check which version of METIS is currently required by SuiteSparse by
checking the SuiteSparse web page. As of October 3, 2011 SuiteSparse
uses METIS version 4.01, which can be downloaded from

6

http://en.wikipedia.org/wiki/GNU_toolchain
http://www.mingw.org/
http://www.cygwin.com/
http://matrixprogramming.com/2008/05/umfpack-vc
http://matrixprogramming.com/2008/05/umfpack-vc
http://www.netlib.org/blas/faq.html
http://www.cise.ufl.edu/research/sparse/SPQR/SPQR/Include/SuiteSparseQR.hpp
http://www.cise.ufl.edu/research/sparse/SPQR/SPQR/
http://www.cise.ufl.edu/research/sparse/SuiteSparse/current/SuiteSparse.tar.gz
http://www.cise.ufl.edu/research/sparse/SuiteSparse/current/SuiteSparse.tar.gz
http://www.cise.ufl.edu/research/sparse/SuiteSparse/

http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/OLD/metis-4.0.
1.tar.gz

Other versions of METIS can be obtained from the METIS home page.

3. Unarchive the SuiteSparse distribution.

4. Unarchive the METIS distribution and put it in the SuiteSparse directory
– otherwise SuiteSparse will not be able to find METIS.

5. Open SuiteSparse/README.txt – as mentioned there you will need to
edit the file SuiteSparse/UFconfig/UFconfig.mk to specify options for
your platform.

6. Type make in the SuiteSparse directory.

7. Type sudo make install in the SuiteSparse directory (you will be prompted
for your password). For some reason SuiteSparse does not always set the
correct permissions on header files. If you are getting “permission denied”
errors, try typing

sudo chmod ugo+r /usr/local/include/*.h /usr/local/include/*.hpp.

8. Install the METIS library by typing

sudo cp metis-4.0/libmetis.a /usr/local/lib

(or the appropriate subdirectory) in the SuiteSparse root directory.

3.3 Installing OpenGL/GLUT

Most platforms include OpenGL and GLUT by default, but if you are on Win-
dows (and not using Cygwin) you will need to install the version of GLUT
available here:

http://www.xmission.com/~nate/glut.html

3.4 Building libDDG

Once dependencies are bulit and installed, you must specify their locations by
editing the Makefile in the root libddg directory. Default options for several
platforms are available but may need to be modified for your particular en-
vironment. Finally, type make in the root libDDG directory, which builds the
executable ddg. To check if the code was built successfully, run

./ddg data/bunny.obj

which should bring up a window displaying the Stanford bunny.

7

http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/OLD/metis-4.0.1.tar.gz
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/OLD/metis-4.0.1.tar.gz
http://glaros.dtc.umn.edu/gkhome/metis/metis/download
http://www.xmission.com/~nate/glut.html
http://graphics.stanford.edu/software/scanview/models/bunny.html

4 Basic Routines and Data Structures

This section gives a high-level introduction to the major classes in libDDG – for
more detailed documentation of individual methods see Section 5.

4.1 Geometry

The representation for geometry in libDDG is a bare-bones halfedge data struc-
ture, which encodes a mesh with polygonal faces. The idea is that students will
extend this data structure over the course of several assignments. Mesh con-
nectivity is determined by a collection of halfedges, which encode the incidence
relationships among mesh elements (vertices, edges, and faces):

H
a
l
f
E
d
g
e

flip

e
d
g
e

next

vertex

face

class HalfEdge
{
 public:
 HalfEdgeIter next;
 HalfEdgeIter flip;
 VertexIter vertex;
 EdgeIter edge;
 FaceIter face;
};

Other mesh elements do not encode connectivity information – they are used
simply as a place to store mesh attributes (normals, colors, etc.). However, each
mesh element stores a reference to one of its halfedges:

heFacehe

E
d
g
ehe

Vertex

8

The primary benefit of the halfedge data structure is that it provides a lot
of flexibility for iterating over different mesh regions. For instance, to iterate
over all the vertices of a face f we might write the following loop:

HalfEdgeIter he = f->he;
do
{

// do something with he->vertex

he = he->next;
}
while(he != f->he);

Alternatively, the following loop iterates over all vertices adjacent to a given
vertex v:

HalfEdgeIter he = v->he;
do
{

// do something with he->flip->vertex

he = he->flip->next;
}
while(he != v->he);

(Most loops will have this same sort of “do-while” structure.) Note that by
construction the halfedge data structure can represent only orientable surfaces
where every edge is manifold, i.e., every edge is contained in at most two faces.
Non-manifold vertices are possible, however.

4.1.1 Mesh Attributes

One challenging question in the design of mesh data structures is: how do you
associate data with mesh elements? Users need to store a variety of different
mesh attributes depending on the particular geometry processing problem, but
for some reason (possibly related to the available programming paradigms in
C++) managing different meshes with different attributes can add considerable
complexity to the code. There are several approaches, but to date it is not clear
that one of these approaches is the clear “winner” – CGAL, OpenMesh, and
Mesquite demonstrate several possibilities; Seiger and Botsch provide a survey of
these data structures and propose an attractive alternative [1]. libDDG remains

9

http://www.cgal.org/
http://www.openmesh.org/index.php?id=214
http://www.cs.sandia.gov/optimization/knupp/Introduction.htm

largely agnostic to this issue, providing only a bare-bones data structure that
challenges students to explore these design issues for themselves.

For very simple projects, however, it is usually sufficient to just add mesh
attributes directly to element classes. For instance, to associate a color with
each vertex one could modify the Vertex class to look like this:

class Vertex
{

public:
HalfEdgeIter he;

Vector color; // new attribute
};

4.1.2 Boundaries

Surfaces with boundary are handled by treating each boundary loop as an ad-
ditional face in the mesh. To determine whether a face f is a boundary face,
simply call the routine f->isBoundary(). For instance, to iterate over all non-
boundary faces one might write

for(FaceIter f = faces.begin(); f != faces.end(); f++)
{

if(!f->isBoundary())
{

// do some stuff
}

}

10

4.2 Linear Algebra

At the most basic level, libDDG provides a wrapper around the SuiteSparse
library which can be used to build and solve sparse linear systems. For instance,
to solve the system Ax = b with

A =
[

1 3
2 4

]

and

b =
[

5
6

]
,

we can simply write

SparseMatrix A(2, 2);
A(0,0) = 1; A(0,1) = 3;
A(1,0) = 2; A(1,1) = 4;

DenseMatrix b(2, 1);
b(0) = 5;
b(1) = 6;

DenseMatrix x(2, 1);
solve(A, x, b);

The solution will be stored in the dense vector x.

4.2.1 Automatic Indexing

The most meticulous part of geometry processing is often establishing a corre-
spondence between mesh elements and variables in a linear system. The usual
idea is that each element is given a unique integer ID which is used as a row
or column index in a matrix. In many cases, however, there is no good rea-
son for the programmer to think about a linear system in terms of matrices,
indices, and so forth. In these situations, libDDG provides an abstraction that
automatically handles variable indexing and indeed the entire process of solving
a linear system. This abstraction is especially useful for debugging and rapid

11

prototyping (though it should be noted that better performance can often be
achieved by building matrices “by hand.”)

For example, suppose one wants to solve the linear system

3(x + y/2) + z = 4
z − 8 = y + x/9

(x + y)/5 + (y + z)/6 = 7

for the values x, y, and z. In libDDG this system can be solved by simply
writing

LinearSystem sys;
Variable x, y, z;

sys.push_back(3*(x+y/2) + z == 4);
sys.push_back(z-8 == y+x/9);
sys.push_back((x+y)/5 + (y+z)/6 == 7);

sys.solve();

There are a few things to note here. First, we did not need to put the
equations into some kind of special form (e.g., we did not have to move all terms
to the left-hand side or expand the expression in terms of primary variables).
This kind of flexibility makes it easy to verify visually that we typed in the
right set of equations. Second, note that the method LinearSystem::solve()
automatically copies the solution of the system back into our variables x, y, and
z. For instance, if we now wanted to display the solution we could simply write

cout << "x: " << *x << endl;
cout << "y: " << *y << endl;
cout << "z: " << *z << endl;

Here the dereference operator (*) is used to access the numerical value stored
in each variable (whereas variables are typically treated as purely symbolic ob-
jects).

4.2.2 Fixed Variables

In many cases it is useful to be able to fix certain variables (i.e., hold their
values constant) while solving a linear system – for instance, one might want to

12

prescribe boundary conditions in a finite element problem. In libDDG , variables
can be fixed by setting the flag Variable::fixed. For instance, consider the
system

x + y = a
x− y = b

which can be encoded via

LinearSystem sys;
Variable x, y, a, b;

sys.push_back(x + y == a);
sys.push_back(x - y == b);

Initially, all the variables (x, y, a, and b) are degrees of freedom in our
system. To fix the values on the right hand, we simply write

a.fixed = true;
b.fixed = true;

Now when we call sys.solve(), the variables a and b will automatically be
interpreted as constants. For instance, to solve a sequence of systems with
different right-hand sides we could write

*a = 1;
*b = 2;
sys.solve();

*a = 3;
*b = 4;
sys.solve();

Moreover, we can dynamically change the set of fixed variables. For instance,
to keep x and y fixed while solving for a and b, we would write something like

13

a.fixed = false;
b.fixed = false;

x.fixed = true;
y.fixed = true;

*x = 1.23;
*y = 4.56;

sys.solve();

14

4.3 Visualization

The Viewer class provides basic facilities for inspecting and interacting with
a mesh. Additional functionality can be added using OpenGL, GLUT, and
GLSL (see NeHe for a nice collection of OpenGL/GLUT tutorials). Setting up
a viewer for a mesh can be done in just three lines:

Viewer viewer;
viewer.mesh.read(meshFilename);
viewer.init();

which should bring up a viewer window similar to the one pictured above.
Right-clicking on this window brings up a list of commands and their keyboard
equivalents.

15

http://nehe.gamedev.net/

5 Library Reference

5.1 DenseMatrix

DenseMatrix represents an m by n (real or complex) matrix where every entry –
including zero-valued entries – is stored explicitly. This class is most commonly
used to represent dense vectors in sparse linear systems (i.e., the right hand side
and the solution vector).

A real or complex matrix is allocated via

DenseMatrix A(m, n);
DenseMatrix A(m, n, Complex);

Matrix elements are then accessed using parenthesis, e.g.,

A(i,j) = 1;
A(i,j) += 2;
a = A(i,j);

etc.
DenseMatrix is interoperable with the SuiteSparse numerical linear algebra

library. In particular, dereferencing a DenseMatrix returns a cholmod dense*
which can be used by routines in SuiteSparse. For basic operations, however,

you should not need to access this pointer explicitly -- see the solve()
method in SparseMatrix.h.

5.1.1 Class Reference

DenseMatrix(int m = 0, int n = 0, int xtype = Real);

Purpose: initialize an mxn matrix of doubles xtype is either DDG::Real or
DDG::Complex

DenseMatrix(const DenseMatrix& A);

Purpose: copy constructor

const DenseMatrix& operator=(const DenseMatrix& A);

Purpose: copies A

~DenseMatrix(void);

Purpose: destructor

16

int nRows(void) const;

Purpose: returns the number of rows

int nColumns(void) const;

Purpose: returns the number of columns

int length(void) const;

Purpose: returns the size of the largest dimension

void zero(double rVal = 0., double iVal = 0.);

Purpose: sets all elements to rVal+iVal*i

double norm(void);

Purpose: returns the maximum magnitude of any entry

double& operator()(int row, int col);
double operator()(int row, int col) const;
double& r(int row, int col);
double r(int row, int col) const;

Purpose: access real part of element (row,col) note: uses 0-based indexing

double& i(int row, int col);
double i(int row, int col) const;

Purpose: access imaginary part of element (row,col) note: uses 0-based index-
ing

double& operator()(int index);
double operator()(int index) const;

Purpose: access real part of element ind of a vector note: uses 0-based indexing

double& r(int index);
double r(int index) const;

Purpose: access real part of element ind of a vector note: uses 0-based indexing

17

double& i(int index);
double i(int index) const;

Purpose: access imaginary part of element ind of a vector note: uses 0-based
indexing

DenseMatrix transpose(void) const;

Purpose: returns the transpose of this matrix

DenseMatrix operator*(const DenseMatrix& B) const;

Purpose: returns product of this matrix with B

void operator*=(double c);

Purpose: multiplies this matrix by the scalar c

void operator/=(double c);

Purpose: divides this matrix by the scalar c

DenseMatrix operator+(const DenseMatrix& B) const;

Purpose: returns sum of this matrix with B

DenseMatrix operator-(const DenseMatrix& B) const;

Purpose: returns difference of this matrix with B

cholmod_dense* operator*(void) const;

Purpose: returns pointer to underlying cholmod dense data structure

const DenseMatrix& operator=(cholmod_dense* A);

Purpose: gets pointer to A; will deallocate A upon destruction

18

5.2 Edge

Edge stores attributes associated with a mesh edge. The iterator he points to
one of its two associated halfedges. (See the documentation for a more in-depth
discussion of the halfedge data structure.)

5.2.1 Class Reference

HalfEdgeIter he;

Purpose: points to one of the two halfedges associated with this edge

19

5.3 Face

Face stores attributes associated with a mesh edge. The iterator he points to
one of its associated halfedges. (See the documentation for a more in-depth
discussion of the halfedge data structure.)

5.3.1 Class Reference

HalfEdgeIter he;

Purpose: points to one of the halfedges associated with this face

bool isBoundary(void) const;

Purpose: returns true if this face corresponds to a boundary loop; false other-
wise

Vector normal(void) const;

Purpose: returns the unit normal associated with this face; normal orientation
is determined by the circulation order of halfedges

20

5.4 HalfEdge

HalfEdge is used to define mesh connectivity. (See the documentation for a
more in-depth discussion of the halfedge data structure.)

5.4.1 Class Reference

HalfEdgeIter next;

Purpose: points to the next halfedge around the current face

HalfEdgeIter flip;

Purpose: points to the other halfedge associated with this edge

VertexIter vertex;

Purpose: points to the vertex at the “tail” of this halfedge

EdgeIter edge;

Purpose: points to the edge associated with this halfedge

FaceIter face;

Purpose: points to the face containing this halfedge

bool onBoundary;

Purpose: true if this halfedge is contained in a boundary loop; false otherwise

Vector texcoord;

Purpose: texture coordinates associated with the triangle corner at the “tail”
of this halfedge

21

5.5 Image

Image represents a color bitmap image. A simple example might look like

Image im;
im.read("input.tga");
// modify image data via im(x,y) = ...;
im.write("output.tga");

5.5.1 Class Reference

Image(int width = 0, int height = 0);

Purpose: constructs image with specified width and height

float& operator()(int x, int y);
const float& operator()(int x, int y) const;

Purpose: accesses pixel (x,y)

float sample(float x, float y) const;

Purpose: samples image at (x,y) using bilinear filtering

int width(void) const;
int height(void) const;

Purpose: returns image dimensions

void read(const char* filename);

Purpose: loads an image file in Truevision TGA format (must be RGB image
with 24 or 32 bits per pixel)

void write(const char* filename) const;

Purpose: writes an image file in Truevision TGA format (RGB image with 24
bits per pixel)

22

5.6 LinearContext

LinearContext is the global solver context needed to interface with the SuiteS-
parse library. It is essentially a wrapper around cholmod common. A single
static instance of LinearContext is declared in LinearContext.cpp and is shared
by all instances of DenseMatrix, SparseMatrix, and LinearSystem. In other
words, you shouldn’t have to instantiate LinearContext yourself unless you’re
doing something really fancy!

5.6.1 Class Reference

LinearContext(void);

Purpose: constructor

~LinearContext(void);

Purpose: destructor

operator cholmod_common*(void);

Purpose: allows LinearContext to be treated as a cholmod common*

23

5.7 LinearEquation

LinearEquation represents an equation with an arbitrary linear polynomial on
both the left- and right-hand side. It is primarily used while building a Lin-
earSystem. For convenience, operator== is overloaded so that the user can
construct a LinearEquation by writing something that looks much like the usual
mathematical syntax for a linear equation. For example,

LinearEquation eqn = (x + 2*y == 3*z);

builds the linear equation x + 2y = 3z.

5.7.1 Class Reference

LinearPolynomial lhs;

Purpose: left-hand side

LinearPolynomial rhs;

Purpose: right-hand side

24

5.8 LinearPolynomial

LinearPolynomial represents an affine function of the form

f(x1, x2, ..., xn) = c1x1 + c2x2 + ... + cnxn + d

where the xi are real-valued variables with real coefficients ci, and d is a real
constant. The variables and their coefficients are represented using instances
of the Variable class. LinearPolynomial implements all the usual algebraic op-
erations on affine functions, as well as type conversions from more elementary
types (scalars, single variables, etc.).

Importantly, variables used in a LinearPolynomial should not be deallocated
while the polynomial is still in use – LinearPolynomial stores only a reference
to these variables so that the solution to a linear system can be automatically
copied back into the variables.

5.8.1 Class Reference

LinearPolynomial(void);

Purpose: constructs the zero function

LinearPolynomial(double c);

Purpose: constructs the constant function with value c

LinearPolynomial(Variable& v);

Purpose: constructs a function with a single variable v

const LinearPolynomial& operator=(double c);

Purpose: assigns the constant function with value c

const LinearPolynomial& operator=(Variable& v);

Purpose: assigns a function with a single variable v

void operator+=(double c);
void operator-=(double c);
void operator*=(double c);
void operator/=(double c);

Purpose: adds, subtract, multiplies, or divides by a constant

25

void operator+=(Variable& v);
void operator-=(Variable& v);

Purpose: increments or decrements by a single variable v

void operator+=(const LinearPolynomial& p);
void operator-=(const LinearPolynomial& p);

Purpose: increments or decrements by an affine function

LinearPolynomial operator-(void) const;

Purpose: returns the additive inverse (i.e., negation)

double evaluate(void) const;

Purpose: evaluates the function using the current values of its variables

std::map<Variable*,double> linearTerms;

Purpose: list of linear terms

double constantTerm;

Purpose: constant term

26

5.9 LinearSystem

LinearSystem represents a system of linear equations expressed in terms of in-
stances of the Variable class. The main idea is to make it easy to construct
and solve linear systems without explicitly think about variable indices, matrix
layout, etc. (This kind of abstraction is particularly useful for debugging and
rapid prototyping.) See the documentation for examples of building linear and
solving systems.

Importantly, any variable used by a LinearSystem should not be deallocated
while the system is still in use, because the method LinearSystem::solve() auto-
matically copies the solution back into the variables used to define the equations.
(In the future variables may become reference-counted in order to avoid this is-
sue.)

Note that LinearSystem::solve() uses a general-purpose linear solver (namely
the sparse QR factorization found in SuiteSparse) that is quite fast but may not
always be your best option. To improve performance you may want to build the
system explicitly using an instance of SparseMatrix and call a more specialized
solver. (In the future there may be options for specifying that a LinearSystem
is, e.g., symmetric and positive-definite.)

5.9.1 Class Reference

void clear(void);

Purpose: removes all equations from the system

void push_back(const LinearEquation& e);

Purpose: appends the equation e to the sytem

void solve(void);

Purpose: solves the system and automatically stores the result in the variables
for an overdetermined system, computes a least-squares solution

std::vector<LinearEquation> equations;

Purpose: the collection of equations defining the system

27

5.10 Mesh

Mesh represents a polygonal surface mesh using the halfedge data structure. It is
essentially a large collection of disjoint vertices, edges, and faces that are “glued
together” by halfedges which encode connectivity (see the documentation for
an illustration). By construction, the halfedge data structure cannot represent
nonorientable surfaces or meshes with nonmanifold edges.

Mesh elements are referenced using iterators – common usage of these iter-
ators is to either traverse an entire vector of mesh elements:

// visit all vertices
for(VertexIter i = vertices.begin(); i != vertices.end(); i++)
{

// ...
}

or to perform a local traversal over the neighborhood of some mesh element:

// visit both halfedges of edge e
HalfEdgeIter he = e->he;
do {

// ...
he = he->flip;

} while(he != e->he);

(See Types.h for an explicit definition of iterator types.)
Meshes with boundary are handled by creating an additional face for each

boundary loop (the method Face::isBoundary() determines whether a given face
is a boundary loop). Isolated vertices (i.e., vertiecs not contained in any edge
or face) reference a dummy halfedge and can be checked via the method Ver-
tex::isIsolated().

5.10.1 Class Reference

Mesh(void);

Purpose: constructs an empty mesh

Mesh(const Mesh& mesh);

Purpose: constructs a copy of mesh

const Mesh& operator=(const Mesh& mesh);

Purpose: copies mesh

28

int read(const std::string& filename);

Purpose: reads a mesh from a Wavefront OBJ file; return value is nonzero
only if there was an error

int write(const std::string& filename) const;

Purpose: writes a mesh to a Wavefront OBJ file; return value is nonzero only
if there was an error

bool reload(void);

Purpose: reloads a mesh from disk using the most recent input filename

void normalize(void);

Purpose: centers around the origin and rescales to have unit radius

std::vector<HalfEdge> halfedges;
std::vector<Vertex> vertices;
std::vector<Edge> edges;
std::vector<Face> faces;

Purpose: storage for mesh elements

29

5.11 MeshIO

MeshIO handles input/output operations for Mesh objects. Currently the only
supported mesh format is Wavefront OBJ – for a format specification see

http://en.wikipedia.org/wiki/Wavefront_.obj_file
Note that vertex normals and material properties are currently ignored.

5.11.1 Class Reference

static int read(std::istream& in, Mesh& mesh);

Purpose: reads a mesh from a valid, open input stream in

static void write(std::ostream& out, const Mesh& mesh);

Purpose: writes a mesh to a valid, open output stream out

30

http://en.wikipedia.org/wiki/Wavefront_.obj_file

5.12 Shader

Shader encapsulates the functionality of a shader program written in the OpenGL
Shader Language (GLSL). Basic usage is to read a collection of source files to
disk and enable the shader before making draw calls. For instance, during ini-
tialization one might write

Shader shader;
shader.loadVertex("vertex.glsl");
shader.loadFragment("fragment.glsl");

and in the main draw routine write

shader.enable();
// draw some stuff
shader.disable();

5.12.1 Class Reference

Shader(void);

Purpose: constructor – shader is initially invalid

~Shader(void);

Purpose: destructor

void loadVertex(const char* filename);

Purpose: read vertex shader from GLSL source file

void loadFragment(const char* filename);

Purpose: read fragment shader from GLSL source file

void loadGeometry(const char* filename);

Purpose: read geometry shader from GLSL source file

void enable(void);

Purpose: uses this shader for rendering

31

void disable(void) const;

Purpose: uses the fixed-function pipeline for rendering

operator GLuint(void) const;

Purpose: returns the ID of this shader program (for calls to OpenGL)

32

5.13 Quaternion

Quaternion represents an element of the quaternions, along with all the usual
vectors space operations (addition, multiplication by scalars, etc.). The Hamil-
ton product is expressed using the * operator:

Quaternion p, q, r;
r = q * p;

and conjugation is expressed using the method Quaternion::bar():

Quaternion q;
double normQSquared = -q.bar()*q;

Individual components can be accessed in several ways: the real and imaginary
parts can be accessed using the methods Quaternion::re() and Quaternion::im():

Quaternion q;
double a = q.re();
Vector b = q.im();

or by index:

Quaternion q;
double a = q[0];
double bi = q[1];
double bj = q[2];
double bk = q[3];

5.13.1 Class Reference

Quaternion(void);

Purpose: initializes all components to zero

Quaternion(const Quaternion& q);

Purpose: initializes from existing quaternion

Quaternion(double s, double vi, double vj, double vk);

Purpose: initializes with specified real (s) and imaginary (v) components

Quaternion(double s, const Vector& v);

33

Purpose: initializes with specified real (s) and imaginary (v) components

Quaternion(double s);

Purpose: initializes purely real quaternion with specified real (s) component

Quaternion(const Vector& v);

Purpose: initializes purely imaginary quaternion with specified imaginary (v)
component

const Quaternion& operator=(double s);

Purpose: assigns a purely real quaternion with real value s

const Quaternion& operator=(const Vector& v);

Purpose: assigns a purely real quaternion with imaginary value v

double& operator[](int index);

Purpose: returns reference to the specified component (0-based indexing: r, i,
j, k)

const double& operator[](int index) const;

Purpose: returns const reference to the specified component (0-based indexing:
r, i, j, k)

void toMatrix(double Q[4][4]) const;

Purpose: builds 4x4 matrix Q representing (left) quaternion multiplication

double& re(void);

Purpose: returns reference to double part

const double& re(void) const;

Purpose: returns const reference to double part

Vector& im(void);

34

Purpose: returns reference to imaginary part

const Vector& im(void) const;

Purpose: returns const reference to imaginary part

Quaternion operator+(const Quaternion& q) const;

Purpose: addition

Quaternion operator-(const Quaternion& q) const;

Purpose: subtraction

Quaternion operator-(void) const;

Purpose: negation

Quaternion operator*(double c) const;

Purpose: right scalar multiplication

Quaternion operator/(double c) const;

Purpose: scalar division

void operator+=(const Quaternion& q);

Purpose: addition / assignment

void operator+=(double c);

Purpose: addition / assignment of pure real

void operator-=(const Quaternion& q);

Purpose: subtraction / assignment

void operator-=(double c);

Purpose: subtraction / assignment of pure real

void operator*=(double c);

35

Purpose: scalar multiplication / assignment

void operator/=(double c);

Purpose: scalar division / assignment

Quaternion operator*(const Quaternion& q) const;

Purpose: Hamilton product

void operator*=(const Quaternion& q);

Purpose: Hamilton product / assignment

Quaternion bar(void) const;

Purpose: conjugation

Quaternion inv(void) const;

Purpose: inverse

double norm(void) const;

Purpose: returns Euclidean length

double norm2(void) const;

Purpose: returns Euclidean length squared

Quaternion unit(void) const;

Purpose: returns unit quaternion

void normalize(void);

Purpose: divides by Euclidean length

36

5.14 SparseMatrix

SparseMatrix represents an m by n (real or complex) matrix where only nonzero
entries are stored explicitly. This class is most commonly used to represent the
linear term in sparse linear systems (i.e., the matrix part).

A real or complex matrix is allocated via

SparseMatrix A(m, n);
SparseMatrix A(m, n, Complex);

Matrix elements are then accessed using parenthesis, e.g.,

A(i,j) = 1;
A(i,j) += 2;
a = A(i,j);

etc.
SparseMatrix is interoperable with the SuiteSparse numerical linear algebra

library. In particular, dereferencing a SparseMatrix returns a cholmod sparse*
which can be used by routines in SuiteSparse. For basic operations, however,
you should not need to access this pointer explicitly – see the solve() method
below.

Internally SparseMatrix stores nonzero entries in a heap data structure; the
amortized cost of insertion is therefore no worse than the sorting cost of putting
the matrix in compressed-column order.

5.14.1 Class Reference

SparseMatrix(int m = 0, int n = 0, int xtype = Real);

Purpose: initialize an mxn matrix of doubles xtype is either DDG::Real or
DDG::Complex

~SparseMatrix(void);

Purpose: destructor

const SparseMatrix& operator=(cholmod_sparse*);

Purpose: copies a cholmod sparse* into a SparseMatrix

void resize(int m, int n);

Purpose: clears and resizes to mxn matrix

37

SparseMatrix transpose(void) const;

Purpose: returns the transpose of this matrix

cholmod_sparse* operator*(void);

Purpose: dereference operator gets pointer to underlying cholmod sparse data
structure

SparseMatrix operator*(const SparseMatrix& B) const;

Purpose: returns product of this matrix with sparse B

DenseMatrix operator*(const DenseMatrix& B) const;

Purpose: returns product of this matrix with dense B

void operator*=(double c);

Purpose: multiplies this matrix by the scalar c

void operator/=(double c);

Purpose: divides this matrix by the scalar c

void operator+=(const SparseMatrix& B);

Purpose: adds B to this matrix

void operator-=(const SparseMatrix& B);

Purpose: subtracts B from this matrix

SparseMatrix operator+(const SparseMatrix& B) const;

Purpose: returns sum of this matrix with B

SparseMatrix operator-(const SparseMatrix& B) const;

Purpose: returns difference of this matrix with B

int nRows(void) const;

38

Purpose: returns the number of rows

int nColumns(void) const;

Purpose: returns the number of columns

int length(void) const;

Purpose: returns the size of the largest dimension

void zero(double rVal = 0., double iVal = 0.);

Purpose: sets all nonzero elements to rVal+iVal*i

void horzcat(const SparseMatrix& A, const SparseMatrix& B);

Purpose: replaces the current matrix with [A, B]

void vertcat(const SparseMatrix& A, const SparseMatrix& B);

Purpose: replaces the current matrix with [A; B]

double& operator()(int row, int col);
double operator()(int row, int col) const;
double& r(int row, int col);
double r(int row, int col) const;

Purpose: access real part of element (row,col) note: uses 0-based indexing

double& i(int row, int col);
double i(int row, int col) const;

Purpose: access imaginary part of element (row,col) note: uses 0-based index-
ing

typedef std::pair<int,int> EntryIndex;

Purpose: convenience type for an entry index; note that we store column
THEN row, which makes it easier to build compressed column format

typedef std::pair<double,double> EntryValue;

Purpose: convenience type for a complex entry value (real,imaginary)

39

typedef std::map<EntryIndex,EntryValue> EntryMap;
typedef EntryMap::iterator iterator;
typedef EntryMap::const_iterator const_iterator;

Purpose: convenience type for storing and accessing entries

iterator begin(void);
const_iterator begin(void) const;
iterator end(void);
const_iterator end(void) const;

Purpose: return iterators to first and last nonzero entries

int stype;

SparseFactor(void);
~SparseFactor(void);

void build(SparseMatrix& A);

Purpose: factorizes positive-definite matrix A using CHOLMOD

bool valid(void) const;

Purpose: returns true if the factor has been built; false otherwise

cholmod_factor* operator*(void);

Purpose: dereference operator gets pointer to underlying cholmod factor data
structure

40

5.15 Variable

Variable represents a variable that can be used to define a (linear or nonlinear)
system of equations. Its main feature is that it can be used both as an abstract
variable (e.g., when used to define an equation) but can also store a definite
numerical value. For instance, suppose we define a linear polynomial

Variable x, y;
LinearPolynomial p = x + 2*y;

Now by assigning different numerical values to x and y, we can evaluate the
polynomial at different points:

*x = 1;
*y = 2;
cout << p.evaluate() << endl;

*x = 3;
*y = 4;
cout << p.evaluate() << endl;

In general the dereference operator (*) accesses the numerical value. Variables
can also be named in order to aid with debugging. For instance,

Variable x("x");
Variable y("y");
Polynomial p = x + 2*y;
cout << p << endl;

will print out something like x+2*y.
The “fixed” flag in a variable refers to whether it is held constant while

solving a system of equations – see the documentation for further discussion.

5.15.1 Class Reference

Variable(double value = 0., bool fixed = false);

Purpose: initialize a variable which has value zero and is not fixed by default

Variable(std::string name, double value = 0., bool fixed = false);

Purpose: initialize a named variable which has value zero and is not fixed by
default

double& operator*(void);

41

Purpose: returns a reference to the numerical value

const double& operator*(void) const;

Purpose: returns a const reference to the numerical value

std::string name;

Purpose: names the variable (for display output)

double value;

Purpose: numerical value

bool fixed;

Purpose: true if a variable is held constant while solving a system of equations

42

5.16 Vector

Vector represents an element of Euclidean 3-space, along with all the usual
vectors space operations (addition, multiplication by scalars, etc.). The inner
product (i.e., scalar or dot product) is expressed using the global method dot():

Vector u, v;
double cosTheta = dot(u, v);

and the cross product is expressed using the global method cross():

Vector u, v, w;
w = cross(u, v);

Individual components can be accessed in two ways: either directly via the
members x, y, and z:

Vector v;
cout << v.x << endl;
cout << v.y << endl;
cout << v.z << endl;

or by index:

Vector v;
for(int i = 0; i < 3; i++)
{

cout << v[i] << endl;
}

5.16.1 Class Reference

Vector();

Purpose: initializes all components to zero

Vector(double x, double y, double z);

Purpose: initializes with specified components

Vector(const Vector& v);

Purpose: initializes from existing vector

double& operator[] (const int& index);

43

Purpose: returns reference to the specified component (0-based indexing: x,
y, z)

const double& operator[] (const int& index) const;

Purpose: returns const reference to the specified component (0-based indexing:
x, y, z)

Vector operator+(const Vector& v) const;

Purpose: addition

Vector operator-(const Vector& v) const;

Purpose: subtraction

Vector operator-(void) const;

Purpose: negation

Vector operator*(const double& c) const;

Purpose: right scalar multiplication

Vector operator/(const double& c) const;

Purpose: scalar division

void operator+=(const Vector& v);

Purpose: addition / assignment

void operator-=(const Vector& v);

Purpose: subtraction / assignment

void operator*=(const double& c);

Purpose: scalar multiplication / assignment

void operator/=(const double& c);

Purpose: scalar division / assignment

44

double norm(void) const;

Purpose: returns Euclidean length

double norm2(void) const;

Purpose: returns Euclidean length squared

Vector unit(void) const;

Purpose: returns unit vector

void normalize(void);

Purpose: divides by Euclidean length

Vector abs(void) const;

Purpose: returns vector containing magnitude of each component

double x, y, z;

Purpose: components

45

5.17 Vertex

Vertex stores attributes associated with a mesh edge. The iterator he points to
its “outgoing” halfedge. (See the documentation for a more in-depth discussion
of the halfedge data structure.)

5.17.1 Class Reference

HalfEdgeIter he;

Purpose: points to the “outgoing” halfedge

Vector position;

Purpose: location of vertex in Euclidean 3-space

Vector normal(void) const;

Purpose: returns the vertex normal

bool isIsolated(void) const;

Purpose: returns true if the vertex is not contained in any face or edge; false
otherwise

References

[1] Daniel Sieger and Mario Botsch. Design, implementation, and evaluation of
the Surface mesh data structure. In Proceedings of the 20th International
Meshing Roundtable, 2011.

46

	Overview
	Acknowledgements
	Getting Started
	Installing BLAS
	Installing SuiteSparse
	Installing OpenGL/GLUT
	Building libDDG

	Basic Routines and Data Structures
	Geometry
	Mesh Attributes
	Boundaries

	Linear Algebra
	Automatic Indexing
	Fixed Variables

	Visualization

	Library Reference
	DenseMatrix
	Class Reference

	Edge
	Class Reference

	Face
	Class Reference

	HalfEdge
	Class Reference

	Image
	Class Reference

	LinearContext
	Class Reference

	LinearEquation
	Class Reference

	LinearPolynomial
	Class Reference

	LinearSystem
	Class Reference

	Mesh
	Class Reference

	MeshIO
	Class Reference

	Shader
	Class Reference

	Quaternion
	Class Reference

	SparseMatrix
	Class Reference

	Variable
	Class Reference

	Vector
	Class Reference

	Vertex
	Class Reference

