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• Today: exterior calculus

•how do k-forms change?

•how do we integrate k-forms?

Exterior Calculus—Overview
• Previously:

•1-form—linear measurement of a vector

•k-form—multilinear measurement of volume

•differential k-form—k-form at each point



Integration and Differentiation
•Two big ideas in calculus:

•differentiation

•integration

•linked by fundamental theorem of calculus

•Exterior calculus generalizes these ideas

•differentiation of k-forms (exterior derivative)

•integration of k-forms (measure volume)

•linked by Stokes’ theorem

•Goal: integrate differential forms over meshes to get discrete exterior calculus (DEC)



Exterior Derivative



Derivative—Many Interpretations…

“pushforward”

“slope of the graph”/
“rise over run”

“best linear approximation”

“difference in the limit”



Vector Derivatives—Visualized

grad f div X

f X Y

curl Y



Review—Vector Derivatives in Coordinates
How do we express grad, div, and curl in coordinates?

grad div curl



Exterior Derivative

exactness

differential

Where do these rules come from?
(What’s the geometric motivation?)

product rule



Exterior Derivative—Differential



Review: Directional Derivative
•The directional derivative of a scalar function at a point p 

with respect to a vector X is the rate at which that function 
increases as we walk away from p with velocity X.

•More precisely: p

X

•Alternatively, suppose that X is a vector field, rather than 
just a vector at a single point.  Then we can write just:

•The result is a scalar function, whose value at each point p is 
the directional derivative along the vector X(p).



Review: Gradient

I.e., at each point the gradient is the unique vector* such that taking the inner 
product ⟨・,・⟩ with a given vector X yields the directional derivative along X.

*Assuming it exists!  I.e., assuming the function is differentiable.



Differential of a Function
•Recall that differential 0-forms are just ordinary scalar functions

•Change in a scalar function can be measured via the differential

•Two ways to define differential:

1. As unique 1-form such that applying to any vector field 
gives directional derivative along those directions:

2. In coordinates:

…but wait, isn’t this just the same as the gradient?



Gradient vs. Differential
•Superficially, gradient and differential look quite similar (but not identical!):

•Especially in Rn:

•So what’s the difference?
•For one thing, one is a vector field; the other is a differential 1-form
•More importantly, gradient depends on inner product; differential doesn’t

Makes a big difference when it comes to curved geometry, numerical optimization, …



Exterior Derivative—Product Rule



Exterior Derivative

exactness

differential

product rule



Product Rule—Derivative

Q: Why?  What’s the geometric interpretation?



Product Rule—Exterior Derivative

Q: Geometric intuition?

(Does this cartoon depict the exterior derivative? Or a directional derivative?)



Product Rule—“Recursive Evaluation”



Exterior Derivative—Examples



Exterior Derivative—Exactness



Exterior Derivative

exactness

differential

product rule

Why?



grad ff curl � grad f

Review: Curl of Gradient

Key idea: exterior derivative should capture a similar idea.



A:

Q: Does this operation remind you of anything (perhaps from vector calculus)?



Exterior Derivative and Curl
Suppose we have a vector field

Its curl is then

Looks an awful lot like…

Especially if we then apply the Hodge star.



d � d = 0

f df

Intuition: in Rn, first d behaves just like gradient; second d behaves just like curl.



Exterior Derivative in 3D (1-forms)

A:

Q: Does this operation remind you of anything (perhaps from vector calculus)?



Exterior Derivative and Divergence

Its divergence is then

Looks an awful lot like…

Especially if we then apply the Hodge star.

Suppose we have a vector field



Exterior Derivative - Divergence

( codifferential:                   )



Exterior vs. Vector Derivatives—Summary

grad f div X

f X Y

curl Y



Exterior Derivative

exactness

differential

product rule



Exterior Calculus



Exterior Calculus—Diagram View
•Taking a step back, we can draw many of the operators seen so far as diagrams:



Laplacian
•Can now compose operators to get other operators

•E.g., Laplacian from vector calculus:

•Can express exact same operator via exterior calculus:

•…except that this expression easily generalizes to curved domains.

•Can also generalize to k-forms:

•Will have much more to say about the Laplacian later on!



Preview: Exterior Calculus Beyond Rn

•Why study these two very similar viewpoints?  (I.e., vector vs. exterior calculus)
•Hard to measure change in volumes using basic vector calculus

•Duality clarifies the distinction between different concepts/quantities
•Topology: notion of differentiation that does not require metric (e.g., cohomology)

•Geometry: clear language for calculus on curved domains (Riemannian manifolds)

•Physics: clear distinction between physical quantities (e.g., velocity vs. momentum)
• Computer Science: Leads directly to discretization/computation!

[DEMO]



•Exterior derivative d used to differentiate k-forms

•0-form: “gradient”

•1-form: “curl”

•2-form: “divergence” (codifferential δ)

•and more...

•Natural product rule

•d of d is zero

•Analogy: curl of gradient

•More general picture (soon!) via Stokes’ theorem

Exterior Derivative - Summary



Integration of Differential k-Forms



Review—Integration of Area
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Review—Integration of Scalar Functions
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Integration of a 2-Form
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Key idea: integration always involves differential forms!



Integration of Differential 2-forms—Example
•Consider a differential 2-form on the unit square in the plane:
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•In this case, no different from usual “double 
integration” of a scalar function.



Integration on Curves
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Integration on Curves—Example
•Now consider a 1-form in the plane, which we will integrate over the unit circle:

(Why does this result make sense geometrically?)



Stokes’ Theorem



Boundary



Boundary

Basic idea: for an n-dimensional set, the boundary points are 
those not contained in any n-ball strictly inside the domain.



Boundary of a Boundary
Q: Which points are in the boundary of the boundary?

A: No points!  Boundary of a boundary is always empty.



Boundary of a Boundary
Q: Which points are in the boundary of the boundary?

A: No points!  Boundary of a boundary is always empty.



Review: Fundamental Theorem of Calculus
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dx = f(b)� f(a)



Stokes’ Theorem
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Analogy: fundamental theorem of calculus



Example: Divergence Theorem
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What goes in, must come out!

()



Stokes’ Theorem
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“The change we see on the outside is
purely a function of the change within.”

—Zen koan



Fundamental Theorem of Calculus & Stokes’
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Why is d ◦ d = 0?

...for any ! (no matter how small!)



Why is d ◦ d = 0?

differential

product rule

exactness

“behaves like gradient for functions”

Stokes’ theorem
what goes in, must come out!
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•Integration

•break domain into small pieces

•measure each piece with k-form

•Stokes’ theorem

•convert region integral to boundary integral

•super useful—lets us “skip” a derivative

•special cases: divergence theorem, F.T.C., many more!

•will use over and over again in DEC/geometry processing

Integration & Stokes’ Theorem - Summary
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Inner Product on Differential k-Forms



Inner Product—Review
•Recall that a vector space V is any collection of “arrows” that can be added, scaled, …

•Q: What’s an inner product on a vector space?

•A: Loosely speaking, a way to talk about lengths, angles, etc., in a vector space

•More formally, a symmetric positive-definite bilinear map:

for all vectors u,v,w in V and scalars a. (Geometric interpretation of these rules?)



Euclidean Inner Product—Review
•Most basic inner product: inner product of two vectors in Euclidean Rn

•Just sum up the product of components:

(Does this operation satisfy all the requirements of an inner product?)

Example.



L2 Inner Product of Functions / 0-forms
•Remember that in many situations, functions are also vectors

•What does it mean to measure the inner product between functions?

•Want some notion of how well two functions “line up”

•One idea: mimic what we did for vectors in Rn.  E.g.,

•Called the L2 inner product. (Note: f and g must each be square-integrable!)
•Does this capture notion of “lining up”?  Does it obey rules of inner product?

f g

f g

0 1

0 1



Inner Product on k-Forms

Q: What happens when k=0?

Q: What’s the degree (k) of the integrand?  Why is that important?

A: We just get the usual L2 inner product on functions.

A: Integrand is always an n-form, which is the only thing we can integrate in n-D!



Inner Product of 1-Forms—Example



Summary



Exterior Calculus—Summary
•What we’ve seen so far:

•Exterior algebra: language of volumes (k-vectors)

•k-form: measures a k-dimensional volume

•Differential forms: k-form at each point of space

•Exterior calculus: differentiate/integrate forms

•Simplicial complex: mesh made of vertices, edges, triangles…

•Next up:

•Put all this machinery together

•Integrate to get discrete exterior calculus (DEC)



Thanks!
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