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Exterior Calculus — Querview

* Previously: * Today: exterior calculus

* 1-form—Ilinear measurement of a vector e how do k-forms change?

¢ k-form—multilinear measurement of volume e how do we integrate k-forms?

* differential k-form—=k-form at each point

differential 2-form



Integration and Differentiation

* Two big ideas in calculus:

* differentiation b /
differentiat | fax = f(b) - f(a)

* integration

e linked by fundamental theorem of calculus

e Exterior calculus generalizes these ideas

o differentiation of k-forms (exterior derivative)
/ do = / X
M oM

e integration of k-forms (measure volume)

e linked by Stokes” theorem

e Goal: integrate differential forms over meshes to get discrete exterior calculus (DEC)
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Derrvative— Many Interpretations. ..
f(x)

“slope of the graph”/

“rise over run’”

“best linear approximation”

“difference in the limit” “pushforward”



Vector Derivatives — Visualized

.............

............

curl Y

div X




Review — Vector Deriovatives in Coordinates

How do we express grad, div, and curl in coordinates?

Consider a scalar function ¢ : R® — R and a vector field

where u,v,w : R" — R are coordinate functions that vary over the domain,
and %, 0 9 are the standard basis vector fields.

dy’ 0z
grad div curl
V X X =
_ 09 |, dp g | 9P 9 Ny __ Ju | v | dw Jw _ dv) d
V‘P—axax I dy Ay " 92 92 \4 X_ax I Yy 2 (By Bz)Bx
(5% — )5
0z dx / dy
(& — Juy 9
X dy / 0z
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Exterior Derioatioe (QOF — space of all differential k-forms)

Unique linear map d : QOF — QFt1 such that

differential fork =0, d¢(X) = Dx¢
productrule d(aAB)=da AP+ (—1)*a A dB

exactness dod =20

Where do these rules come from?
(What's the geometric motivation?)



Exterior Derivative — Differential



Review: Directional Derivative

e The directional derivative of a scalar function at a point p
with respect to a vector X is the rate at which that function
increases as we walk away from p with velocity X.

* More precisely:

Dyg| = lim 2P+ EX) = 9(p)

e—() €

P

e Alternatively, suppose that X is a vector field, rather than b : R2 5 R
just a vector at a single point. Then we can write just: '

Dxao

e The result is a scalar function, whose value at each point p is
the directional derivative along the vector X(p).



Review: Gradient

Let ¢ : R" — IR. What is the gradient of ¢?

Geometric intuition. “Uphill direction.”

Coordinate approach. In Fuclidean IR", list of partials: ,
1 341 | L /.
dx! dx dx" ox™  Lox . .
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Coordinate-free approach. (V¢, X) = Dx(¢) for all X.

[.e., at each point the gradient is the unique vector® such that taking the inner
product ( -, * ) with a given vector X yields the directional derivative along X.

*Assuming it exists! l.e., assuming the function is differentiable.



Differential of a Function

e Recall that differential 0-forms are just ordinary scalar functions
e Change in a scalar function can be measured via the differential
* Two ways to define differential:

1. As unique 1-form such that applying to any vector field
gives directional derivative along those directions:

dp(X) = Dx¢
2. In coordinates: qu qu
. — 1 Ce e n
dp(X) = o dx" + | ax”dx

...but wait, isn’t this just the same as the gradient?
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Gradient vs. Differential

e Superficially, gradient and differential look quite similar (but not identical!):

V¢, X) = Dx¢ dp(X) = Dx¢
* Especially in R™:
_ d0 0 | | d d _ aQD 1 | aqb 1
VO~ axiand T T agnnaan 0T e T T g

e So what's the difference?
e For one thing, one is a vector field; the other is a differential 1-form

* More importantly, gradient depends on inner product; ditterential doesn’t

(df)F =V < |do(-)=(V¢, )| <= (Vo) =df

Makes a big difference when it comes to curved geometry, numerical optimization, ...



Exterior Derivative — Product Rule



Exterior Derivative

Unique linear map d : QOF — QFt1 such that

differential fork =0, d¢(X) = Dx¢
productrule d(aAB)=da AP+ (—1)*a A dB

exactness dod =20



Product Rule — Derivative

Reminder: For any differentiable function f : R — R, (f¢)" = f'¢+ f¢’.
Q: Why? What's the geometric interpretation?

(f8)'(x) = lim - £(x)g(x)




Product Rule — Exterior Derivative

Let a be a k-form and let B be an ¢-form. Then

d(a AB) = (da) AB+ (=1) a A (dB).

Q: Geometric intuition?
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(Does this cartoon depict the exterior derivative? Or a directional derivative?) aNp+a ANp+aNp



Product Rule— “Recursive Evaluation”

Example. Let « := u dx, B := v dy, and <y := w dz be diftferential 1-forms on R”,
where u, v, w : R" — R are 0-forms, 1.e., scalar functions. Also, let w := a A 5. Then

dlwAy) = (dw) Ay + (=1)?w A (d).
We can then “recursively” evaluate derivatives that appear on the right-hand side:
(da) NB+ (—1)'a A (d Bl
de = (du) Ndx+ (—1)° W
A8 = (do) Ady+ (—1)° W

dy = (dw)Adz+ (- wM

Key idea: The “base case” is the 0-forms, i.e., computing the tinal result boils down
to taking the differential of ordinary scalar functions.

dw =



Exterior Derivative— Examples

Example. Let ¢(x,y) := %e_(x2+y2). Then d¢ = g—z?dx | gqybdy
= —2¢(xdx + ydy)

Example. Let a(x,y) = xdx + ydy. Then da =
0 d
(§5dx + §dy) Adx + (Fhdx + 5hdy) Ady

=dxANdx+dyNdy =0+0 =0.

Example. Againleta(x,y) = xdx + ydy. Thend xa = d(x xdx + y * dy)
= d(xdy — ydx)
=dx Ndy —dy N dx
= 2dx N\ dy.



Exterior Deriovative — Exactness



Exterior Derivative

Unique linear map d : QOF — QFt1 such that

differential fork =0, d¢(X) = Dx¢
productrule d(aAB)=da AP+ (—1)*a A dB

exactness dod =20



t

en

Curl of Gradi

Review

N N

A R A A

grad ¢ curl o grad ¢
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Key idea: exterior derivative should capture a similar idea.



What Happens if dod = 07

Q: Consider a 1-form a = udx 4 vdy + wdz, where the coettficients u, v, w are each
scalar functions R®> — IR. What is the exterior derivative da in coordinates x, Y, z?

0 0 0
A: da = d(udx + vdy + wdz) = du A dx + udd® + do A dy + oddy + dw A dz + wddz”
0
(S—de | g;dy | g’;dz)/\der (g—ZMI g;dy/\dx (I) gZdZ/\dX)_I_
_ (g—gdx : ga;dy : ggdz)Adw = (§ydx A dy + Sody Ay 2dz A dy)+
dw . 0w 0w 0
(3xdx + 5,dy + 57dz) N dz (59dx N dz + §2dy A dz + Sedzdz)

= g;dx/\dy - 9dz Ndx + dx Ady — 9%dy Ndz — 92dz A dx - %Z;dy/\dz

= (97 — F)dy Ndz + (5 — §9)dz Adx + (5 — §5)dx A dy.

Q: Does this operation remind you of anything (perhaps from vector calculus)?



Exterior Derivative and Curl

Suppose we have a vector field

. .. 0 0 0
X 1= U Uay - W

Its curl is then
(Qw/dy — dv/0dz)
VxX= (du/dz — Jw/dx)
(dv/dx — OJu/dy)

Hodlagle
+ +

[Looks an awful lot like...

(Qw/dy — 9dv/dz) dyANdz
de = (du/dz — OJw/dx) dz Adx
(dv/dx — du/dy) dxANdy

Especially if we then apply the Hodge star.
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Intuition: in R", first d behaves just like gradient; second d behaves just like curl.



Exterior Derivative in 3D (1-forms)

Q: How about d x a? (Still for « = udx + vdy + wdz.)

A: dxo =d(*(udx + vdy + wdz))
= d(udy Ndz + vdz \dx + wdx N\ dy)
=du NdyNdz+doNdz Ndx +dw Ndx N\ dy

= dx Ndy Adz + §2dy Adz N dz + §2dz A dx A dy

— (gz g; %;”)dx/\dy/\dz

Q: Does this operation remind you of anything (perhaps from vector calculus)?



Exterior Derivative and Divergence

Suppose we have a vector fietd

...............

Xi=ug +og +wg -

[ts divergence is then .

Ju Jdv Jdw - - -

VX =

dx Jdu 0z - -

A

Looks an awful lot like... \

_(dJdu |, dv | ow

d*“—(ax - oy aZ)aledy/\dz _______________

V- X

Especially if we then apply the Hodge star.



Exterior Derivative - Divergenc

.......... .

D
V- X = *d(*X ) ( codifferential: o := *d* )



Exterior vs. Vector Derrvatives — Summary

¢

.............

............

curl Y

(x(dX"))F

div X
*d(xX”)




Exterior Derivative

Unique linear map d : QOF — QFt1 such that

differential fork =0, d¢(X) = Dx¢
productrule d(aAB)=da AP+ (—1)*a A dB

exactness dod =20
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Exterior Calculus — Diagram View

e Taking a step back, we can draw many of the operators seen so far as diagrams:

d
QO - ” Ql
R? /curves R? /surfaces
” Ql < > QQ -

R°® /volumes

(),—differential k-forms



Laplacian

e Can now compose operators to get other operators
eE.g., Laplacian from vector calculus:
A := div o grad

e Can express exact same operator via exterior calculus:

A=x%dxd

e ...except that this expression easily generalizes to curved domains.

e Can also generalize to k-forms:

A :=%dxd-+dxdx

e Will have much more to say about the Laplacian later on!




Preview: Exterior Calculus Beyond R"

e Why study these two very similar viewpoints? (l.e., vector vs. exterior calculus)
e Hard to measure change in volumes using basic vector calculus
e Duality clarifies the distinction between different concepts/quantities
e Topology: notion of differentiation that does not require metric (e.g., cohomology)
e Geometry: clear language for calculus on curved domains (Riemannian manifolds)

e Physics: clear distinction between physical quantities (e.g., velocity vs. momentum)

e Computer Science: Leads directly to discretization/computation! N
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Exterior Derivative - Summary

» Exterior derivative d used to ditferentiate k-forms
* 0-form: “gradient”
o I-form: “curl”
o 2-form: “divergence” (codifferential 6)
* and more...
* Natural product rule
*d of dis zero
* Analogy: curl of gradient

e More general picture (soon!) via Stokes’ theorem



Integration of Differential k-Forms



Review — Integration of Area




Review — Integration of Scalar Functions

¢d:0— R

ZAifP(Pz‘) > /Q P dA



Integration of a 2-Form

w — differential 2-form on ()

Zi:wl?i(”i' 0;) > /Q W

Key idea: integration always involves differential forms!



Integration of Differential 2-forms— Example

e Consider a differential 2-form on the unit square in the plane:

w = (x +xy)dx N\ dy
/ w:/ (x + xy)dx N dy
‘) 1

:/ / (x + xy)dx N\ dy
_ 3

N

e In this case, no different from usual “double
integration” ot a scalar function.




Integration on Curves

;
Pi

lya ~ Xi:“?i(ti)



Integration on Curves

;
Pi




Integration on Curves —Example

e Now consider a 1-form in the plane, which we will integrate over the unit circle:

x = dy

27T
/ zx—/ ) ds = y
Sl A

TRINRA AR

TR i } )

[ e s gy =i N
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/o y(cos(s) gy +sin(s)5;) ds = Tf TTTTM TTTT{TTTTTMTTTT

- &TT N HTTT ¥

/ sin(s) ds = 0 TTTTTTA | , THTT

0 RN RRLANE

T
(Why does this result make sense geometrically?) . . 0,271) — R%;s — (cos(s), sin(s))
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Boundary

2 \.

/.\.\./O —’a .

Basic idea: for an n-dimensional set, the boundary points are
those not contained in any n-ball strictly inside the domain.



Boundary of a Boundary

Q: Which points are in the boundary of the boundary?

A: No points! Boundary of a boundary is always empty.




Boundary of a Boundary

Q: Which points are in the boundary of the boundary?

N

A: No points! Boundary of a boundary is always empty.

0

—_—




Review: Fundamental Theorem of Calculus




Stokes” Theorem

/d(x:/ )
() 0()

Analogy: fundamental theorem of calculus



Divergence Theorem

Example

[ s
d()

What goes in, must come out!

d * K
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Fundamental Theorem of Calculus & Stokes’

/ ad)dx = ¢(a)
fP(a)/\/ —

o %= o ®

< b




WhyiSdodZO? D D

N =

%,

..for any Q (no matter how small!)




Whyisdeod=0?

Unique linear map d : QOF — O+ such that

0 3,
differential d¢ = a;bl dx' + -+ ;):l?q dx"

Stokes’ theorem / do = / X
O Jao




Integration & Stokes” Theorem - Summary

* Integration
* break domain into small pieces

e measure each piece with k-form

¢ Stokes’ theorem

: ; ; ; ‘\ LN 0()
\ f/ v vy
. . . | YO X ;;;;;::::\
e convert region integral to boundary integral I
\«//¢\~\\§ff/¢*
7 - gy 5 . A A f///f
e super useful—lets us “skip” a derivative NS PRONE LA
Qoo
2 A TN

e special cases: divergence theorem, F.T.C., many more! L
e will use over and over again in DEC/ geometry processing

/doc:/ )
M oM



Inner Product on Differential k-Forms



Inner Product — Review

e Recall that a vector space V is any collection of “arrows” that can be added, scaled, ...

* Q: What's an inner product on a vector space?

* A: Loosely speaking, a way to talk about lengths, angles, etc., in a vector space

* More formally, a symmetric positive-definite bilinear map: \u
(-, ):VxV =R \\

(u,v) = (v, u) 0

(u+ov,w) = (u,w) + (v, w)

(u,v) = |ul|v|cosb
(au,v) = a(u,v) 1
(u,uy >0; (u,u)y =0 <= u=20

for all vectors u,v,w in V and scalars a. (Geometric interpretation of these rules?)



Euclidean Inner Product — Review

* Most basic inner product: inner product of two vectors in Euclidean R”

e Just sum up the product of components:

u:M1€1—|—---—|—unen 1 o ) 0
(u,v) ==Y u'v
v=nu0le +- -+ 0", i=1
U
Example.
u = 3eq + 2e»
v = 2e1 + 4e> e1

(u,v) =3.24+2-4=14

(Does this operation satisfy all the requirements of an inner product?)



L? Inner Product of Functions | O-forms

e Remember that in many situations, functions are also vectors
e What does it mean to measure the inner product between functions?

e Want some notion of how well two functions “line up”

®* One idea: mimic what we did for vectors in R". E. g%
f:10,1] = R

0 1

. VN
f

/ 0 1

e Called the L? inner product. (Note: f and ¢ must each be square-integrable!)

¢ Does this capture notion of “lining up”? Does it obev rules of inner product?
P g up y P



Inner Product on k-Forms

Definition. Let a, 8 € OF be any two differential k-forms. Their (L?) inner
product is defined as®

(o, B) = [ *anp

Q: What happens when k=0?

A: We just get the usual L? inner product on functions.
Q: What's the degree (k) of the integrand? Why is that important?

A: Integrand is always an n-form, which is the only thing we can integrate in n-D!

*Some authors define the integrand as a /A x5; our convention is consistent with
the convention that in 2D the 1-form Hodge star is a counter-clockwise rotation.



Inner Product of 1-Forms— Example

e Example. Consider two 1-forms on the unit square
e 0,1] x [0,1] given by

—
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Exterior Calculus— Summary

 What we’ve seen so far:

o Exterior algebra: language of volumes (k-vectors) e » 1
® k-form: measures a k-dimensional volume : ? t A
e Differential forms: k-form at each point of space B

e Exterior calculus: differentiate/integrate forms »

e Simplicial complex: mesh made of vertices, edges, triangles...

* Next up: N
e Put all this machinery together
o [ntegrate to get discrete exterior calculus (DEC) (() —




Thanks!

N/ TN\
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