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1 Introduction

Signals on images, surfaces, and other domains encountered in
computer graphics rarely obey the strong smoothness assumptions
imposed by methods from classical signal processing. Even when
these methods are successful with respect to basic measures of
smoothness, continuity, or other common objectives, the resulting
signal often is undesirable. For instance, Gaussian convolution has
many characteristics that arguably make it the most effective im-
age denoising filter, yet when it is applied to photographs the result
disrespects object boundaries and other semantic features.

Thus, it comes as no surprise that in response to these drawbacks
a plethora of nonlinear filters have been developed to take stronger
priors about signal content into account. For instance, one of the
simplest and most effective replacements for Gaussian convolution
is the bilateral filter. Deriving the bilateral is a straightforward pro-
cess: rather than blindly averaging pixels that are near each other, as
in Gaussian convolution, the bilateral blends pixels that are nearby
both in location and intensity. The result is a filter that behaves like
Gaussian convolution within object boundaries but prevents pixels
on opposite sides of a boundary from blending.

Given the success of the bilateral filter in image processing
and computational photography, many attempts have been made
to adapt bilateral filtering to mesh domains for edge-preserving
smoothing and other tasks. Unfortunately, this transition is not
a straightforward one, since the irregularity of meshed surfaces
makes it difficult to evaluate the bilateral in reasonable time. Most
discretizations rely on localized operations that can be sensitive to
the choice of triangulation or on expensive and distortion-inducing
parameterizations to reduce the mesh bilateral to the planar case.
In some sense, they can be regarded as methods “inspired” by the
bilateral filter rather than generalizing it that have vague if any guar-
antees of reasonable behavior in the limit of refinement.

In this paper, we introduce a bilateral filtering technique that can
be carried out for signals on any domain admitting a heat diffusion
operator. This filter coincides with the image bilateral in the pla-
nar case and when implemented with sufficient generality can be
used to process signals on images, meshes, point clouds, and other
domains with only a few changed lines of code. Its discretization
aligns well with its continuous counterpart, and several reasonable
extensions can be formulated for a larger class of filtering tasks.

One of the most important applications of the bilateral is as the
main step within iterations of the mean shift filter. The mean shift
is a strong denoising and edge-sharpening filter that is preferable
to the bilateral in many settings. We show that the mean shift has
an identical expression within our framework and even can be used
to filter signals like surface normals, which most naturally should
be treated as signals whose range is a subset of the unit sphere S2

rather than R3.

Of course, on any domain, bilateral and mean shift filtering rarely
are ends within themselves. Instead, they are used as components
of a larger pipeline to accomplish a particular filtering task. While
the theory here focuses on the development of a principled tech-
nique for generalized bilateral filtering, we show how our method
applies to several tasks from geometry processing, including sur-
face denoising, normal filtering on oriented point clouds to assist in
surface reconstruction, curvature computation (HOPEFULLY), and
texture smoothing (HOPEFULLY). We also (HOPEFULLY) sug-
gest how modifications of our generalized bilateral can be used to
achieve interesting non-smoothing filters that respect sharp edges.

Contributions The basic mathematical contribution of this paper
is a principled framework for bilateral filtering of signals with arbi-
trary domain and distance manifolds, developed in Section 3. We
describe a stable, easy-to-implement, and convergent discretization
of this filter in Section 4, including examples of its application to
signals commonly encountered in computer graphics. Section 5
develops iterative schemes for mean-shift filtering signals whose
range is Rn (or a convex subset thereof) or the unit sphere S2 us-
ing the generalized bilateral as a base, including proof that these
methods are unconditionally convergent and provide strong denois-
ing. Finally, Section 6 suggests potential extensions to our bilateral
technique for applications outside of denoising.

2 Background

The literature on feature- and edge-preserving signal processing is
vast, as is that on mesh smoothing, and we cannot summarize it
here. [Sun et al. 2007; Botsch et al. 2010] contain fairly compre-
hensive surveys of recent work on mesh smoothing and fairing and
can be used for a broader context within geometry processing, the
main application we suggest for our techniques. Here, we focus
on bilateral geometry filtering schemes, as they provide the closest
related work to our method.

Introduced in [Tomasi and Manduchi 1998] for feature-preserving
image smoothing, the bilateral filter averages signals f : I → Rn
on an image I using a kernel that is the product of a spatial term
Ws and a term Wc depending on intensity or color distance:

f̄(x) =

∫
I
f(y)Ws(‖x− y‖)Wc(|f(x)− f(y)|) dy∫
I
Ws(‖x− y‖)Wc(|f(x)− f(y)|) dy

(1)
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That is, pixels are combined when they are nearby both in space in
intensity. Slightly generalizing this filter without affecting its com-
putation time, the cross or joint bilateral allows filtering of one sig-
nal f1 using intensity distances from another signal f2 [Petschnigg
et al. 2004]:

f̄(x) =

∫
I
f1(y)Ws(‖x− y‖)Wc(|f2(x)− f2(y)|) dy∫
I
Ws(‖x− y‖)Wc(|f2(x)− f2(y)|) dy

(2)

This way, if f1 is too noisy or complex to have well-defined fea-
tures, it still can be processed as long as f2 is clearer. Given its per-
vasiveness in the image processing literature, considerable research
has been put into accelerating the bilateral and cross bilateral, in-
cluding [Paris and Durand 2006; Adams et al. 2009; Adams et al.
2010].

Outside of image processing, a number of methods have been de-
veloped that attempt to apply bilateral filtering to other domains.
For the most part, these methods map the domain to a regular grid
so that algorithms for image processing can be applied; for in-
stance, [Miropolsky and Fischer 2004] applies the bilateral on a
voxel grid for surface reconstruction. [Adams et al. 2009] can be
used to process signals that are not on grids, but distances for f1

and f2 must be measured using the Euclidean norm ‖ · ‖2. [Eigen-
satz et al. 2008] makes use of a bilateral signal for scalar curvature
signals on meshes, although their main focus is on a pipeline for
shape editing rather than evaluation of the bilateral itself.

One domain in which applications of the bilateral extend beyond
grid-based methods is mesh fairing and smoothing. Figure 1 at-
tempts to enumerate past approaches to extend the bilateral to mesh
domains in this fashion. Despite the considerable amount of re-
search devoted to mesh bilateral filtering (Figure 1 identifies 14 pa-
pers over less than a decade whose main contribution is a mesh bi-
lateral smoothing filter), we find that none of the prior contributions
simultaneously exhibits the following desirable properties:

1. Ability to use intrinsic and smooth distance weights such as
those provided by the heat kernel without resorting to param-
eterization

2. An understanding of convergence in the limit of mesh refine-
ment or a theoretical definition identifying the effects of the
filter on an abstract surface

3. Reduction to the image bilateral [Tomasi and Manduchi 1998]
for planar signals

4. Applicability to multiple signal types and domains

Our algorithm satisfies all these criteria and performs comparably
to the papers in Figure 1 despite its generality.

We also show how our algorithm can be used to generalize methods
for performing mean shift filters on input signals. Mean shift filter-
ing, introduced for image segmentation in [Comaniciu and Meer
2002], was shown to be equivalent to iterated cross bilateral filter-
ing in [Van de Weijer and Van den Boomgaard 2001] and elsewhere.
Mean shift filtering is known to produce strong feature-preserving
denoising in the image case, but few attempts have been made to ap-
ply it to meshes. [Yamauchi et al. 2005] mean shifts mesh normals
to assist in segmentation; [Shamir et al. 2006] attempts to do so
using local geodesic parameterization without acknowledging pre-
vious work on mesh bilateral filters with success filtering somewhat
noisy curvatures, normals, and other shape properties.

3 Generalized Bilateral Filtering

Take Σ to be the domain of a signal f1 : Σ → Rn equipped with
a symmetric kernel KΣ : Σ × Σ → R. Intuitively, we can think

of KΣ(x,y) as measuring the proximity between x and y on Σ.
For instance, signal processing on an image might take Σ ⊆ R2

as the image plane, n = 3 for RGB channels, and KΣ(x,y) =

e−‖x−y‖2/σ2

, the usual Gaussian blur kernel. More generally, if Σ
is any domain admitting a Laplacian operator L, such as a graph,
surface, mesh, or point cloud, we can take KΣ to be the kernel
corresponding to a solution at some fixed t > 0 of the heat equation
∂u
∂t

= Lu, where u(x, t) : Σ × [0,∞) → R; that is, KΣ(x,y)
measures how much a unit of heat diffuses from x to y along Σ in
t time.

With the kernel KΣ, we can define a blurred version of f1 as the
convolution

f̂1(x) =
1

z(x)

∫
Σ

f1(y)KΣ(x,y) dy (3)

where z(x) is the normalizing value
∫

Σ
KΣ(x,y) dy; usually z

is constant, but for our construction this restriction is unnecessary.
Define the functional TK : L2(Σ)→ L2(Σ) such that TK(f) = f̂
defined above; note that TK simply is the linear operator blurring
out f with kernel K.

Now, in parallel with the development with the image cross bilateral
filter (2), take f2 : Σ→ Γ to be a cross bilateral function designed
so that if f2(x) and f2(y) are very different, the signal f1 at x and
y should not be blended during filtering. We assume that Γ is a
compact manifold with boundary; for instance, using RGB colors
in [0, 1] for the cross bilateral function would yield Γ = [0, 1]3,
while using surface normals yields Γ = S2 ⊂ R3, the unit sphere.
We equip Γ with its own kernel KΓ.

With this notation in place, we can introduce the generalized cross-
bilateral filter as follows:

f̄(x) =

∫
Σ
f1(y)KΣ(x,y)KΓ(f2(x), f2(y)) dy∫
Σ
KΣ(x,y)KΓ(f2(x), f2(y)) dy

(4)

Note the similarity to the image cross bilateral filter (2). The main
difference is that we allow our kernel functions to take into account
x and y (as well as f2(x) and f2(y)) directly rather than just the
norms ‖x − y‖ (and ‖f2(x) − f2(y)‖), which may not be well-
defined depending on the choice of Σ and Γ.

Note that we can re-express the cross bilateral using the diffusion
operator TK defined above. In particular, define numerator and de-
nominator functions as:

fnump (y) = f1(y)KΓ(f2(y),p) (5)

fdenp (y) = KΓ(f2(y),p) (6)

Then, we have

f̄(x) =
TK [fnumf2(x)(·)](x)

TK [fdenf2(x)(·)](x)
(7)

4 Discretization

We use a signal processing technique similar to that in [Paris and
Durand 2006] to evaluate the bilateral filter on discrete domains
using the expression (7). Since the same computations apply to
fdenp as fnump after replacing f1 with 1, for ease of notation denote
fp as one of fnump or fdenp ; our algorithm evaluates each separately
and performs the division as a final pass.

Suppose that we choose samples p1, . . . ,pm ∈ Γ and a corre-
sponding partition of unity φ1, . . . , φm ∈ L2(Γ) such a function
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Paper Description
[Fleishman et al. 2003] Bilateral filters the height function of the surface over vertex tangent planes
[Jones et al. 2003] Combines vertices with their projections onto nearby tangent planes with bilateral weights from dis-

tance to the tangent plane projection and the tangent plane center
[Hu et al. 2004] Uses bilateral filtering as part of a multi-pass approach to modify Laplacian smoothing using weights

inspired by those in [Fleishman et al. 2003]
[Jones et al. 2004] Iteratively applies a modification of [Jones et al. 2003] to improve surface normals for rendering.
[Duguet et al. 2004] Bilateral filters jets on point clouds for reconstruction
[Hou et al. 2005] Bilateral filters mesh normals and then adjusts surface; weights are Gaussians in normal difference

and an approximation of geodesic distance
[Shimizu et al. 2005] Explicitly filters sharp edges and then faces separately using extrinsic distances, edge directions,

normal difference, and projections as in [Jones et al. 2003]
[Lee and Wang 2005] Filters face normals using Euclidean distance between centroids and normal differences
[Wang 2006] Filters non-manifold surfaces by using iteratively applying a bilateral similar to [Jones et al. 2003]

and remeshing
[Adams et al. 2009] Filters the difference between a mesh and its Laplace-smoothed counterpart in principal curvature

coordinates using spin-images [Johnson and Hebert 1999] for weights without a distance term
[Fan et al. 2010] Denoises quadric surface approximations by extending [Fleishman et al. 2003]
[Nociar and Ferko 2010] Applies [Lee and Wang 2005] with automatically-chosen parameter to normals and uses quadrics to

fit a new surface
[Zheng et al. 2011] Locally bilateral filters face normals using one-ring information; derives alternative implicit normal

smoothing scheme using one-ring bilateral weights to change Laplacian operator
[Vialaneix and Boubekeur 2011] Approximates mesh bilateral filtering using separable filters along curvature directions

Figure 1: A summary of previous attempts to adapt bilateral filtering to mesh domains.

g : Γ → R can be approximated as g(p) ≈
∑
i g(pi)φi(p). Note

that under mild continuity and compact support conditions, we can
construct sequences of partitions such that the approximation con-
verges to g(p) as m→∞.

Input : Signal to be filtered f1 : Σ→ Rn
Distance function f2 : Σ→ Γ
Samples p1, . . . ,pm ∈ Γ
Partition of unity φ1, . . . , φm ∈ L2(Γ)

Output: Filtered signal f̄ : Σ→ Rn

f̄num(x), f̄den(x)← 0 ∀x ∈ Σ Initialization
for i = 1 to m do

ĝnum(x)← f1(x)KΓ(f2(x),pi) Weight signals
ĝden(x)← KΓ(f2(x),pi)
gnum(x)← TK [ĝnum](x) Apply blur operator
gden(x)← TK [ĝden](x)

f̄num(x)← gnum(x)φi(f2(x)) Collect
f̄den(x)← gden(x)φi(f2(x))

end
f̄(x)← f̄num(x)/f̄den(x) Normalize

Algorithm 1: Generalized bilateral filtering algorithm

With this partition in place, our algorithm becomes fairly straight-
forward to describe. Define ĝi(x) = fpi(x); note that this func-
tion can be computed ∀x ∈ Σ simply by evaluating f1 and KΓ

as in (5) and (6). Then, apply the blurring operation (3) to obtain
gi(x) = TK [ĝi](x). Our bilateral filter is thus approximated as:

f̄(x) ≈
∑
gnumi (x)φi(f2(x))∑
gdeni (x)φi(f2(x))

(8)

Our algorithm is summarized in Algorithm 1.

With the generalized filtering method in place, we proceed to show
several concrete applications of bilateral filtering simply by defin-
ing the relevant domains, kernels, and operators. Notice that if KΓ

is straightforward to evaluate, the only time-consuming step is gen-

erating the functions gi from ĝi; that is, the time complexity of this
algorithm is essentially that of carrying out m blurs (3).

4.1 Grayscale Image Signals

Before proceeding to novel domains and signals, we verify that our
algorithm applied to grayscale images reduces to the one presented
in [Paris and Durand 2006] without down- and up-sampling. Here,
we define our signal domain as Σ = {1, . . . , w} × {1, . . . , h},
a w × h grid of pixel values, and our signal range of grayscale
intensities is Γ = [0, 1]. We take our image and intensity kernels to
be KΣ(x,y) ≡ Ws(‖x − y‖) and KΓ(p, q) = Wc(|p − q|). It is
easy to check that in this case (4) and (2) coincide.

Now, suppose we divide Γ = [0, 1] into m equally-spaced samples
p1, . . . , pm of width 1/m−1. Define φi : [0, 1]→ R to be the piece-
wise linear hat function centered at pi with width 2/m−1. Then, (8)
coincides with the “signal processing approximation” in [Paris and
Durand 2006]. The approximation is virtually indistinguishable
from the exact bilateral filter on most images for m as low as 20,
and it can be carried out efficiently using downsampling and fast
Gaussian convolution such as [Burt and Adelson 1983; Deriche
1993] for (3).

4.2 Scalar Mesh Signals

Now, suppose we take Σ to be a mesh (V,E, F ) with vertices V ,
edges E, and triangular faces F . We represent functions on Σ as
vectors v ∈ R|V |, with one value per vertex, and can construct a
“cotangent Laplacian” matrix L ∈ R|V |×|V | imitating the Lapla-
cian operator on the smooth surface approximated by Σ [Botsch
et al. 2010]. We use compute TK(v) as heat flow using a single
implicit time step TK(v) ≈ (I + ∆t · L)−1v; multiple time steps
could yield closer approximations, but the damping effect of a sin-
gle implicit step has few perceptual differences and is faster to carry
out. Since we will have to apply TK several times, we pre-factor
I + ∆t · L using the sparse LU method in [Davis 2004]. We keep
Γ = [0, 1] with Gaussian kernel KΓ(p, q) = e−|p−q|

2/σ2

.
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Now, if we take f1 = f2 ≡ v, the bilateral filter in Algorithm 1
blurs out signals on Σ while preserving intensity edges in v. Figure
NUMBER shows the output of such a process on assorted signals
on surfaces. Note that unlike the image bilateral or mesh meth-
ods relying on planar projection or parameterization, this bilateral
respects the metric of Σ regardless of the width of KΣ.

[discuss curvature filtering here if it works]

4.3 Normal Vector Mesh Signals

We can extend the method in Section 4.2 above by considering cross
bilaterals for which the domain Γ of f2 is not [0, 1]. Perhaps most
importantly, suppose Γ = S2, the unit sphere, and take f2 to be
signal N : F → S2 of unit face normals. Note that our signal now
is on mesh faces rather than vertices to avoid ambiguous normals
along sharp edges, so we replace L from 4.2 with the dual 0-form
Laplacian d ? d? defined within the framework of discrete exterior
calculus [Hirani 2003].

We equip Γ = S2 with the Von Mises–Fisher kernel KΓ(p,q) =

ep·q/σ , used to represent isotropic distributions on the unit
sphere [Fisher 1953]. A convergent partition of unity on S2 is ob-
tained using a regular unit-radius polyhedron inscribed within S2;
each φi corresponds to a picewise linear hat function centered at a
vertex of the polyhedron, projected to the surface of the sphere. An
alternative more efficient and smoother partition of unity with less
clear convergence guarantees is to simply use Von Mises–Fisher
kernels centered at sample points distributed around the unit sphere
normalized at each point on S2 to sum to 1; we find little qualitative
difference between these two approaches in practice. Applications
of this filter to scalar functions on Σ are shown in Figure NUMBER.
Note that the scalar values are not combined over sharp edges since
the normal function N has a discontinuity there.

If we filter the x, y, and z components of the signal N itself and
renormalize, we obtain a denoised normal vector signal over Σ.
This method is a direct analog of the normal smoothing methods
in [Zheng et al. 2011], which can be considered approximations of
the filter for small blending radii. Thus, as in [Zheng et al. 2011],
we can adjust the surface of Σ using the iterative scheme in [Sun
et al. 2007] to match the denoised normals. Figure NUMBER com-
pares denoising results of the filter at hand with the output of com-
parable methods.

[discuss mean curvature normal filtering here if it works]

4.4 Oriented Point Cloud

Algorithms such as [Kazhdan et al. 2006] for surface reconstruction
rely on oriented point clouds, which contain both sample points and
their normals, to generate meshed surfaces; the normals implicitly
help decipher tangent directions, orientation, and connectivity from
the cloud. Methods for obtaining or computing orientations often
yield noisy normals at best, which, combined with already noisy
point clouds, can lead to topological and geometric reconstruction
errors that can be difficult to correct during post-processing.

Fortunately, [Belkin et al. 2009] introduces a Laplacian operator
for signals on point clouds with provable convergence. Combining
Laplacian heat diffusion with the bilateral term ensures that edges
are preserved and that the topology of the surface is respected while
combining “nearby” normals. Figure NUMBER shows examples of
reconstruction using [Kazhdan et al. 2006] with and without bilat-
eral normal filtering.

4.5 Other Signals

Although we choose to focus on them here, the bilateral filters we
discuss above are by no means the only ones that could be con-
sidered in our framework. Additional domains to which we could
apply the algorithm in Algorithm 1 include:

• Mesh textures equipped with a blurring operator either from
texture pyramids such as MIP maps or, to better respect the
surface metric, using a Laplacian ∆ pulled back from a trian-
gulated surface

• Graphs with discrete Laplacian matrices

• Range images with colors or normals as cross bilateral signals

• Volumetric signals with heat flow using the signal as a density

• Simplicial complexes with combinatorial Laplacian heat flow

Many of the above applications are outside the realm of computer
graphics; others may not benefit as much from a bilateral filter as
from related techniques suggested by our method, like that for com-
puting local histograms in Section NUMBER.

5 Mean Shift Filtering

5.1 Signals on Rn

Bilateral filtering is a reliable tool for minor denoising but is less
effective for highly-noisy signals. In particular, the KΓ term is de-
signed to combine values only when they are similar; outliers thus
will be influenced only slightly by their nearby counterparts. Fur-
thermore, in certain denoising scenarios it is desired not only to
smooth out signals but also to sharpen edges, either for simplifica-
tion purposes or to remove softness that might have been added by
certain noise models.

We can re-examine the definition of the bilateral to achieve stronger
filtering. In particular, for fixed x ∈ Σ, we refashion the denom-
inator of the bilateral as a probability distribution over Γ (define
f ≡ f2):

h(p;x) =
1

z(x)

∫
Σ

KΣ(x,y)KΓ(p, f(y)) dy (9)

where z(x) is a constant value guaranteeing
∫

Γ
h(p;x) dp = 1.

This function, constructed using the Parzen window technique as
in [Kass and Solomon 2010], represents the distribution of values
of f near x.

If we take Γ = Rn equipped with KΓ(p,q) = e−‖p−q‖2/σ2

and
take the gradient with respect to p, we find that peaks p∗ of h(p;x)
satisfy

p∗ =

∫
Σ
f(y)KΣ(x,y)KΓ(p∗, f(y)) dy∫
Σ
KΣ(x,y)KΓ(p∗, f(y)) dy

(10)

This relationship suggests a fixed-point iteration scheme for finding
peaks of h(p;x) at all x:

f (0)(x) = f(x) (11)

f (k+1)(x) =

∫
Σ
f(y)KΣ(x,y)KΓ(f (k)(x), f(y)) dy∫

Σ
KΣ(x,y)KΓ(f (k), f(y)) dy

(12)

Each iteration simply is an application of the cross bilateral fil-
ter (4). This iterative scheme is known as the mean-shift filter [Co-
maniciu and Meer 2002], and with some modification can be ap-
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plied to other choices of KΓ. It is known to converge uncondi-
tionally to peaks of h, as proved in [Li et al. 2007], and is a well-
understood object in both image processing and machine learning.
Figure NUMBER shows examples of the mean shift on scalar sig-
nals on triangle meshes; note the strong denoising that occurs rela-
tive to the bilateral.

5.2 Signals on S2

The application of the bilateral to filter mesh and point cloud nor-
mals in Sections 4.3 and 4.4 has a serious drawback: before nor-
malization, the output of the bilateral is unlikely to have unit length.
That is, bilateral filtering inputs signals on S2 but outputs signals in
R3. This property is a drawback of several surface bilateral filter-
ing methods, including CITE, making the behavior of these filters
difficult to understand and control.

The construction of h in Section 5.1, however, remains valid when
Γ is not Rn (or a convex subset thereof). Using this observation as
a starting point, in Appendix NUMBER we show that paralleling
the derivation of the Euclidean mean shift algorithm using the Von
Mises-Fisher distribution on S2 yields the iterative scheme

f (0)(x) = f(x) (13)

f (k+1)(x) =

∫
Σ
f(y)KΣ(x,y)KΓ(f (k)(x), f(y)) dy

‖
∫

Σ
f(y)KΣ(x,y)KΓ(f (k)(x), f(y)) dy‖

(14)

Note that each iterate remains on S2, thus allowing the filter to
be regarded as one for signals on S2 rather than its embedding in
R3. The proof of Euclidean mean-shift convergence from [Li et al.
2007] no longer holds with this modification, however, thanks to the
renormalization that occurs every iteration. Fortunately, this new
iterative scheme is an instance of the spherical mean shift algorithm
in [Kobayashi and Otsu 2010], which proves its convergence and
qualitatively similar behavior to the Euclidean case.

While a single iteration of the bilateral filter has moderate denoising
ability, the mean shift on S2 is a powerful edge-preserving denois-
ing filter. Figures NUMBER and NUMBER show denoising results
on meshes and oriented point clouds.

6 Extensions

Up to this point, the primary application we have suggested of our
filtering technique is smoothing of signals on arbitrary domains
with arbitrary similarity measures. Here, we show that as with the
image bilateral, our method can be applied to other problems in
mesh processing and other domains.

6.1 Local Histograms

[Kass and Solomon 2010] suggests that the histogram h(p;x) de-
fined in (9) has value by itself for understanding a given signal; in
particular, they use this function to understand the distribution of
pixel intensities in some smoothly-weighted neighborhood of each
pixel, allowing for direct rather than iterative evaluation of the me-
dian, mean shift, global mode, local histogram equalization, and
other filters. An identical formulation applies to our more general
setting. In particular, the task of evaluating h(pi;x) ∀x ∈ Σ is
identical to the evaluation of the samples in the denominator in Al-
gorithm 1. Thus, we can efficiently extract local histograms of sig-
nals on Σ with value in compact manifold Σ. This extension allows
for the direct evaluation of the same filters applied to scalar func-
tions on surfaces and other domains.

The method at our level of generality, however, can be applied to
a much wider array of signals. In particular, once again taking
f : Σ→ Γ = S2 to be the normal vector signal on Σ, the histogram
h(p;x) at a fixed x ∈ Σ now represents the distribution over S2

of normal vectors to Σ near x. This distribution can be viewed (af-
ter suitable rotation) as a version of the SHOT descriptor introduced
in [Tombari et al. 2010] with smoothly varying, intrinsic heat kernel
weights on Σ rather than extrinsic distance weights, with straight-
forward regularization control by changing blurring radii on Σ and
Γ. Figure NUMBER shows some examples of normal vector his-
tograms computed using this technique.

6.2 Feature-Preserving Filters

We have gone a long way toward pushing the bilateral filter to a
maximal of generality. One additional avenue for flexibility, how-
ever, is in the choice of kernels KΣ and KΓ.

The most obvious potential change in KΣ or KΓ might be in the
choice of smoothing kernels. We implicitly have made use of this
possibility by suggesting that a single implicit time step of the heat
equation suffices for bilateral filtering on meshes. In practice, we
find that any reasonable choice of smoothing kernel behaves in a
qualitatively similar fashion for most bilateral and mean shift appli-
cations.

Even more generally, heat flow is one of a huge class of linear op-
erators used in mesh processing. Band-pass, high-pass, unsharp
mask, and other filters can be applied to signals on a surface us-
ing analogs of Fourier theory and a discretization of the Laplacian.
Even if these filters are described using some sort of local operation,
their linearity implies the existence of an operator matrix, which in
turn contains kernel valuesKΣ : R|V |×R|V | → R. In the continu-
ous limit, the theory of Schwartz kernels guarantees that most well-
posed linear operators on surface signals admit kernels, although
they must be regarded as distributions to be integrated against rather
than functions in the elementary sense. Our theoretical bilateral fil-
ter (4) continues to make sense in this measure-theoretic context,
however, and can be regarded as a way to reweight the kernel to
respect edges.

Although fully exploring the domain of feature-preserving mesh
editing operations is worthy of a larger study, Figure NUMBER
shows some examples of the application of our bilateral (4) where
the spatial kernel KΣ has been replaced with the kernels of other
linear operators. We (HOPEFULLY) can achieve a number of inter-
esting effects that respect mesh edges with no more computational
complexity than our original bilateral.

7 Discussion

We have written a simple implementation of our algorithm in C++,
taking full advantage of templates to encode Algorithm 1 in full
generality; we use some simple OpenMP directives to achieve par-
allel evaluation of the blurs needed for each sample pi. On a MA-
CHINE INFO with NUMBER cores, this naïve implementation is
able to apply bilateral filters to mesh normals on NUMBER faces
in TIME seconds using NUMBER sample points on S2. Subse-
quent iterations for the mean shift are even faster, since the heat
flow matrix needs to be factored only once; NUMBER iterations
on the same mesh takes TIME seconds in total.

We believe even faster runtimes could be achieved with an op-
timized implementation and careful evaluation of potential linear
solvers. Theoretically, our runtime is approximately equal to the
time it takes to blur m signals using KΣ, so fewer samples pi on
S2 directly make for better timings; we can cut our number of sam-
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ples to half of the ones listed here with reasonable effect but slight
visible artifact in exchange for a faster filter.

(HOPEFULLY) Although it is impossible to verify our algorithm
against all previous work, Figure NUMBER attempts to compare
against some recent approaches. We apply Gaussian noise of vary-
ing sizes to different meshes and then apply our and other methods
for smoothing to attempt to recover the original shape. We show
the perceptual distance between the filtered signals and the original
using the perceptual metric in [Váša and Petřík 2011]. In general,
we find SUMMARIZE RESULTS.

8 Conclusion

If nothing else, the sheer number of attempts to discretize bilateral
filtering on non-image domains illustrated in Figure 1 demonstrates
the elusiveness and importance of a generalized bilateral filter. Ex-
pressions for the bilateral, whether for images as in (2) or in the
more general sense as in (4), are easy to state and understand and
have only a few intuitive parameters. The bilateral’s behavior is
well-understood and forms the basis for more complex methods
such as the mean shift. It has withstood the test of time and remains
a foundational tool used to construct state-of-the-art algorithms in
diverse parts of image processing, vision, and graphics.

Our new discretization makes the process of defining a bilateral
filter on a given domain and signal straightforward. Feature-
preserving filters can be achieved on arbitrary domains simply by
choosing domains Σ,Γ and reasonable kernels KΣ,KΓ, with the
assumption that Γ can be sampled reasonably. This process has an
easily-understood continuous limit (4) and can even be extended to
tasks like histogram computation and shape editing. The speed of
the filter simply depends on the number of samples in Γ and the
time it takes to apply KΣ, the latter of which often boiling down to
a simple pre-factored linear solve.

While we have illustrated only a few applications of our method
within the domain of geometry processing, we hope that its sim-
plicity and effectiveness will lead it to be applied to other problems.
For instance, in image processing, some results show that distances
between some signatures we use for some commonly-used cross bi-
lateral signals should not be measured using the Euclidean metric
but rather along some underlying manifold [Carlsson et al. 2008];
this type of relationship can be encoded in our framework by defin-
ing Σ to be a part of the image plane and Γ to be the cross bilateral
manifold in question. As another example, local histograms may be
useful for understanding structure and local information in graphs,
using Laplacian heat flow to evaluate proximity. These broad appli-
cations and many others are no harder to implement or understand
than the ones we have suggested in this paper and begin to reveal
the exciting potential implications of a reliable generalized bilateral
filtering technique.
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