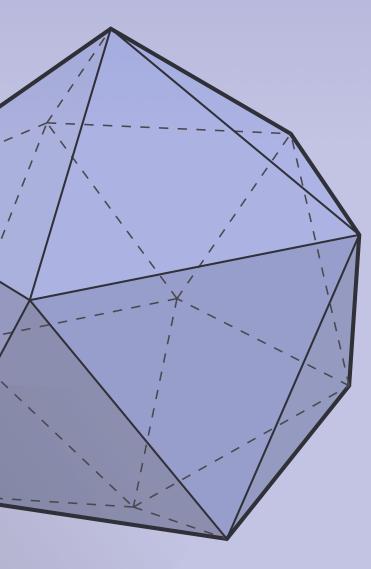
DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858B • Fall 2017

LECTURE 5: EXTERIOR CALCULUS IN Rⁿ

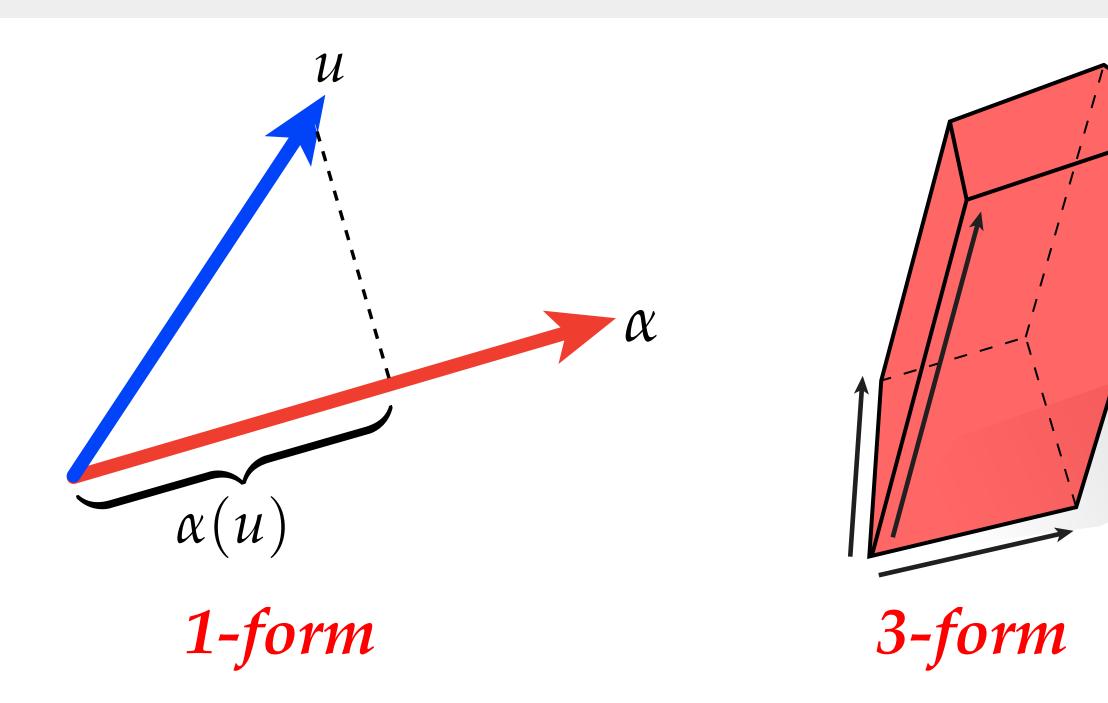
DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION



Keenan Crane • CMU 15-458/858B • Fall 2017

Exterior Calculus—Overview

- Previously:
 - •1-form—linear measurement of a vector
 - *k*-form—multilinear measurement of volume
 - differential *k*-form—*k*-form at each point



• Today: exterior calculus • how do *k*-forms *change*? • how do we *integrate* k-forms?

differential 2-form

Integration and Differentiation

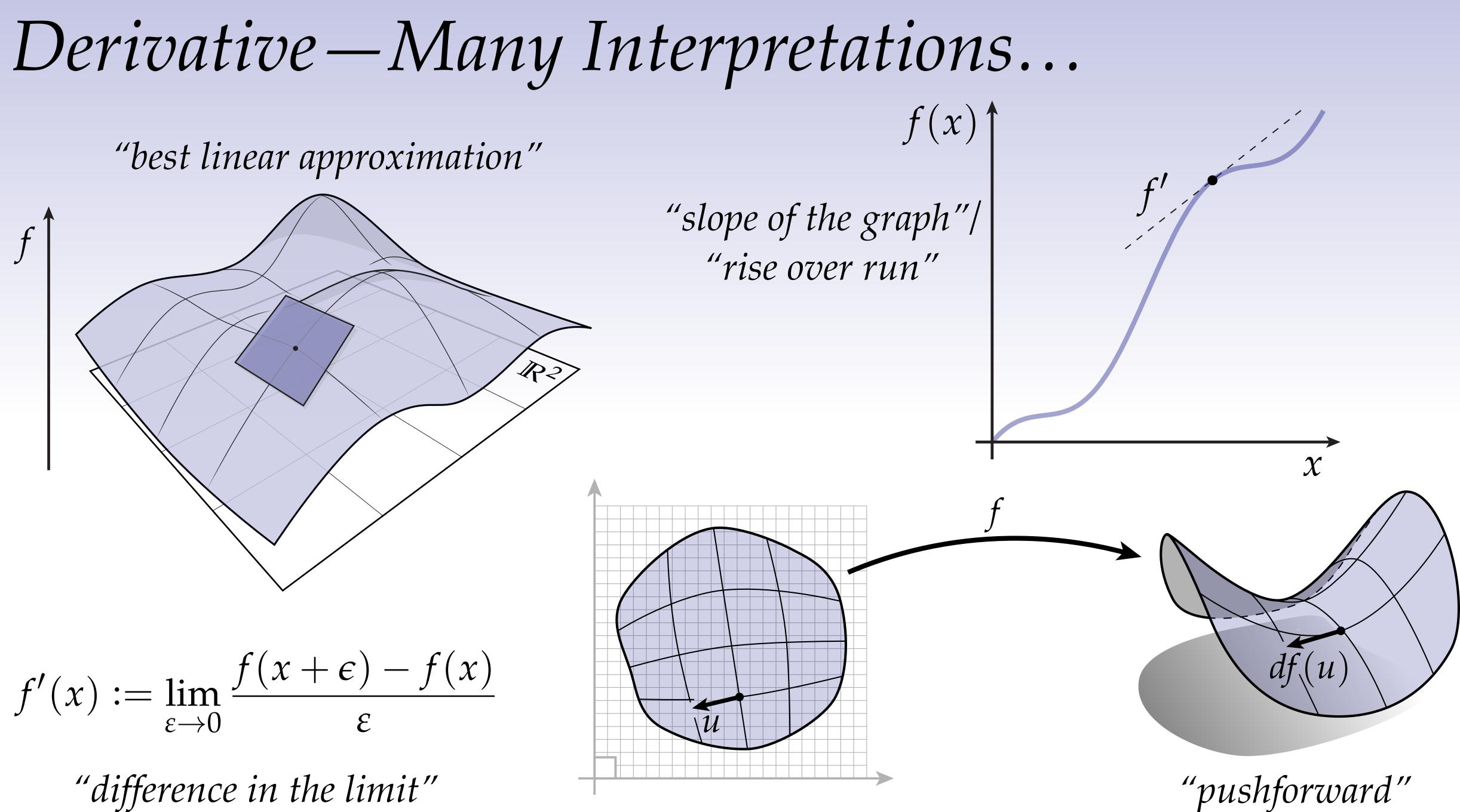
- Two big ideas in calculus:
 - differentiation
 - integration
 - linked by fundamental theorem of calculus
- Exterior calculus generalizes these ideas
 - differentiation of *k*-forms (exterior derivative)
 - integration of *k*-forms (measure volume)
 - linked by *Stokes' theorem*

$$\int_{a}^{b} f' dx = f(b) - f(a)$$

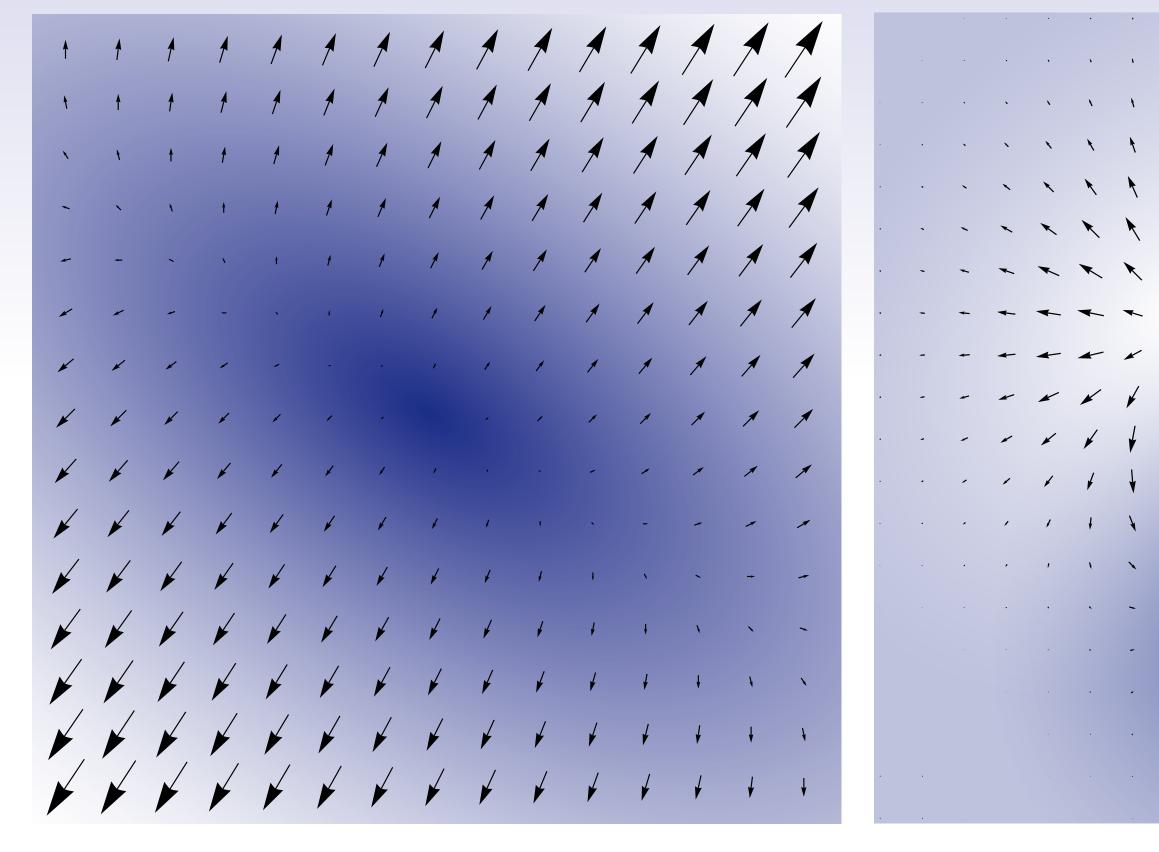
$$\int_M d\alpha = \int_{\partial M} \alpha$$

• Goal: integrate differential forms over meshes to get *discrete exterior calculus* (DEC)

Exterior Derivative

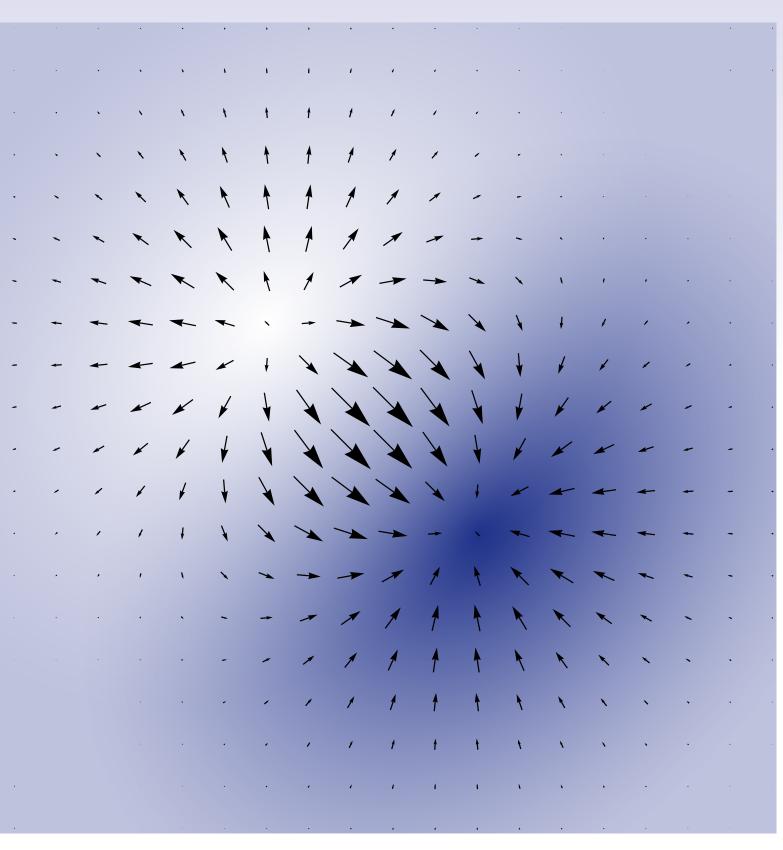


Vector Derivatives – Visualized



grad ϕ

X





curl Y

Review – Vector Derivatives in Coordinates

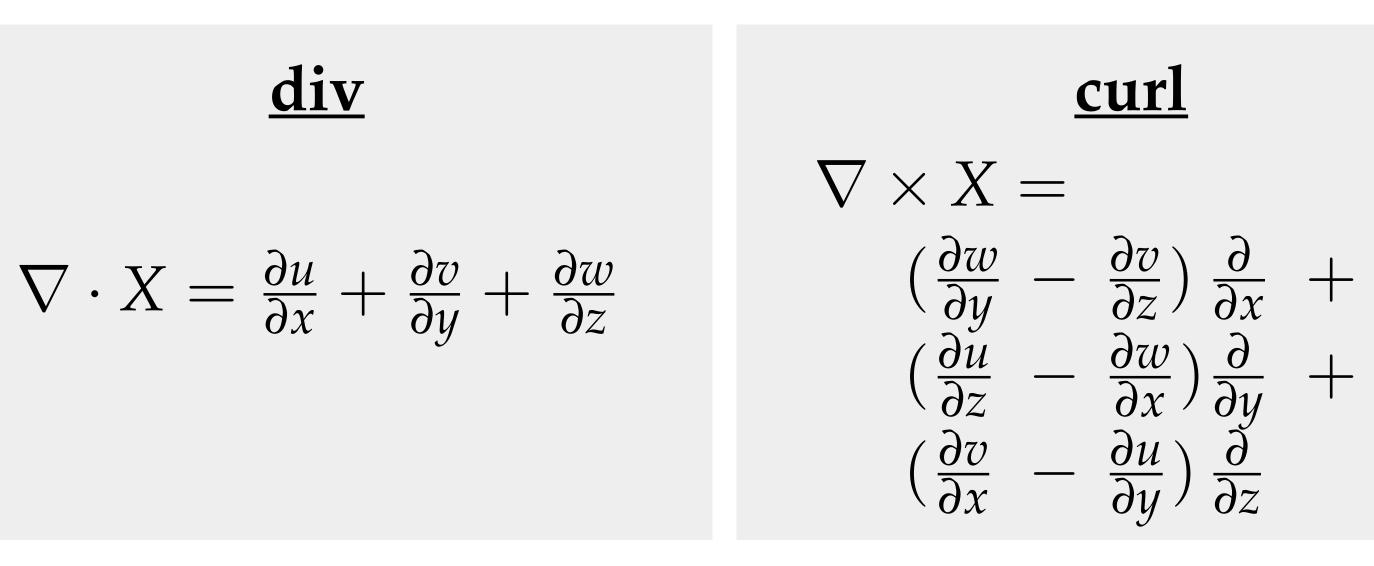
How do we express grad, div, and curl in coordinates? Consider a scalar function $\phi : \mathbb{R}^3 \to \mathbb{R}$ and a vector field

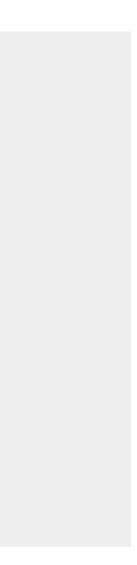
$$X = u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z}$$

where $u, v, w : \mathbb{R}^n \to \mathbb{R}$ are coordinate functions that vary over the domain, and $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial u}$, $\frac{\partial}{\partial z}$ are the standard basis vector fields.

grad

$$\nabla \phi = \frac{\partial \phi}{\partial x} \frac{\partial}{\partial x} + \frac{\partial \phi}{\partial y} \frac{\partial}{\partial y} + \frac{\partial \phi}{\partial z} \frac{\partial}{\partial z}$$





Exterior Derivative

Unique linear map d : S

differential

product rule

 $d \circ d = 0$ exactness

> Where do these rules come from? (What's the geometric motivation?)

 $(\Omega^k - \text{space of all differential } k - \text{forms})$

$$\Omega^k \to \Omega^{k+1}$$
 such that

for k = 0, $d\phi(X) = D_X \phi$ $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$

Exterior Derivative — Differential

Review: Directional Derivative

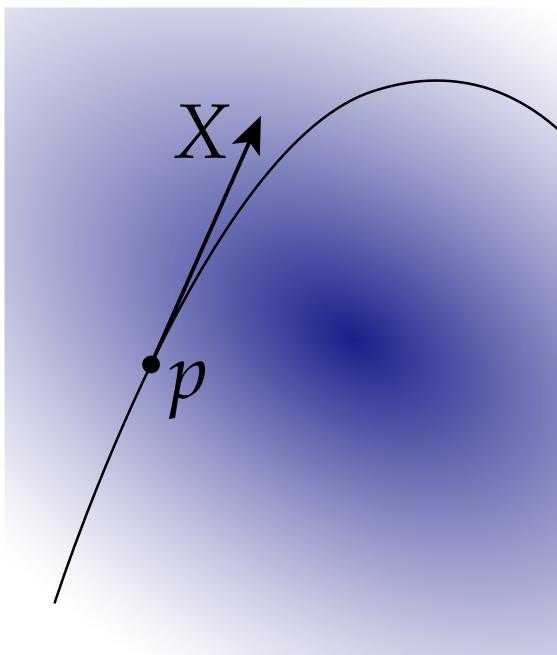
- The *directional derivative* of a scalar function at a point p with respect to a vector *X* is the rate at which that function increases as we walk away from *p* with velocity *X*.
- More precisely:

$$D_X \phi \Big|_p := \lim_{\varepsilon \to 0} \frac{\phi(p + \varepsilon X)}{\varepsilon}$$

• Alternatively, suppose that X is a vector field, rather than just a vector at a single point. Then we can write just:

• The result is a *scalar function*, whose value at each point *p* is the directional derivative along the vector *X*(*p*).

 $) - \phi(p)$



 $\phi: \mathbb{R}^2 \to \mathbb{R}$

Review: Gradient

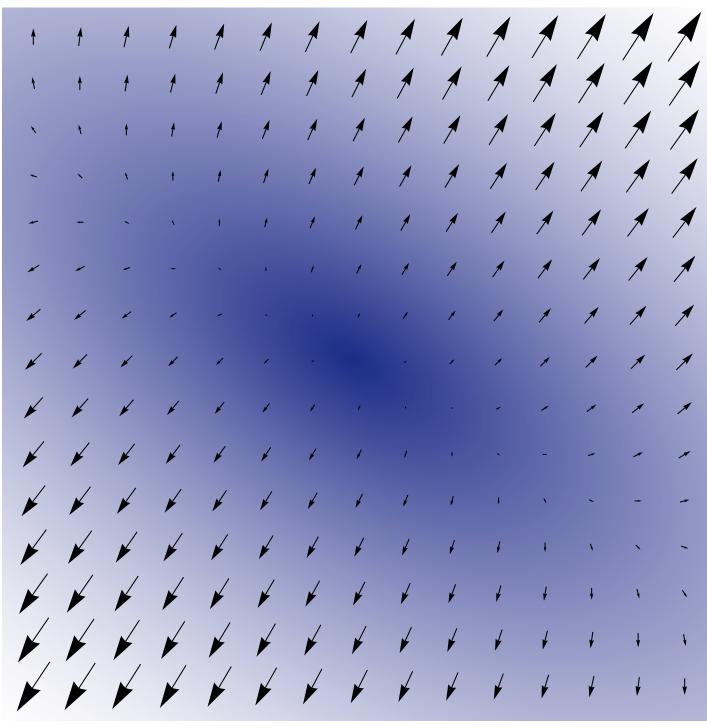
Let $\phi : \mathbb{R}^n \to \mathbb{R}$. What is the gradient of ϕ ? Geometric intuition. "Uphill direction." **Coordinate approach.** In Euclidean \mathbb{R}^n , list of partials:

$$\nabla \phi = \frac{\partial \phi}{\partial x^1} \frac{\partial}{\partial x^1} + \dots + \frac{\partial \phi}{\partial x^n} \frac{\partial}{\partial x^n} = \begin{bmatrix} \frac{\partial \phi}{\partial x^1} & \dots & \frac{\partial \phi}{\partial x^n} \end{bmatrix}^{-1}$$

Coordinate-free approach. $\langle \nabla \phi, X \rangle = D_X(\phi)$ for all *X*.

I.e., at each point the gradient is the unique vector^{*} such that taking the inner product $\langle \cdot, \cdot \rangle$ with a given vector X yields the directional derivative along X.

*Assuming it exists! I.e., assuming the function is *differentiable*.



Differential of a Function

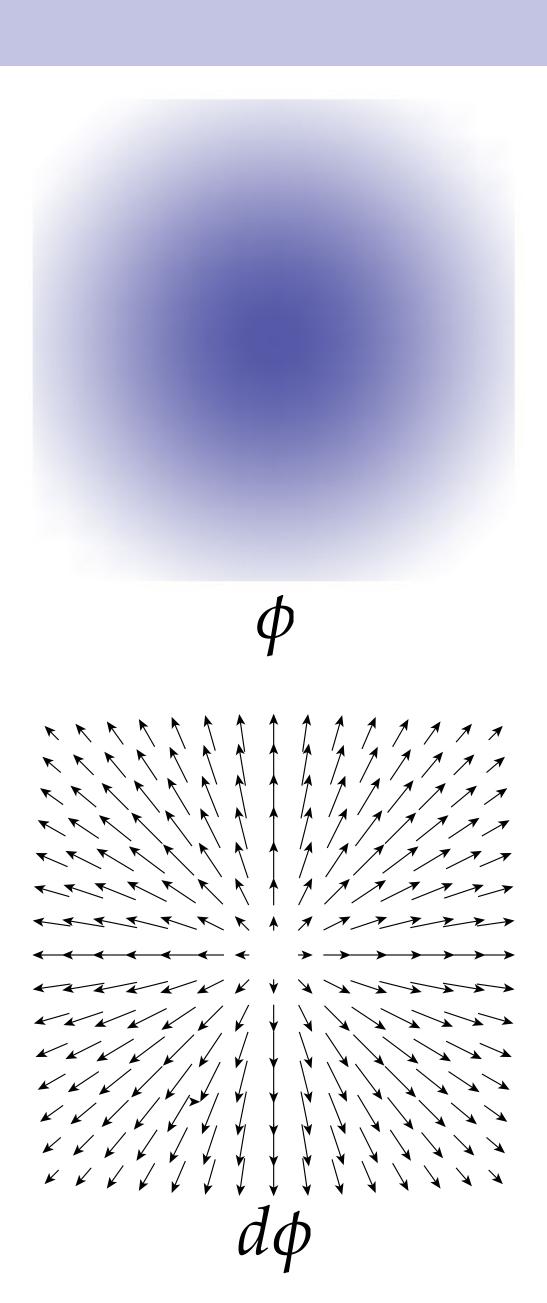
- Recall that differential 0-forms are just ordinary scalar functions
- Change in a scalar function can be measured via the *differential*
- Two ways to define differential:
 - 1. As unique 1-form such that applying to any vector field gives directional derivative along those directions:

$$d\phi(X) = D_X q$$

2. In coordinates: $d\phi(X) := \frac{\partial\phi}{\partial x^1} dx^1 + \dots +$ UA

...but wait, isn't this just the same as the gradient?

$$\frac{\partial \phi}{\partial x^n} dx^n$$



Gradient vs. Differential

• Superficially, gradient and differential look quite similar (but not identical!):

$$\langle \nabla \phi, X \rangle = D_X \phi$$

• Especially in R^n :

$$\nabla \phi = \frac{\partial}{\partial x^1} \frac{\partial}{\partial x^1} + \dots + \frac{\partial}{\partial \phi x^n} \frac{\partial}{\partial x^n} \qquad d\phi = \frac{\partial \phi}{\partial x^1} dx^1 + \dots + \frac{\partial \phi}{\partial x^n} dx^n$$

- So what's the difference?
 - For one thing, one is a vector field; the other is a differential 1-form • More importantly, gradient depends on *inner product*; differential doesn't

$$(df)^{\sharp} = \nabla \phi \iff d\phi(\cdot) = \langle \nabla \phi, \cdot \rangle \iff (\nabla \phi)^{\flat} = df$$

Makes a *big* difference when it comes to curved geometry, numerical optimization, ...

$$d\phi(X) = D_X \phi$$

Exterior Derivative—Product Rule

Exterior Derivative

Unique *linear* map $d : \Omega^k \to \Omega^{k+1}$ such that

differential

product rule

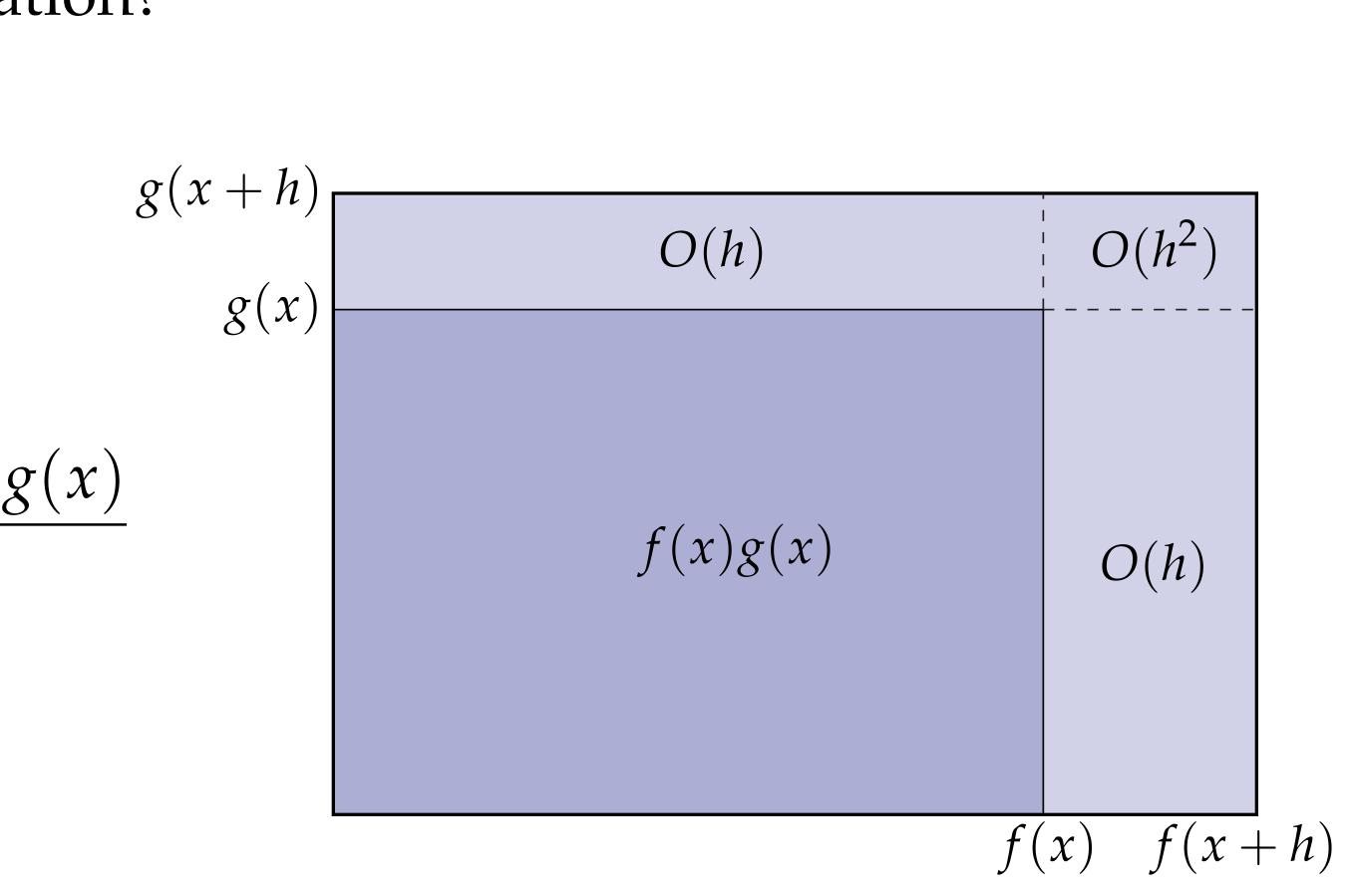
 $d \circ d = 0$ exactness

for k = 0, $d\phi(X) = D_X \phi$ $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$

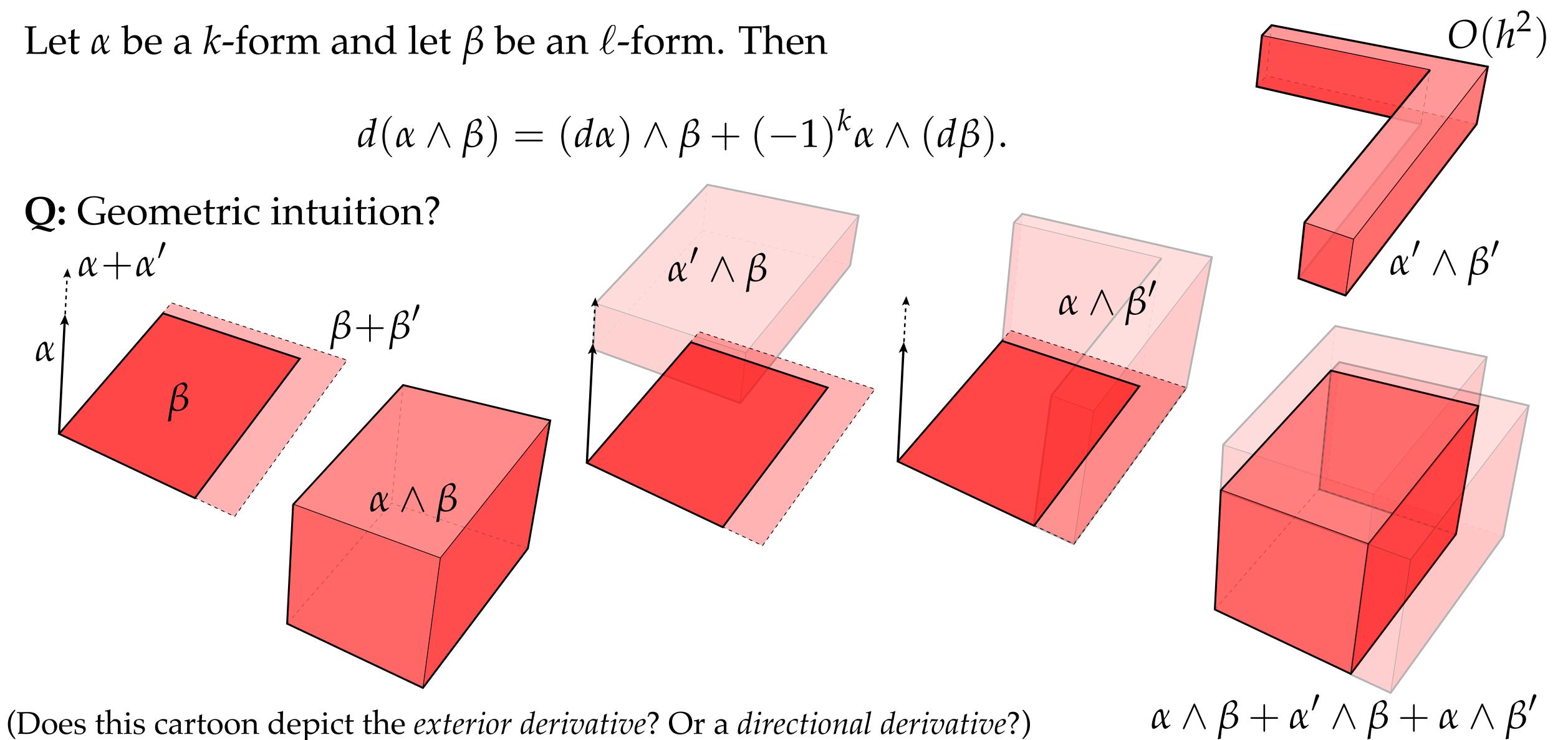
Product Rule—Derivative

Reminder: For any differentiable function $f : \mathbb{R} \to \mathbb{R}$, (fg)' = f'g + fg'. **Q**: Why? What's the *geometric* interpretation?

$$(fg)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h)}{h}$$



Product Rule—Exterior Derivative



Product Rule — "Recursive Evaluation"

Example. Let $\alpha := u \, dx$, $\beta := v \, dy$, and $\gamma := w \, dz$ be differential 1-forms on \mathbb{R}^n , where $u, v, w : \mathbb{R}^n \to \mathbb{R}$ are 0-forms, *i.e.*, scalar functions. Also, let $\omega := \alpha \land \beta$. Then

 $d(\omega \wedge \gamma) = (d\omega) \wedge \gamma$

We can then "recursively" evaluate derivatives that appear on the right-hand side:

- $d\omega = (d\alpha) \wedge \beta$
- $d\alpha = (du) \wedge d$
- $d\beta = (dv) \wedge d$
- $d\gamma = (dw) \wedge dw$

to taking the differential of ordinary scalar functions.

$$\gamma + (-1)^2 \omega \wedge (d\gamma).$$

$$3 + (-1)^{1} \alpha \wedge (d\beta),$$

$$dx + (-1)^{0} u (ddx),^{0},$$

$$dy + (-1)^{0} v (ddy),^{0},$$

$$dz + (-1)^{0} w (ddz).^{0},$$

Key idea: The "base case" is the 0-forms, *i.e.*, computing the final result boils down

Exterior Derivative—Examples

Example. Let $\phi(x, y) := \frac{1}{2}e^{-(x^2+y^2)}$. The

Example. Let $\alpha(x, y) = xdx + ydy$. Then

Example. Again let $\alpha(x, y) = xdx + ydy$

en
$$d\phi = \frac{\partial \phi}{\partial x}dx + \frac{\partial \phi}{\partial y}dy$$

= $-2\phi(xdx + ydy)$

$$n d\alpha =$$

$$(\frac{\partial x}{\partial x}dx + \frac{\partial x}{\partial y}dy) \wedge dx + (\frac{\partial y}{\partial x}dx + \frac{\partial y}{\partial y}dy) \wedge dy = dx \wedge dx + dy \wedge dy = 0 + 0 = 0.$$

y. Then
$$d \star \alpha = d(x \star dx + y \star dy)$$

= $d(xdy - ydx)$
= $dx \wedge dy - dy \wedge dx$
= $2dx \wedge dy$.

Exterior Derivative—Exactness

Exterior Derivative

Unique *linear* map $d : \Omega^k \to \Omega^{k+1}$ such that

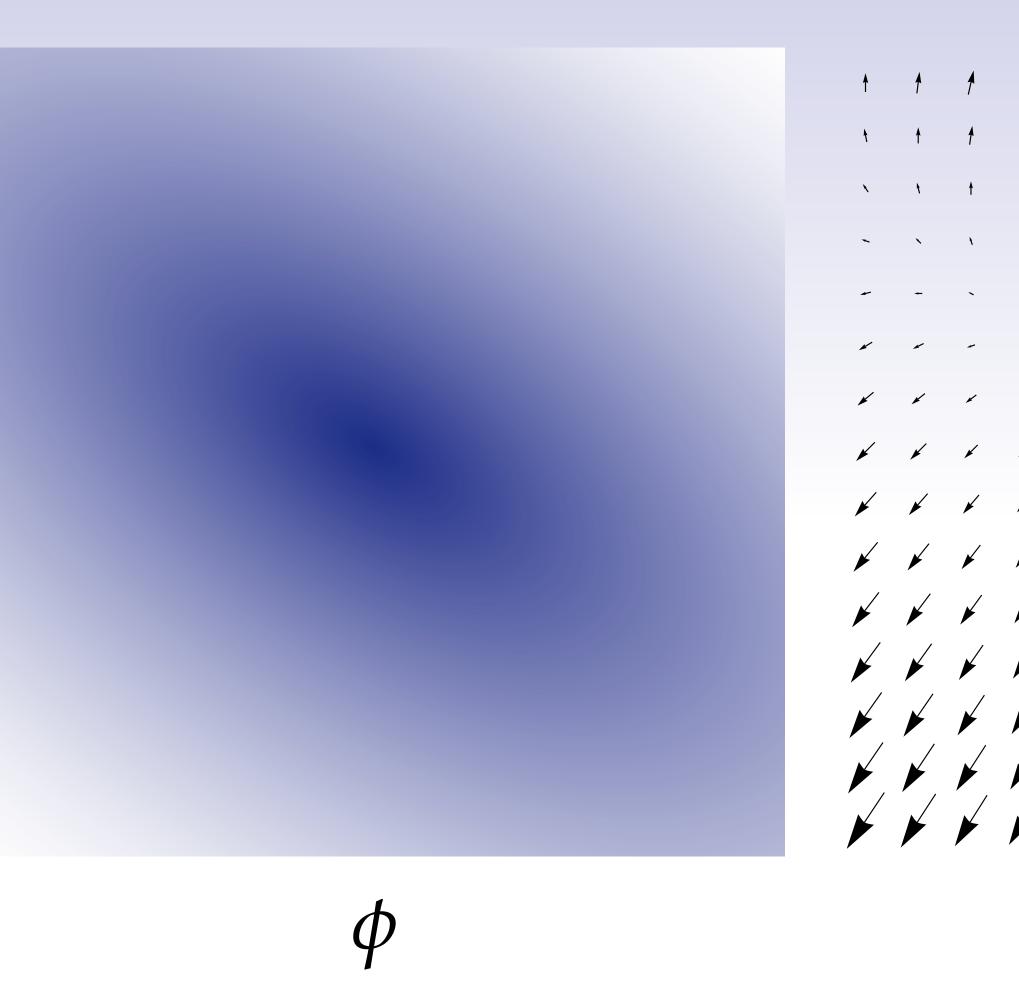
differential

product rule

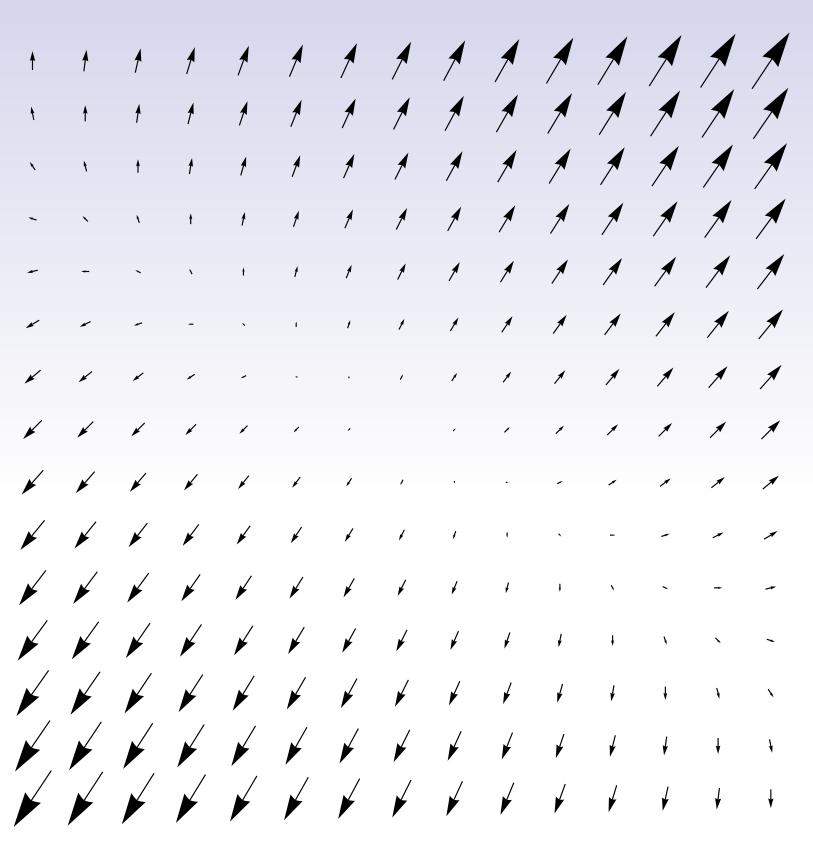
 $d \circ d = 0$ exactness

for k = 0, $d\phi(X) = D_X \phi$ $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$ Why?

Review: Curl of Gradient



Key idea: exterior derivative should capture a similar idea.

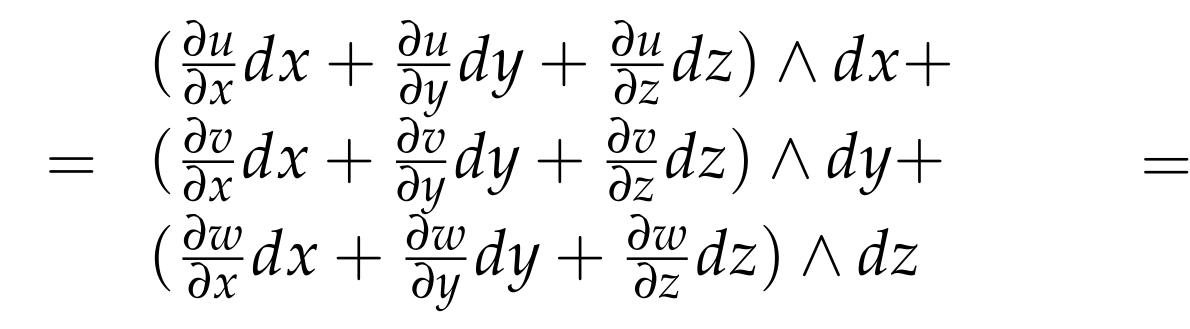


grad ϕ

curl \circ grad ϕ

What Happens if $d \circ d = 0$?

A: $d\alpha = d(udx + vdy + wdz) = du \wedge dx$



 $= -\frac{\partial u}{\partial y}dx \wedge dy + \frac{\partial u}{\partial z}dz \wedge dx + \frac{\partial v}{\partial x}dx \wedge dy = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}\right) dy \wedge dz + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}\right) dz \wedge dx - \frac{\partial w}{\partial x} dz + \frac{\partial w}{$

Q: Does this operation remind you of anything (*perhaps from vector calculus*)?

Q: Consider a 1-form $\alpha = udx + vdy + wdz$, where the coefficients u, v, w are each scalar functions $\mathbb{R}^3 \to \mathbb{R}$. What is the exterior derivative $d\alpha$ in coordinates x, y, z?

$$+ uddx + dv \wedge dy + vddy + dw \wedge dz + wdd$$

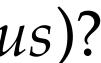
$$(\frac{\partial u}{\partial x}dx \wedge dx + \frac{\partial u}{\partial y}dy \wedge dx + \frac{\partial u}{\partial z}dz \wedge dx) +$$

$$= (\frac{\partial v}{\partial x}dx \wedge dy + \frac{\partial v}{\partial y}dy \wedge dy + \frac{\partial v}{\partial z}dz \wedge dy) +$$

$$(\frac{\partial w}{\partial x}dx \wedge dz + \frac{\partial w}{\partial y}dy \wedge dz + \frac{\partial w}{\partial z}dz \wedge dz)^{0}$$

$$\frac{\partial v}{\partial z}dy \wedge dz - \frac{\partial w}{\partial x}dz \wedge dx + \frac{\partial w}{\partial y}dy \wedge dz$$

$$+\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)dx\wedge dy.$$



Exterior Derivative and Curl Suppose we have a vector field $X := u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z}$

Its *curl* is then

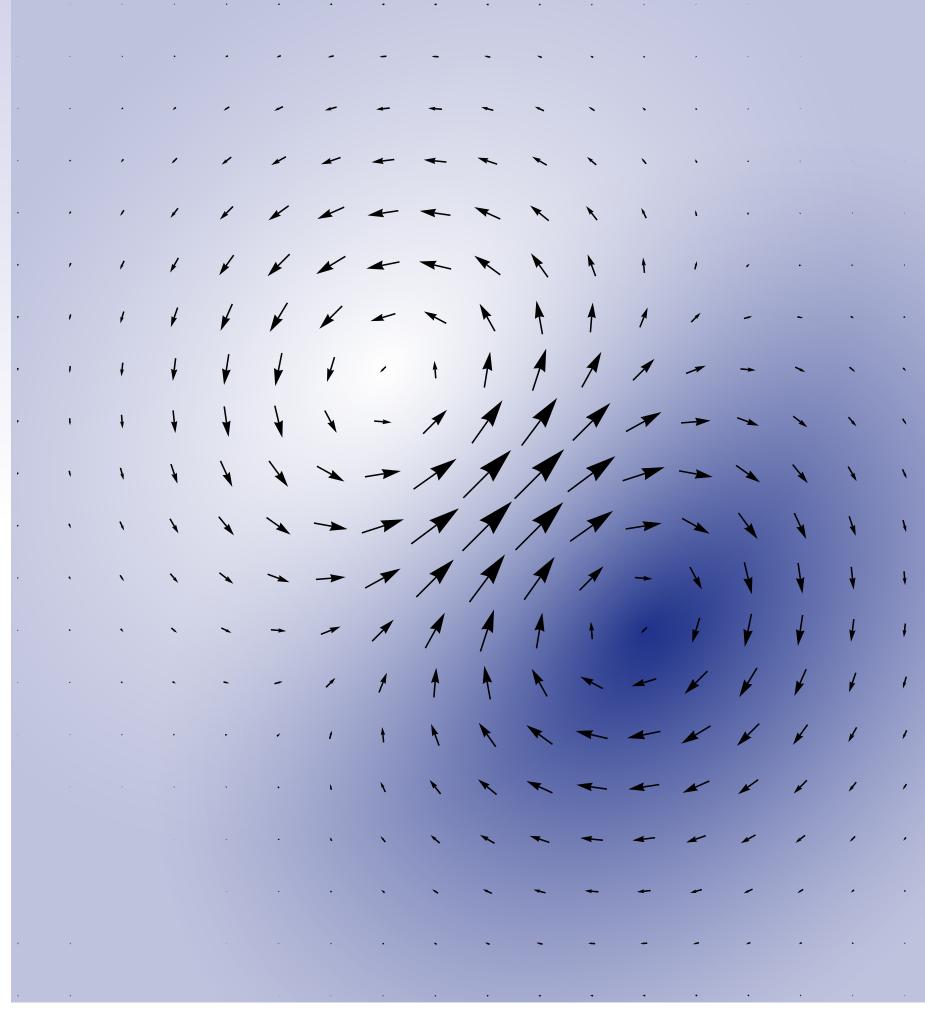
$$\begin{array}{l} (\partial w/\partial y \ - \ \partial v/\partial z) \\ \nabla \times X = \ (\partial u/\partial z \ - \ \partial w/\partial x) \\ (\partial v/\partial x \ - \ \partial u/\partial y) \end{array}$$

Looks an awful lot like...

$$d\alpha = \begin{pmatrix} \frac{\partial w}{\partial y} & - \frac{\partial v}{\partial z} \end{pmatrix} dy \wedge dz$$
$$d\alpha = \begin{pmatrix} \frac{\partial u}{\partial z} & - \frac{\partial w}{\partial x} \end{pmatrix} dz \wedge dx$$
$$\left(\frac{\partial v}{\partial x} & - \frac{\partial u}{\partial y} \right) dx \wedge dy$$

Especially if we then apply the *Hodge star*.

 $\frac{\partial x}{\partial y} = \frac{\partial y}{\partial z}$

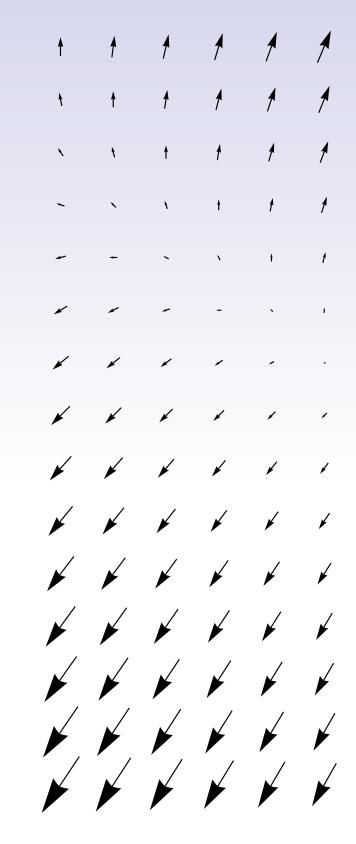


 $\nabla \times X \iff \star d\alpha$

 $\nabla \times X = (\star dX^{\flat})^{\sharp}$

•	'
•	
•	
`	•
١	•
ł	•
,	•
,	•
,	
,	

$d \circ d = 0$



Intuition: in *Rⁿ*, first *d* behaves just like gradient; second *d* behaves just like curl.

----* * * * * * * * * * * * * * *

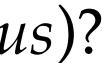
ddφ

Exterior Derivative in 3D (1-forms)

Q: How about $d \star \alpha$? (Still for $\alpha = udx + vdy + wdz$.)

A: $d \star \alpha = d(\star (udx + vdy + wdz))$ $= d(udy \wedge dz + vdz \wedge dx + wdx \wedge dy)$ $= du \wedge dy \wedge dz + dv \wedge dz \wedge dx + dw \wedge dx \wedge dy$ $= \frac{\partial u}{\partial x} dx \wedge dy \wedge dz + \frac{\partial v}{\partial y} dy \wedge dz \wedge dz + \frac{\partial w}{\partial z} dz \wedge dx \wedge dy$ $= \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right) dx \wedge dy \wedge dz$

Q: Does this operation remind you of anything (*perhaps from vector calculus*)?



Exterior Derivative and
Suppose we have a vector field
$$X := u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z}$$
Its divergence is then

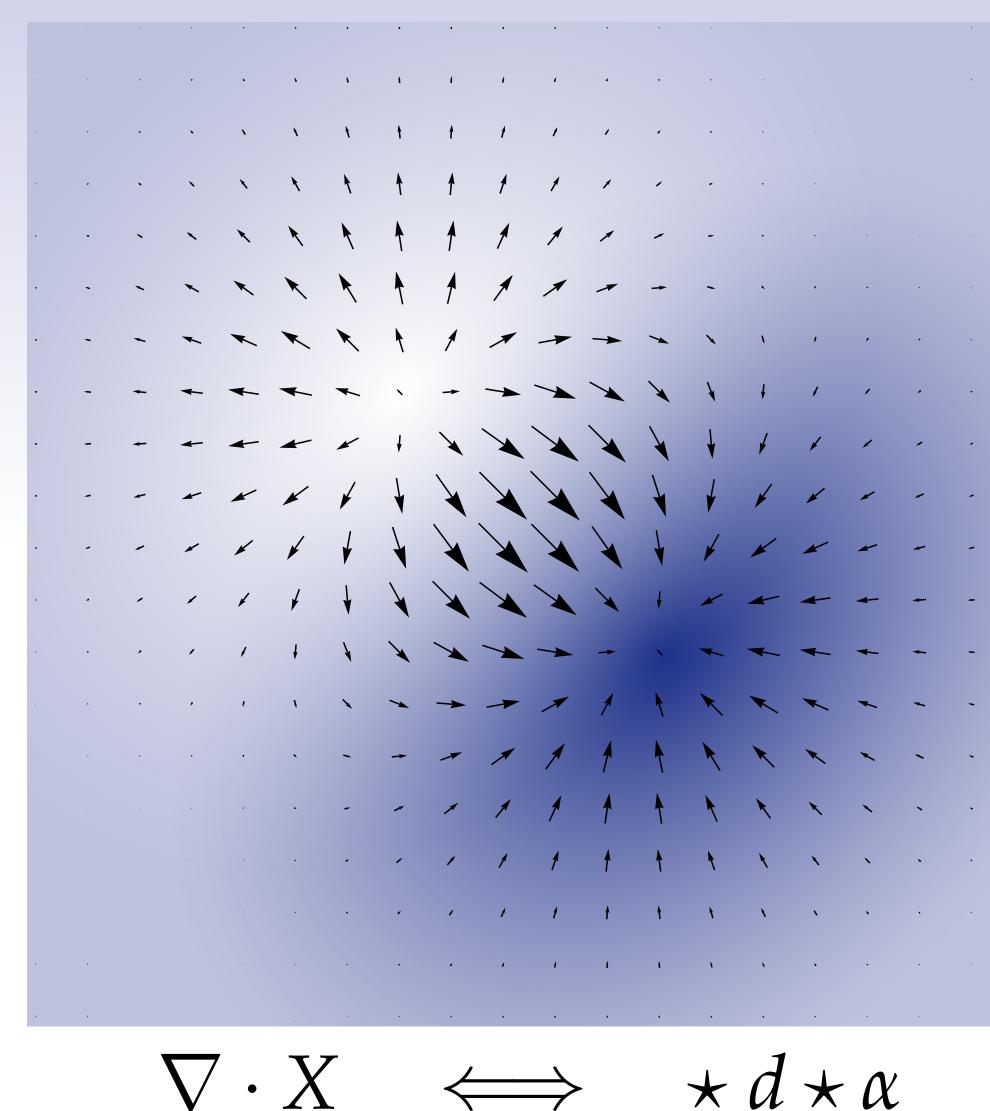
$$\nabla \cdot X = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial u} + \frac{\partial w}{\partial z}$$

Looks an awful lot like...

$$d \star \alpha = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right) dx \wedge dy$$

Especially if we then apply the *Hodge star*.

d Divergence



 $\wedge dz$

 $\nabla \cdot X = \star d \star X^{\flat}$

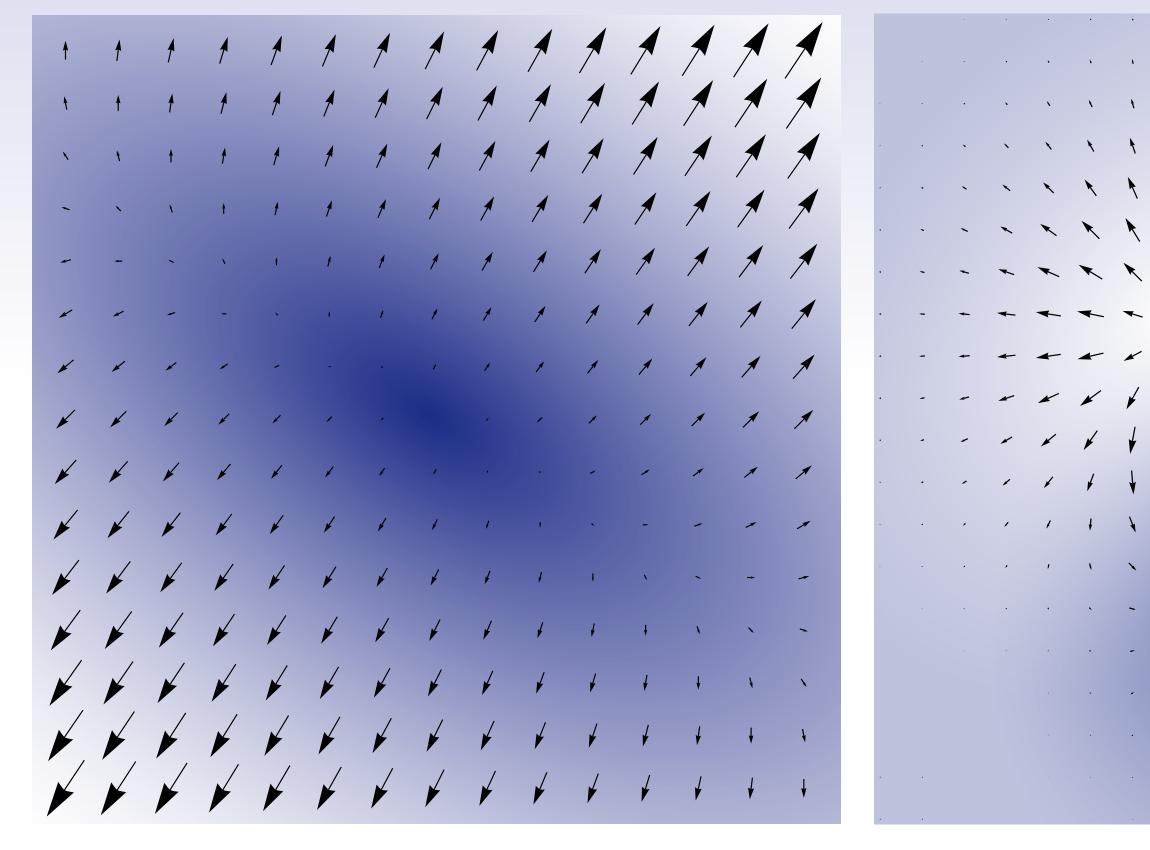
Exterior Derivative - Divergence

						•	·	•		•	·							
	,			*	x	١	١	i.	1	1	*	•	•	*				
,			`	×	۲	t	t	t	+	1	1		·					
,		•	`	X	۲	۲	t	1	1	1	1	-	•	•				
	•	~	~	×	×	۲	ł	1	1	1	1	-	-		,			
•	•	~	×	×	×	K	1	1	1	*	-		-	•				
	•	-	*			K	۲	1	-	-	->	*	X	N	,	,		• •
	-	*	*	-	-	*	`	+	-	-		×	¥	¥	1	,	,	• •
	-	*	+	-		*	ţ	X					¥	+	+	1	1	~ ,
	-	-	*		*	+	ł						¥	*	*	*	1	
	•	-	*	*	*	¥						ł	+	×	~	-	-	
•	,	,	1	*	+	¥	X				X	ţ	*	-	-	*	+	
•		,	,	/	ŧ	¥	X			-	-	~	*	-	-	*	+	
×	x		,	,	١	•	*	-	-	◄	1	ħ	K		*	*	-	
x	×				•	-	+	-	,	1	1	ł	K	×	×	*	-	. .
			-			-	-	1	1	1	1	ł	X	×	×	~	•	• •
																		· ·
								1	1	1	t	t	ł	X	X	~		
									4	1	I	١	١					
					x	4												

 $\nabla \cdot X = \star d(\star X^{\flat})$

(codifferential: $\delta := \star d \star$)

Exterior vs. Vector Derivatives – Summary



grad ϕ $(d\phi)^{\sharp}$

X																		γ	/						
· · ·	• •	•						•			x x	•				-	•	•	•	•	•				
t t 1													,	-	-	-	*-	-	•	•	•				
t t t											,	,	1	¥	*	-	★-	*	~	~	•	•			
+ + +	* -	-	•						•		,	1	*	*	*	-	*	▼	×	*	٨	۲			
1 1 1	× -	-						×		,	1	¥	*	¥	×	-	•	×	×	۲	t	1			
1 * -	→ ×	. 🗙	X	,	,			×		,	ţ	¥	¥	¥	¥	*	×	X	ł	Ť	1	1	-	-	
+ -> ->		. 4	¥	/	,	,				,	ŧ	¥	¥	¥	¥	1	t	1	1	1	1	*	-	~	
XXX		, ↓	+	+	/	,			•	۲	ŧ	ł	ł	ł	X	-	1	1	1	1	◄	-	~	~	
		¥	*	*	~	-	-		•	N	۲	ł	A	X	×	-	✓				~	-	*	×	
		+	×	*	*	-	-		•	•	X	X	X	×	-	~				◄	-	*	×	¥	
	× +	×	*	•	-	+	-	·		•	x	•	×	*	-	*	1	1	1	1	+	X	A	¥	
	→ ``	*	-	-	+	+	-	·		·	•	`	•	+	*	1	1	1	1	t	/	¥	¥	¥	
	1	×	*	•	*	+	-				·	•	-	-	1	1	Ť	1	X	*	*	*	*	+	
- * 1	1	X	×	×	*	~	-				,				1	t	۲	×	×	-	-	*	*	*	
1 1 1	1	X	×	×	~	~	•								١	X	×	×	*	-	*	*	*	*	
1 1 1	t t	۲	۲	X	`	•							-		`	`	*	*	*	*	*	×	*	1	
/ / /	t t	ł	X	`	`		,										`	~	-	+	+	-	-	-	
• • •	1 1	١	•			,											•	•	-	-	-	-	-		
		•												*											

div X $\star d(\star X^{\flat})$

curl Y $(\star (dX^{\flat}))^{\sharp}$

Exterior Derivative

Unique *linear* map $d : \Omega^k \to \Omega^{k+1}$ such that

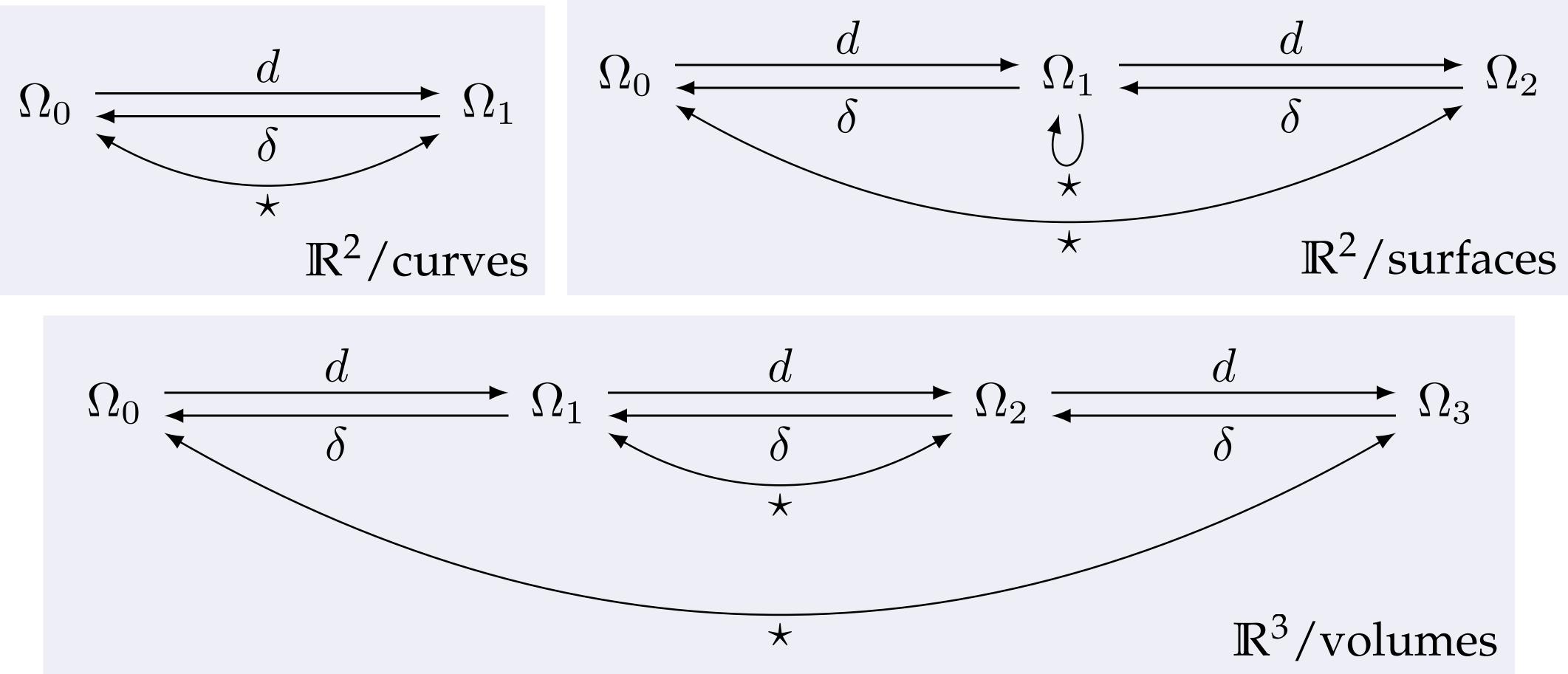
differential product rule $d \circ d = 0$ exactness

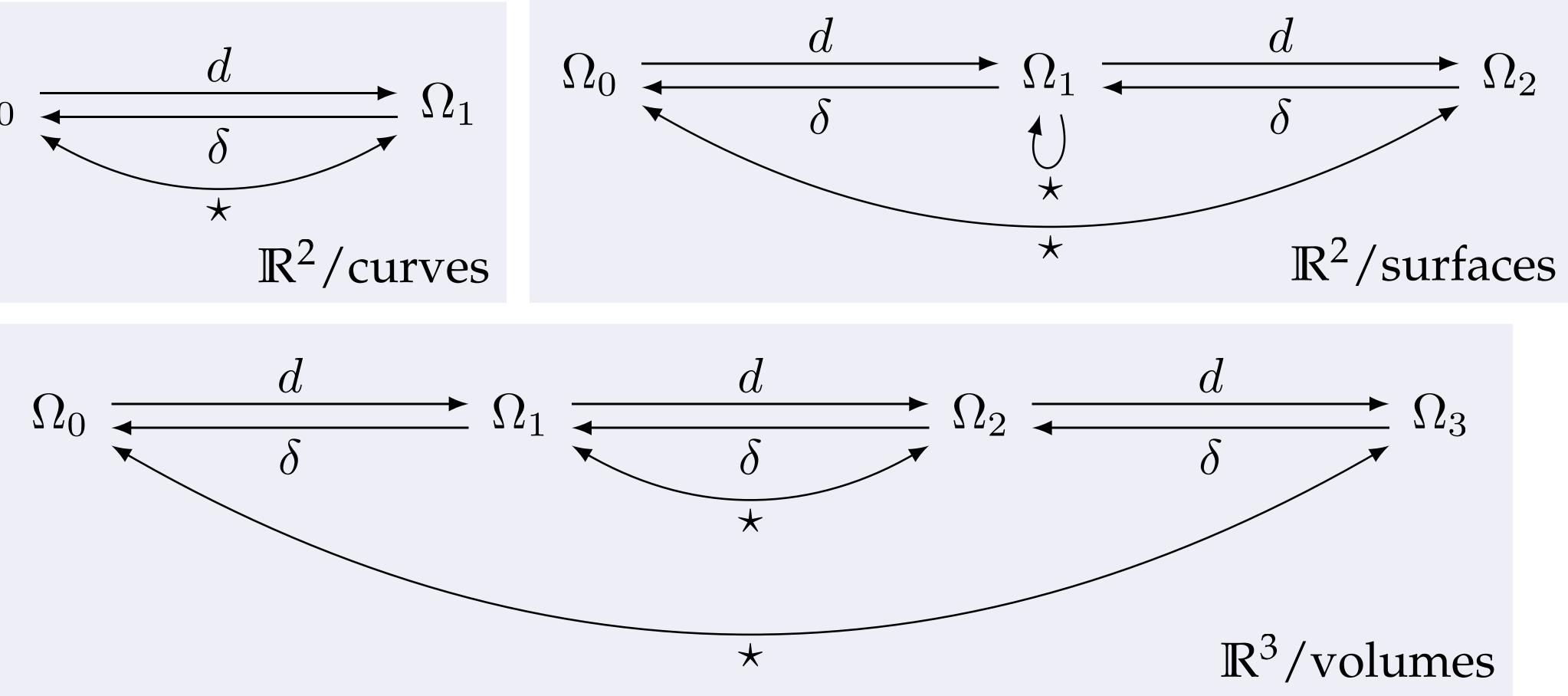
for k = 0, $d\phi(X) = D_X \phi$ $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$

Exterior Calculus

Exterior Calculus – Diagram View

• Taking a step back, we can draw many of the operators seen so far as diagrams:





Ω_k —differential *k*-forms

Laplacian

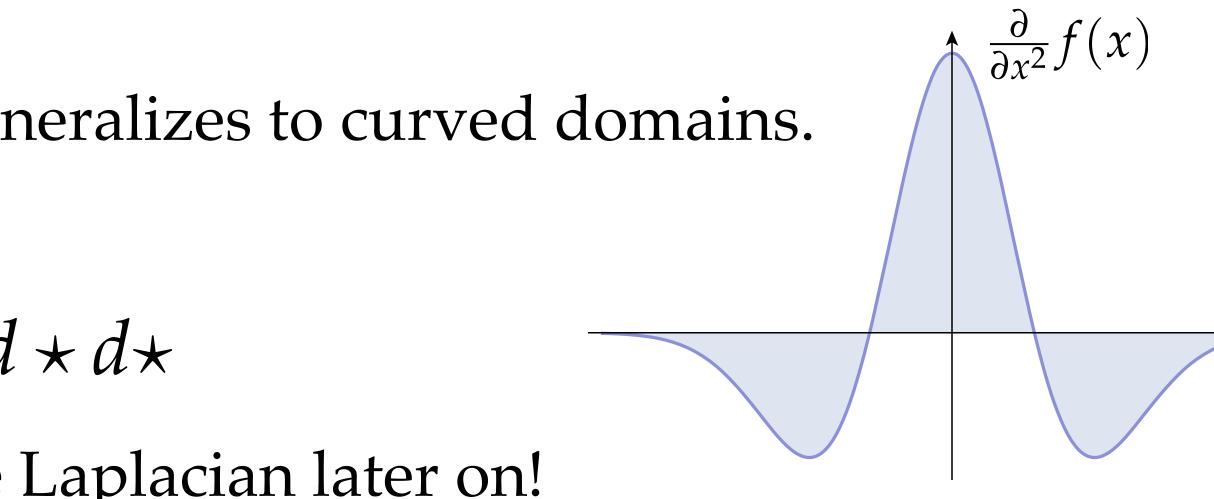
- Can now compose operators to get other operators
- E.g., *Laplacian* from vector calculus:

$$\Delta := \operatorname{div} \circ \operatorname{grad}$$

- Can express exact same operator via exterior calculus: $\Delta = \star d \star d$
- ...except that this expression easily generalizes to curved domains.
- Can also generalize to *k*-forms:

$$\Delta := \star d \star d + d$$

• Will have **much** more to say about the Laplacian later on!



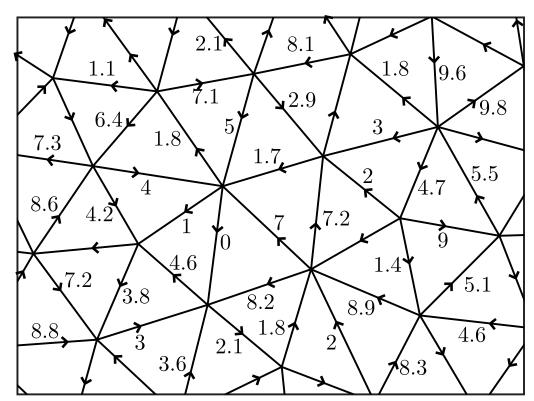
f(x)

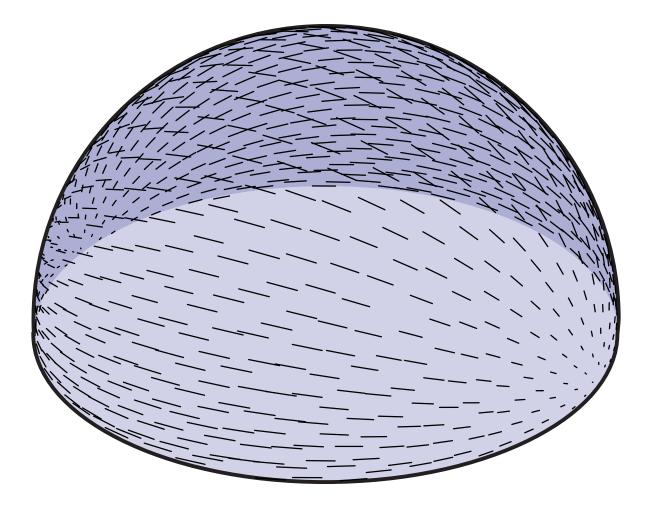
Preview: Exterior Calculus Beyond Rⁿ

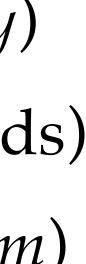
- Why study these two very similar viewpoints? (*I.e.*, **vector** vs. **exterior** calculus) • Hard to measure change in *volumes* using basic vector calculus

 - Duality clarifies the distinction between different concepts / quantities
 - **Topology**: notion of differentiation that does not require metric (e.g., *cohomology*)
 - Geometry: clear language for calculus on *curved* domains (Riemannian manifolds)
 - **Physics**: clear distinction between physical quantities (e.g., *velocity* vs. *momentum*)
 - **<u>Computer Science</u>**: Leads directly to discretization/computation!

DEMO





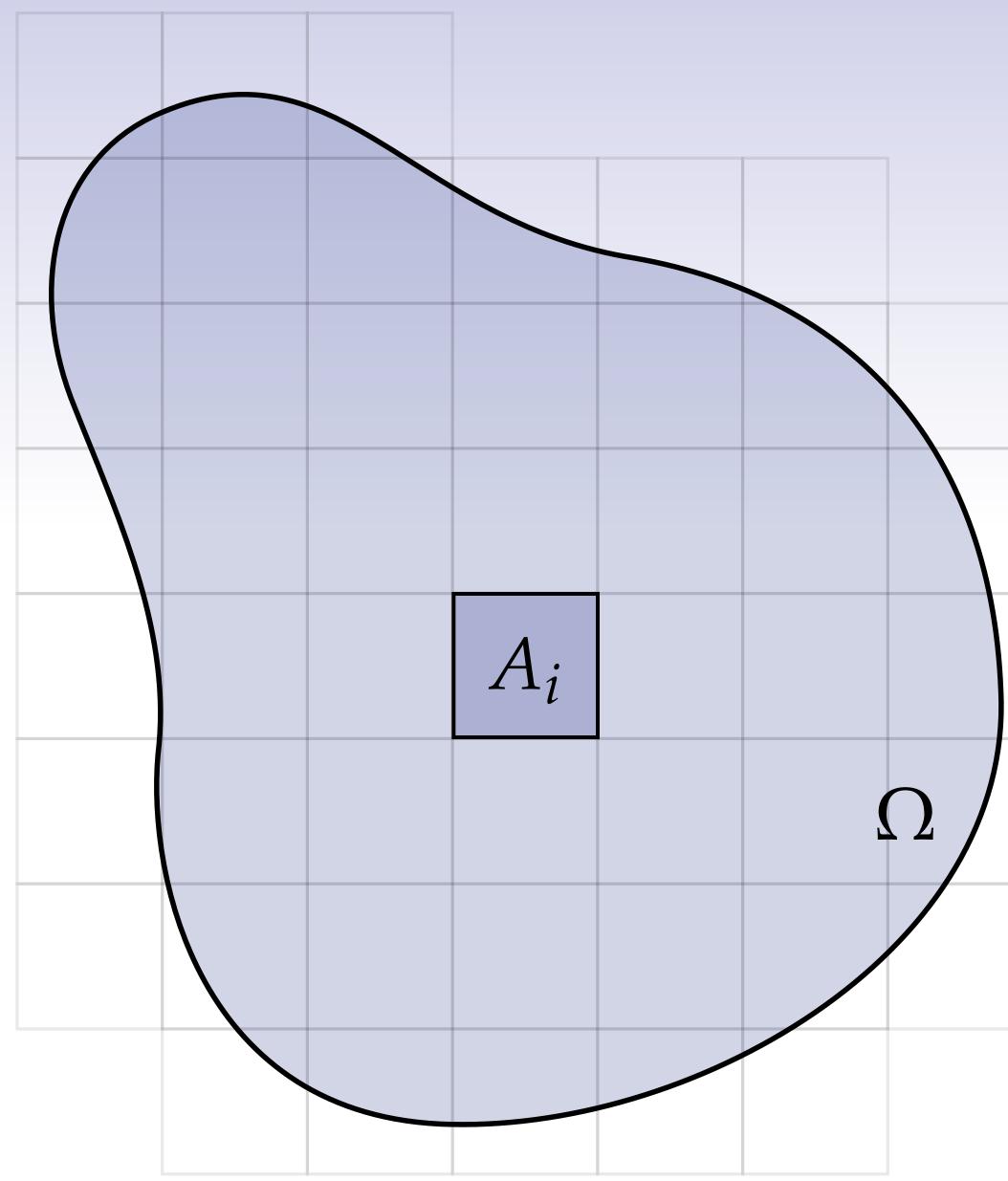


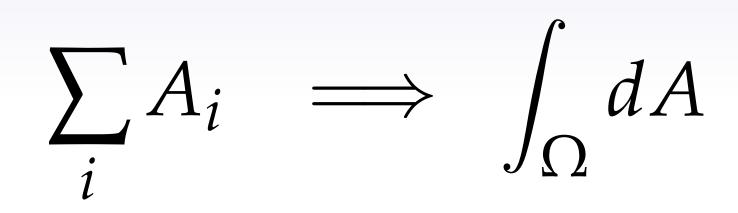
Exterior Derivative - Summary

- Exterior derivative d used to differentiate k-forms
 - 0-form: "gradient"
 - 1-form: "curl"
 - 2-form: "divergence" (codifferential δ)
 - and more...
- Natural product rule
- d of d is zero
 - Analogy: curl of gradient
 - More general picture (soon!) via *Stokes' theorem*

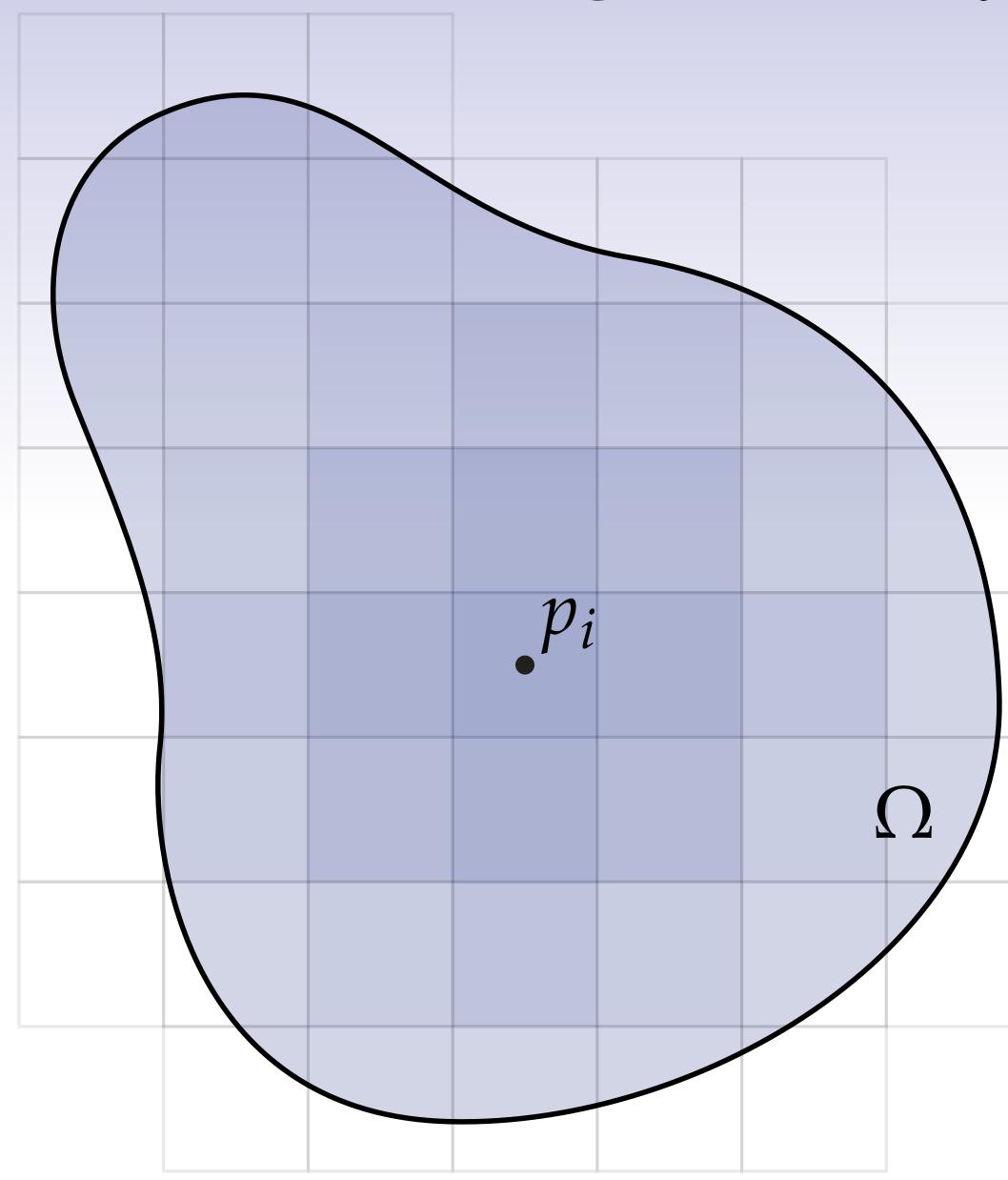
Integration of Differential k-Forms

Review—Integration of Area





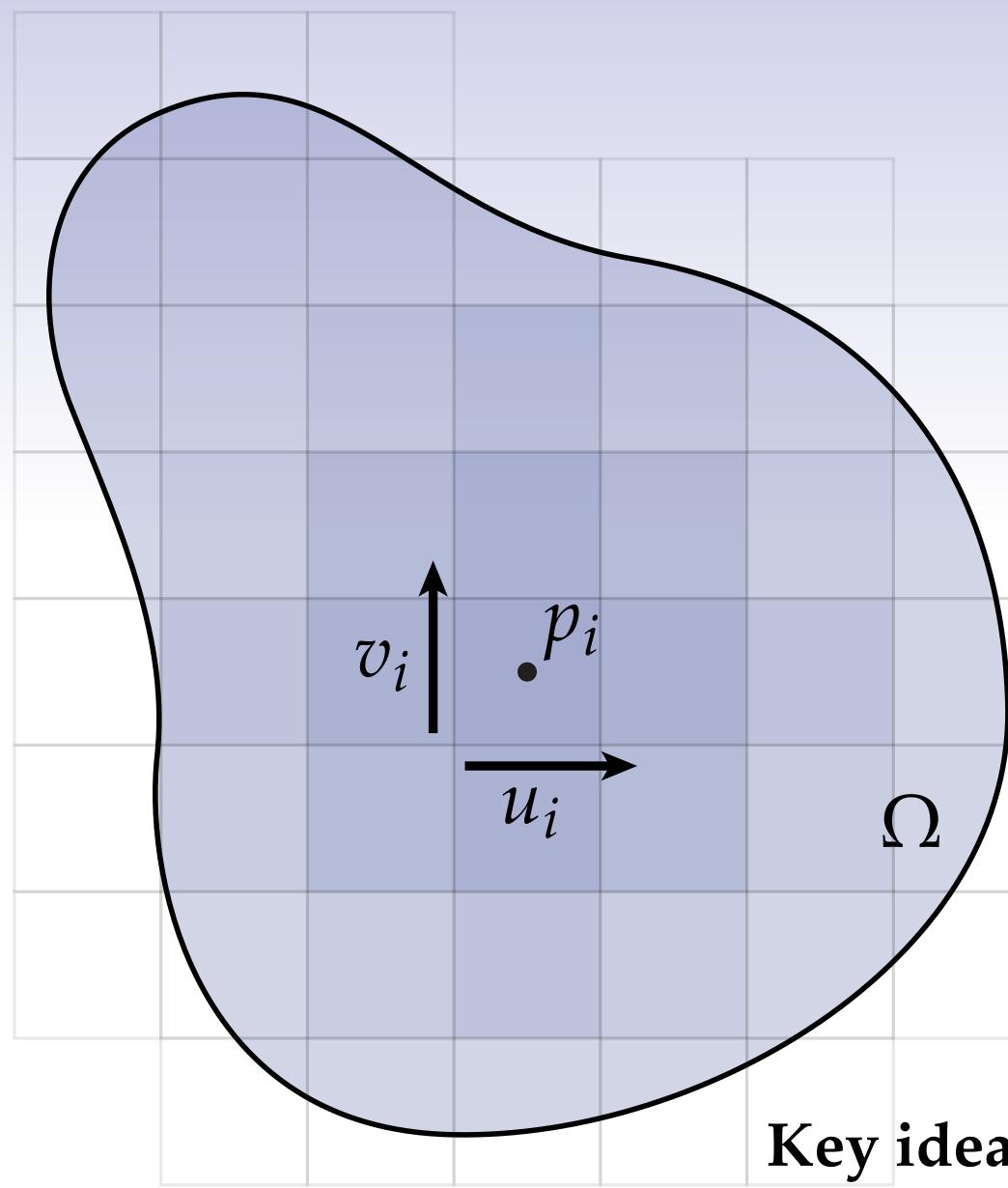
Review—Integration of Scalar Functions



 $\phi:\Omega\to\mathbb{R}$

 $\sum_{i} A_{i} \phi(p_{i}) \implies \int_{\Omega} \phi \, dA$

Integration of a 2-Form



ω — differential 2-form on Ω

 $\sum_{i} \omega_{p_{i}}(u_{i}, v_{i}) \implies \int_{\Omega} \omega$

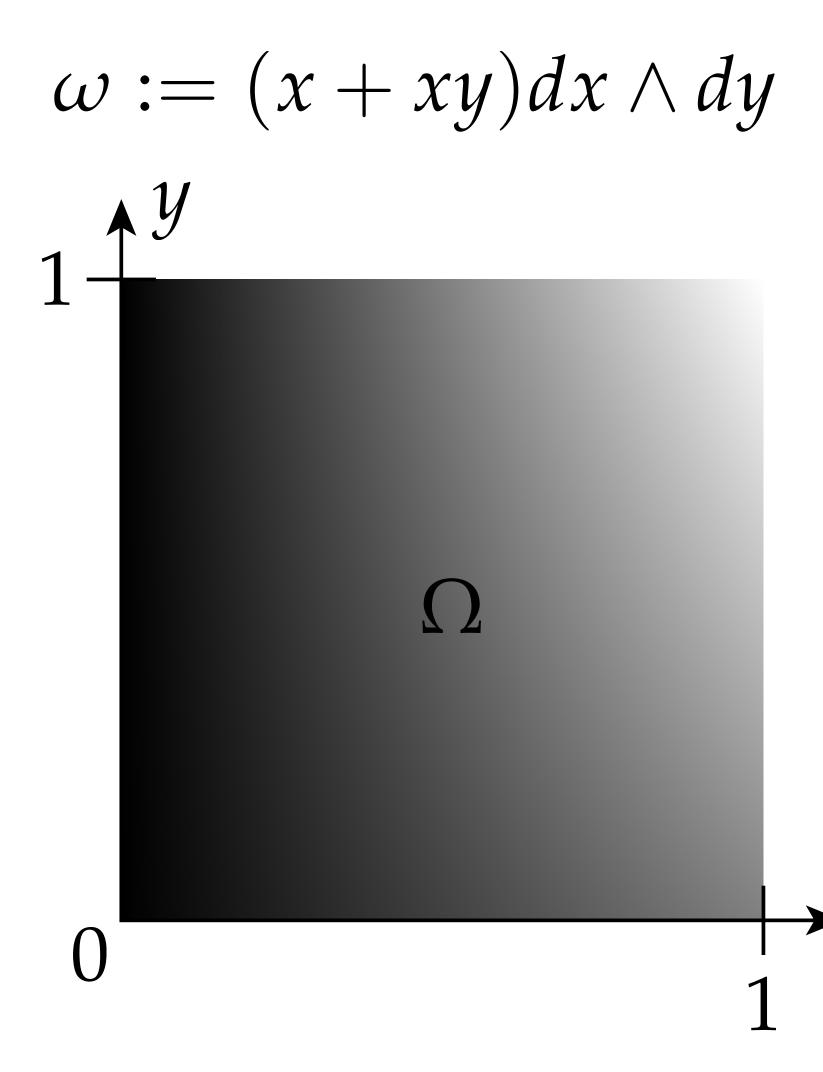
Key idea: integration *always* involves differential forms!

Integration of Differential 2-forms—Example

• Consider a differential 2-form on the unit square in the plane:

$$\int_{\Omega} \omega = \int_{\Omega} (x + xy) dx \wedge dy$$
$$= \int_{0}^{1} \int_{0}^{1} (x + xy) dx \wedge dy$$
$$= \dots = \frac{3}{4}$$

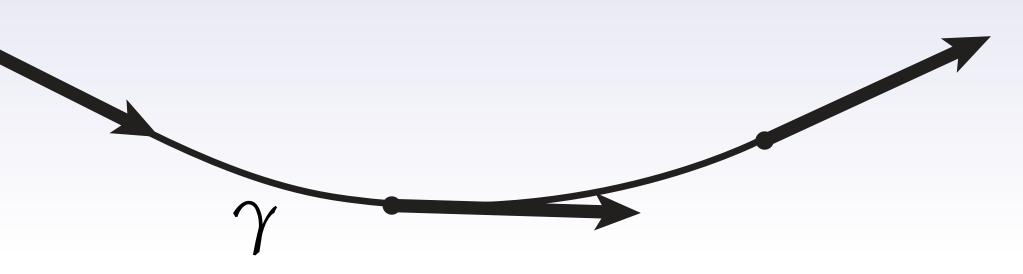
• In this case, no different from usual "double integration" of a scalar function.



Integration on Curves

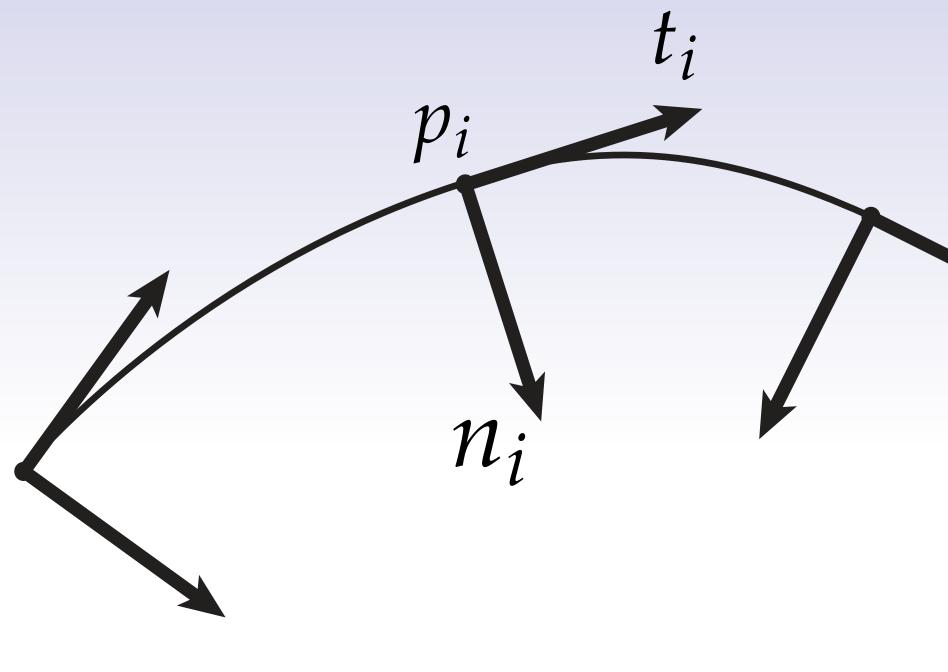
 t_i p_i

 $J\gamma$



 $\alpha \approx \sum_{i} \alpha_{p_i}(t_i)$ i

Integration on Curves

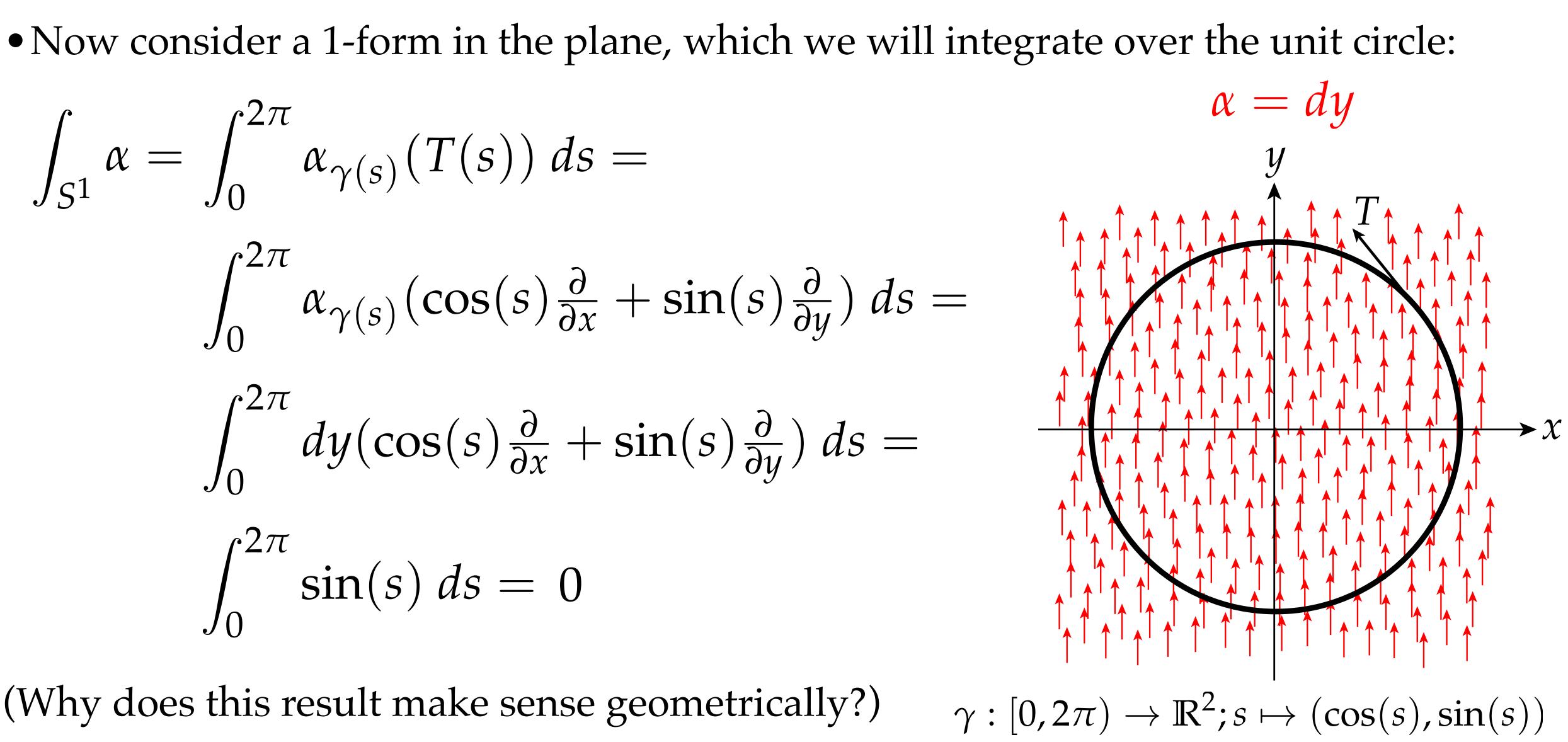


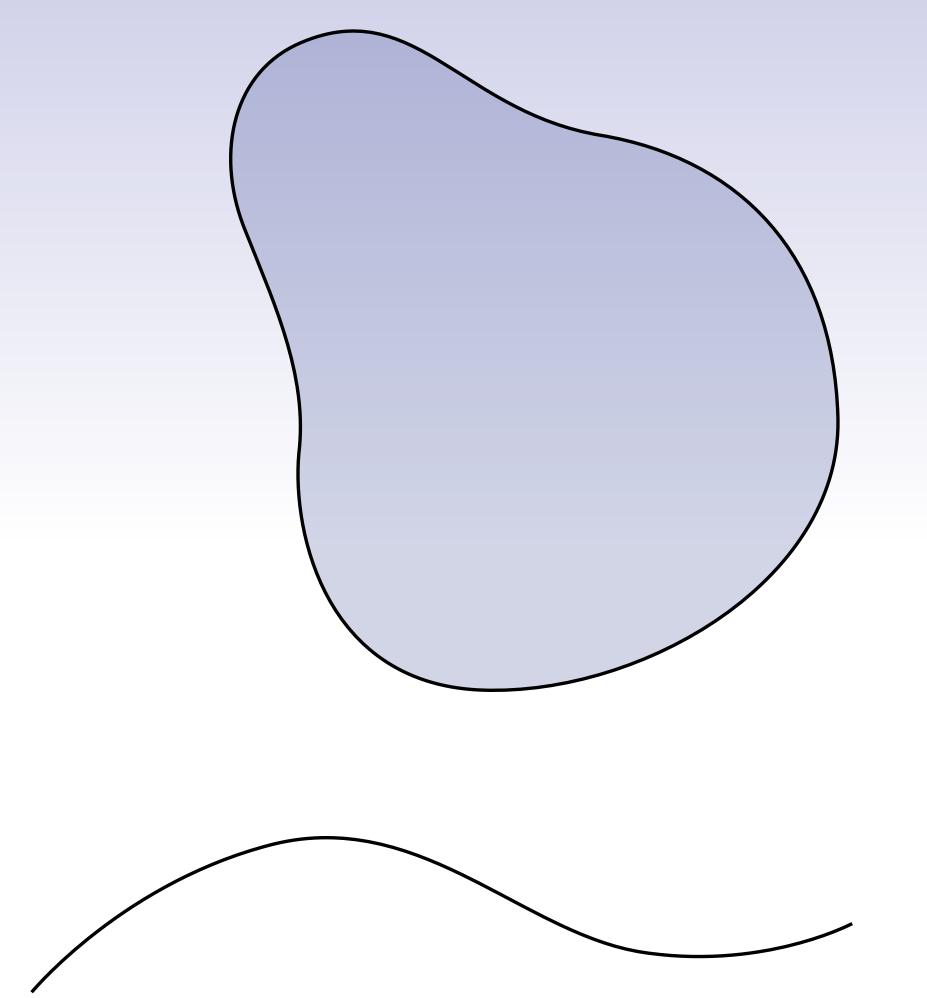
 $\star \alpha \approx \sum \star \alpha_{p_i}(t_i) = \sum \alpha_{p_i}(n_i)$ $J\gamma$ i

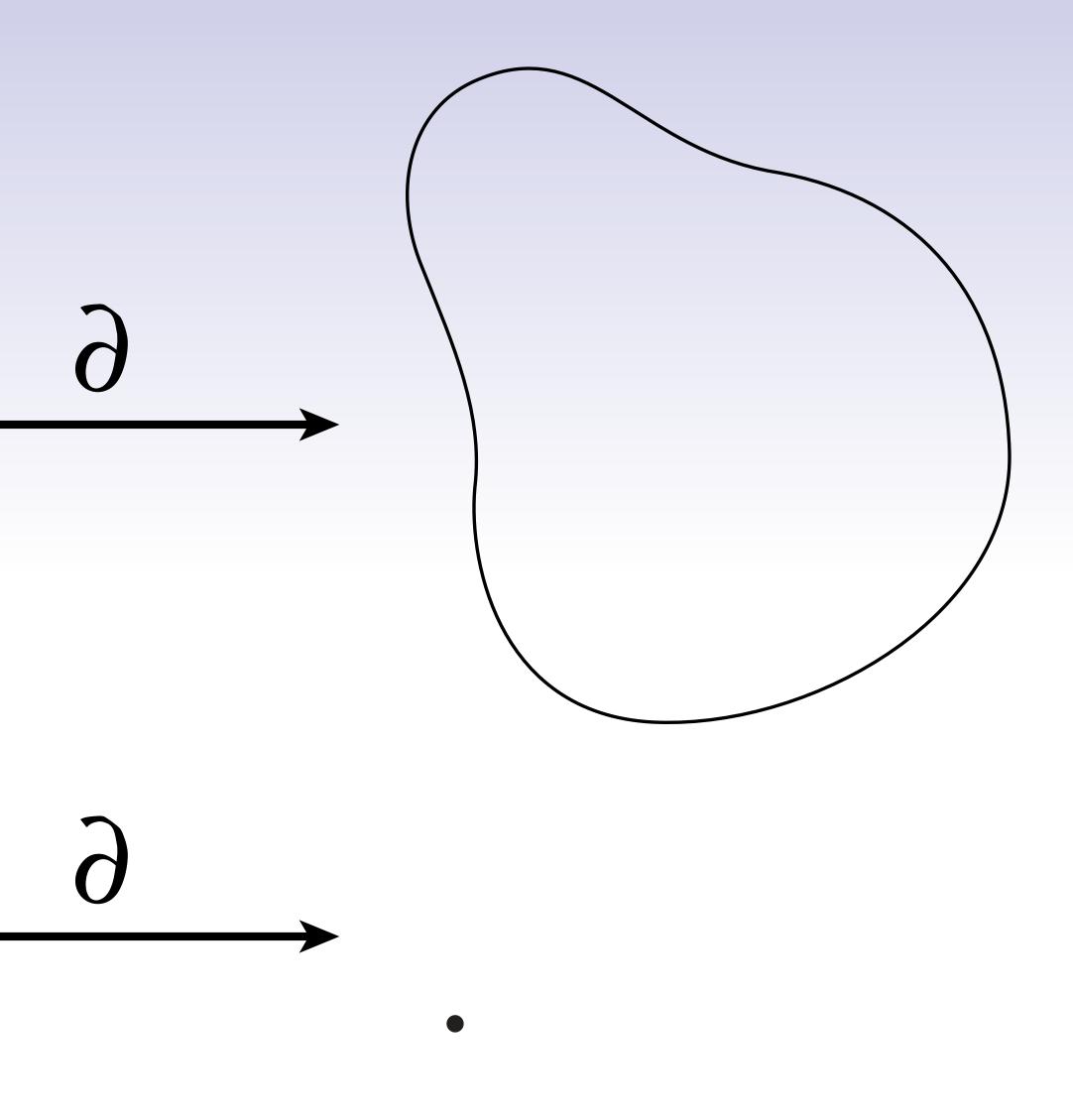
Integration on Curves—Example

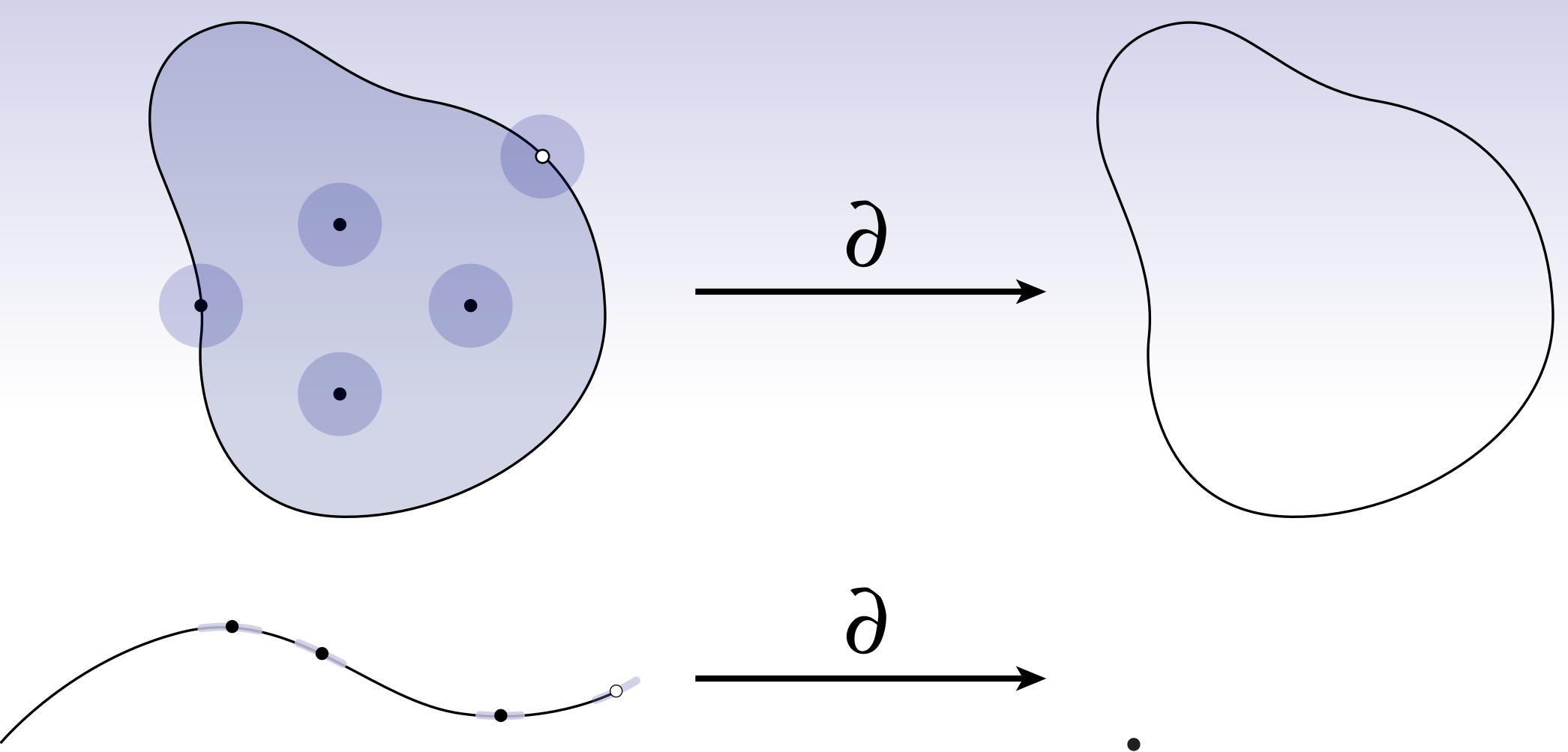
$$\int_{S^1} \alpha = \int_0^{2\pi} \alpha_{\gamma(s)}(T(s)) \, ds =$$
$$\int_0^{2\pi} \alpha_{\gamma(s)}(\cos(s)\frac{\partial}{\partial x} + \sin(s)) \, ds = 0$$
$$\int_0^{2\pi} dy(\cos(s)\frac{\partial}{\partial x} + \sin(s)) \, ds = 0$$

(Why does this result make sense geometrically?)





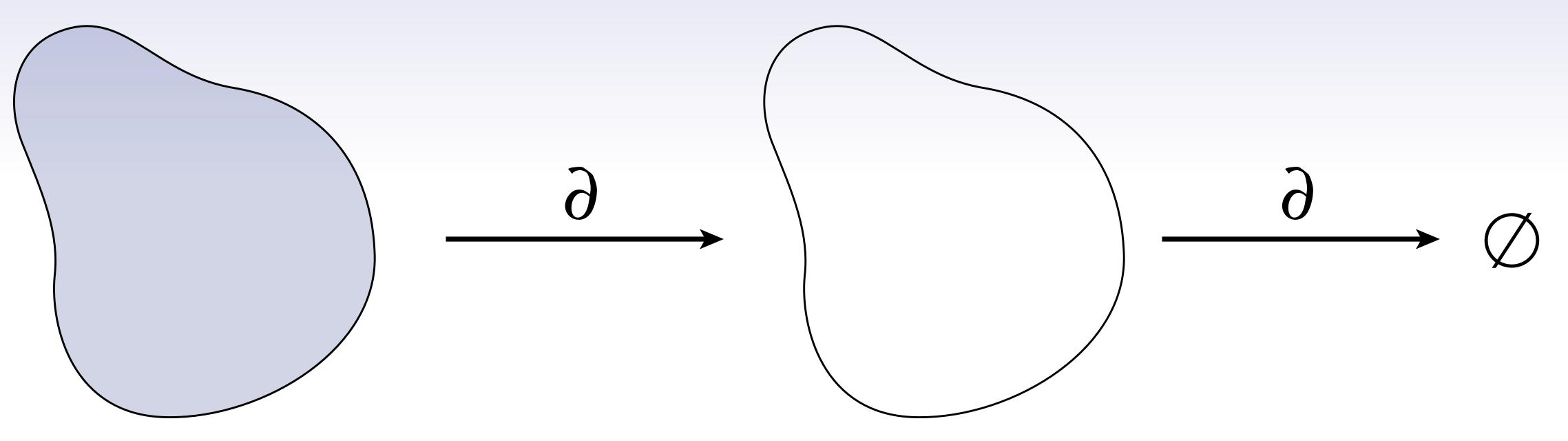




Basic idea: for an *n*-dimensional set, the boundary points are those not contained in any *n*-ball strictly inside the domain.

Boundary of a Boundary

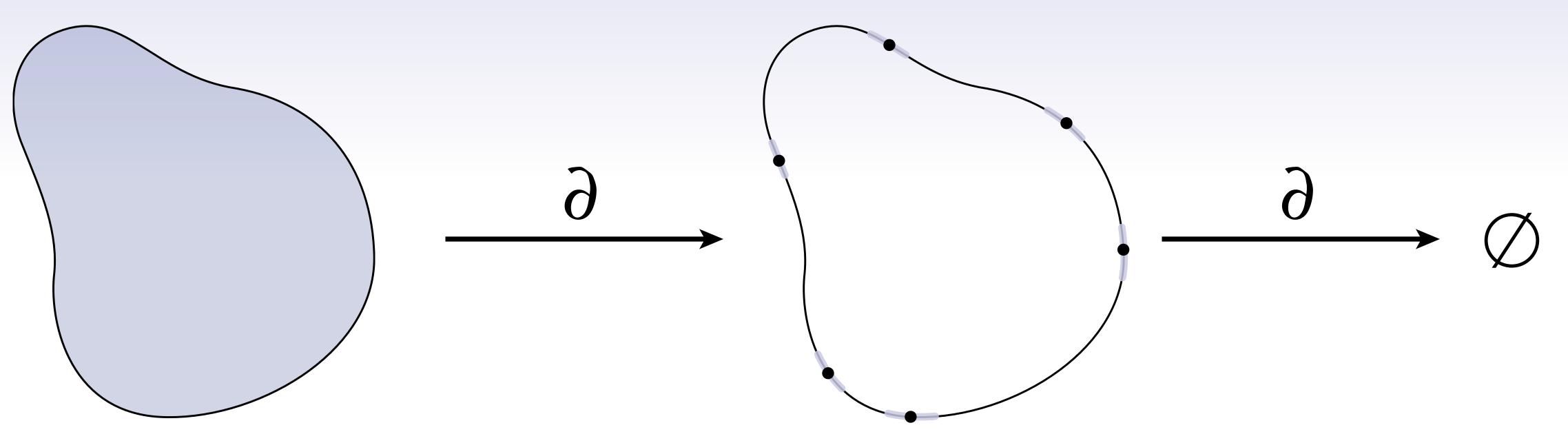
Q: Which points are in the boundary of the boundary?



A: No points! Boundary of a boundary is always *empty*.

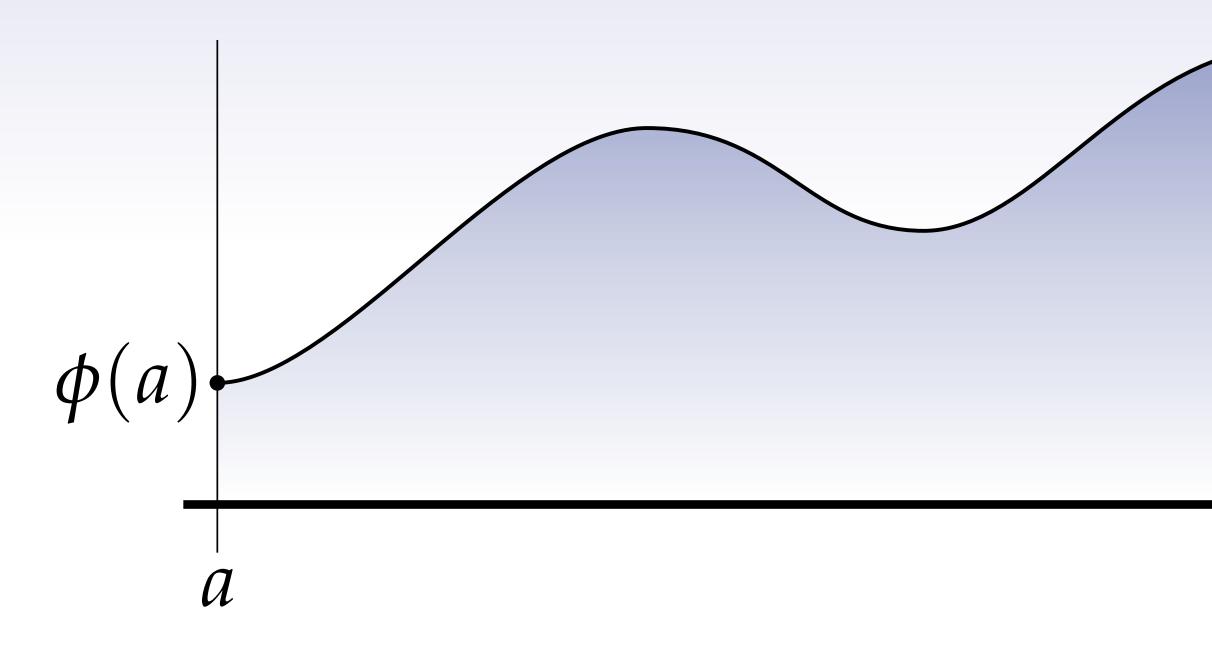
Boundary of a Boundary

Q: Which points are in the boundary of the boundary?



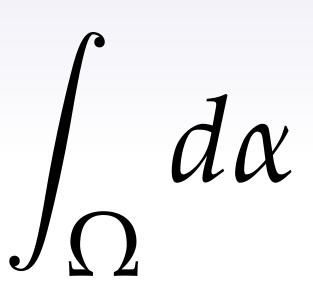
A: No points! Boundary of a boundary is always *empty*.

Review: Fundamental Theorem of Calculus

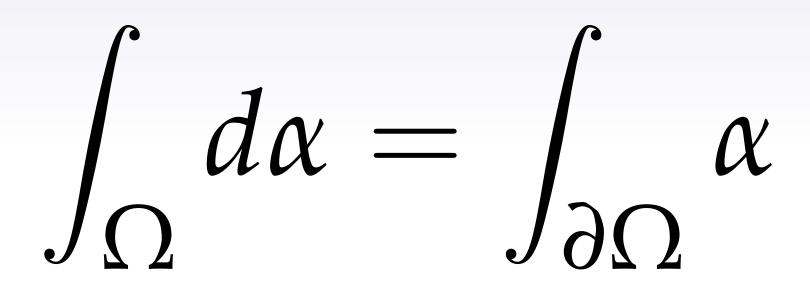


 $\phi(b)$ $\int_{a}^{b} \frac{\partial \phi}{\partial x} dx = \phi(b) - \phi(a)$

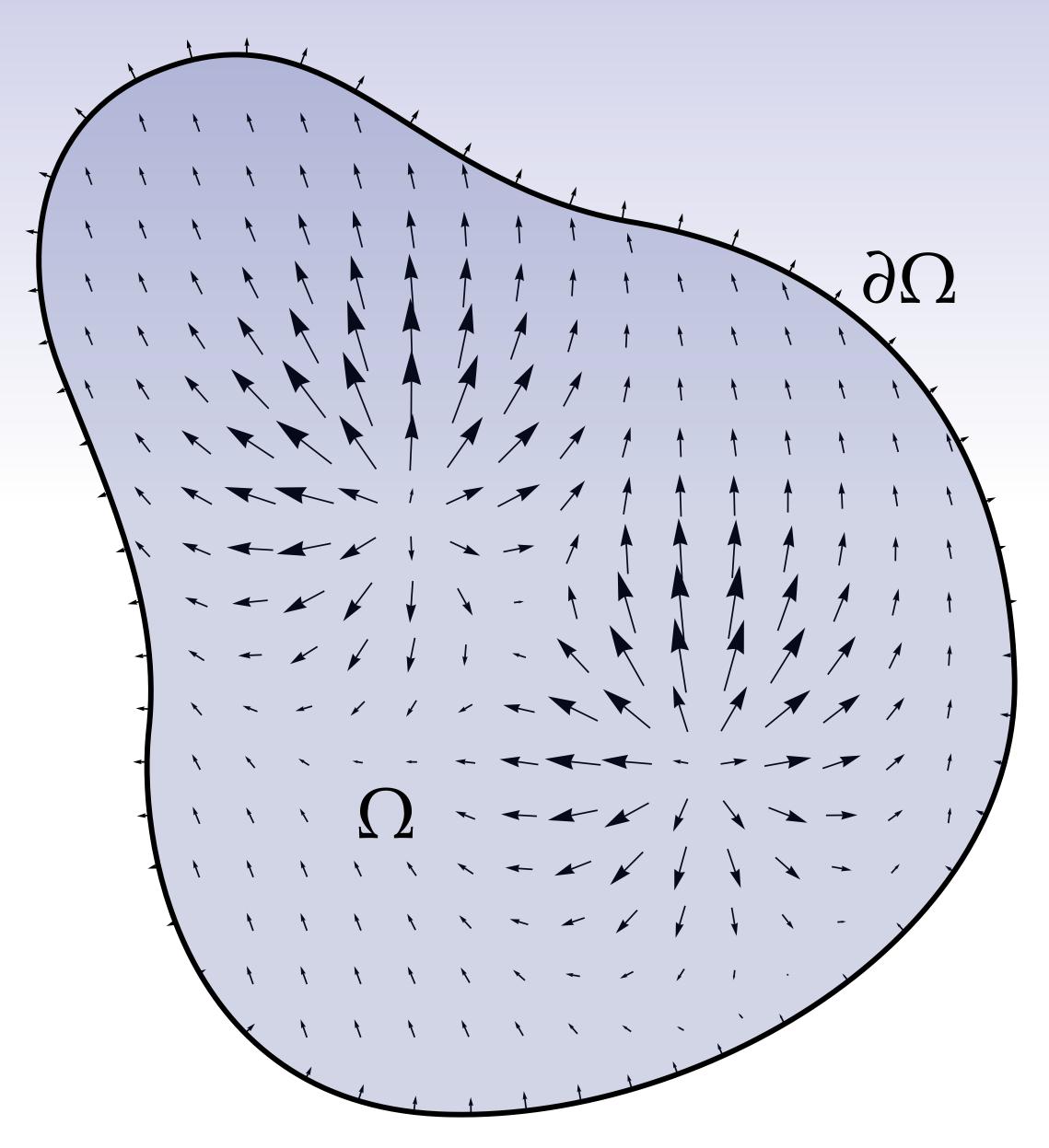
Stokes' Theorem



Analogy: fundamental theorem of calculus



Example: Divergence Theorem

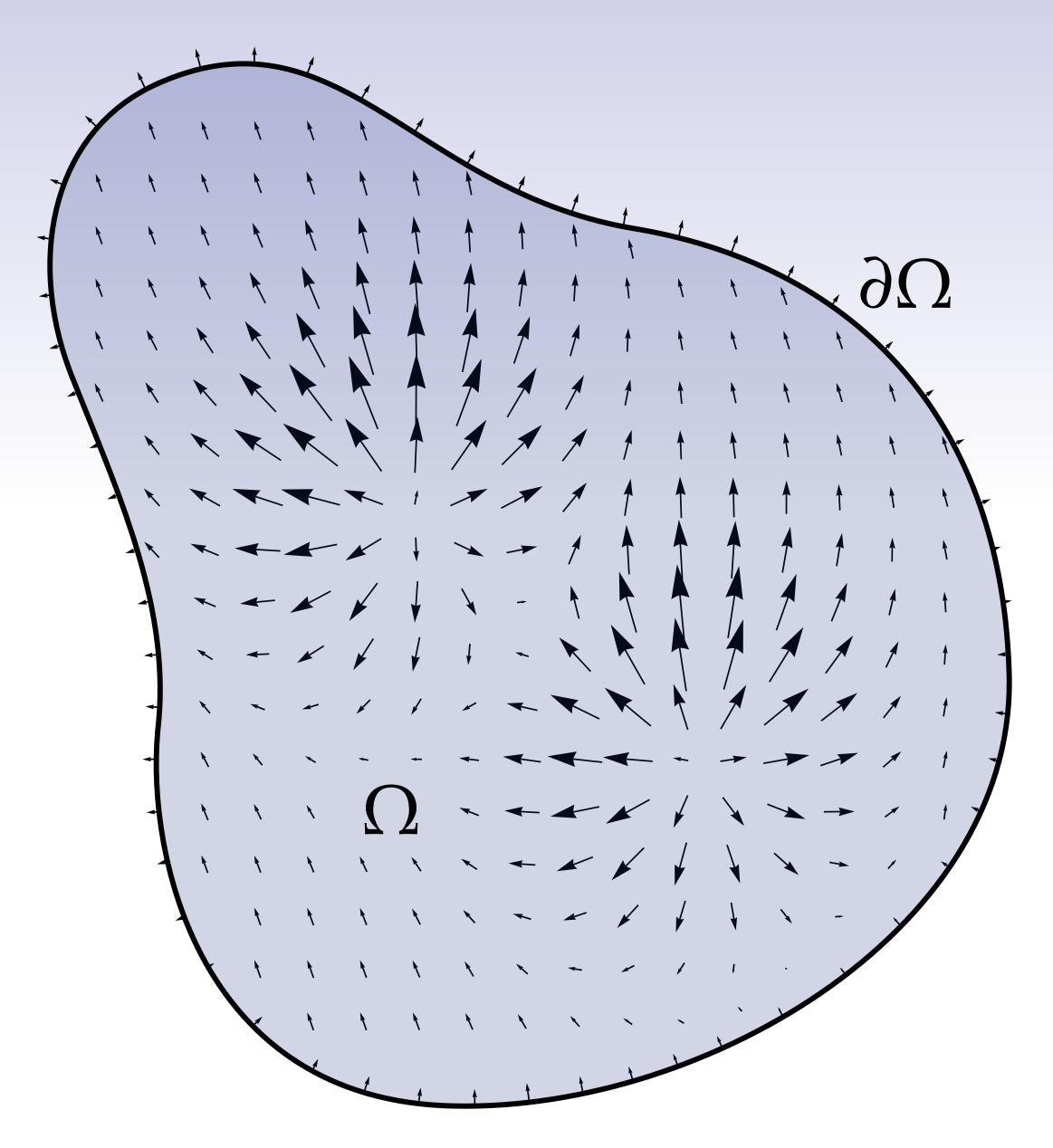


 $\int_{\Omega} \nabla \cdot X \, dA = \int_{\partial \Omega} n \cdot X \, d\ell$

 $\int_{\Omega} d \star \alpha = \int_{\partial \Omega} \star \alpha$

What goes in, must come out!

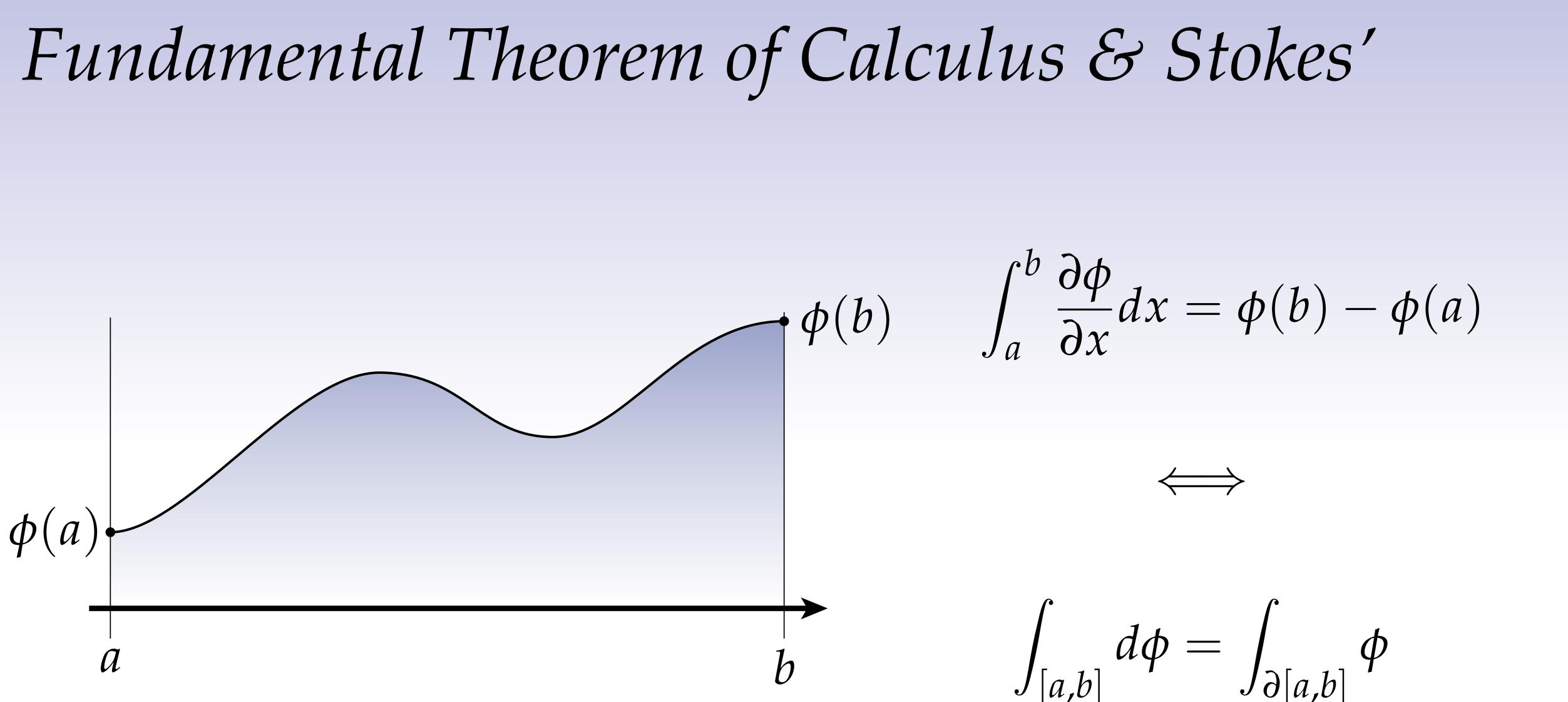
Stokes' Theorem



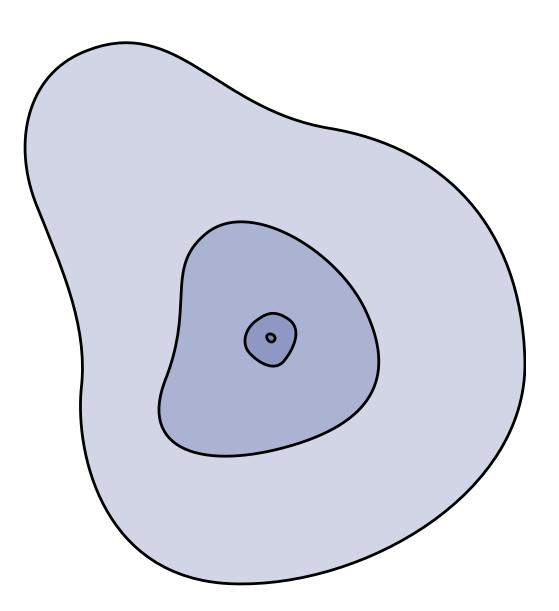
 $d\alpha = \int \alpha$

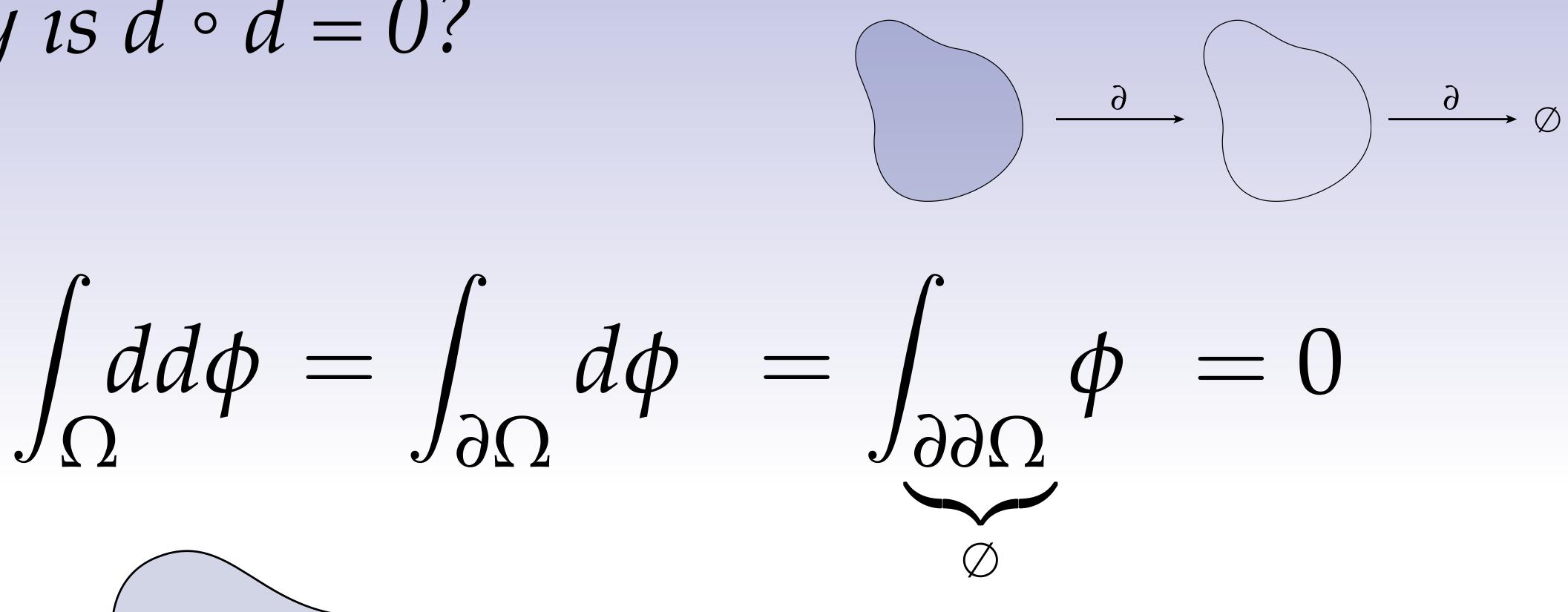
"The change we see on the outside is purely a function of the change within."

–Zen koan

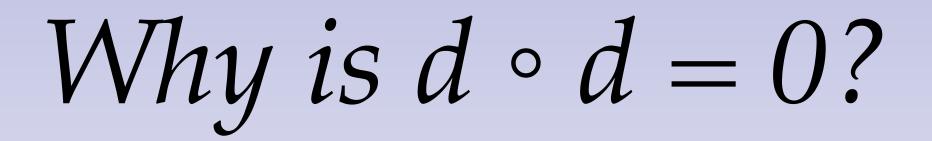


Why is $d \circ d = 0$?





...for any Ω (no matter how small!)



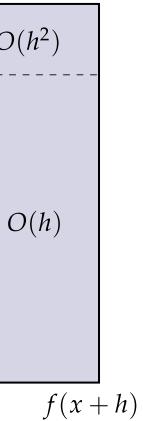
differential product rule Stokes' theorem $d\alpha =$

Unique *linear* map $d : \Omega^k \to \Omega^{k+1}$ such that "behaves like gradient for functions" $d\phi = \frac{\partial \phi}{\partial x^1} dx^1 + \dots + \frac{\partial \phi}{\partial x^n} dx^n$ $d(\alpha \wedge \beta) = d\alpha \wedge \beta(-1)^k \alpha \wedge d\beta$ g(x+h) $O(h^2)$ O(h)g(x)

what goes in, must come out!

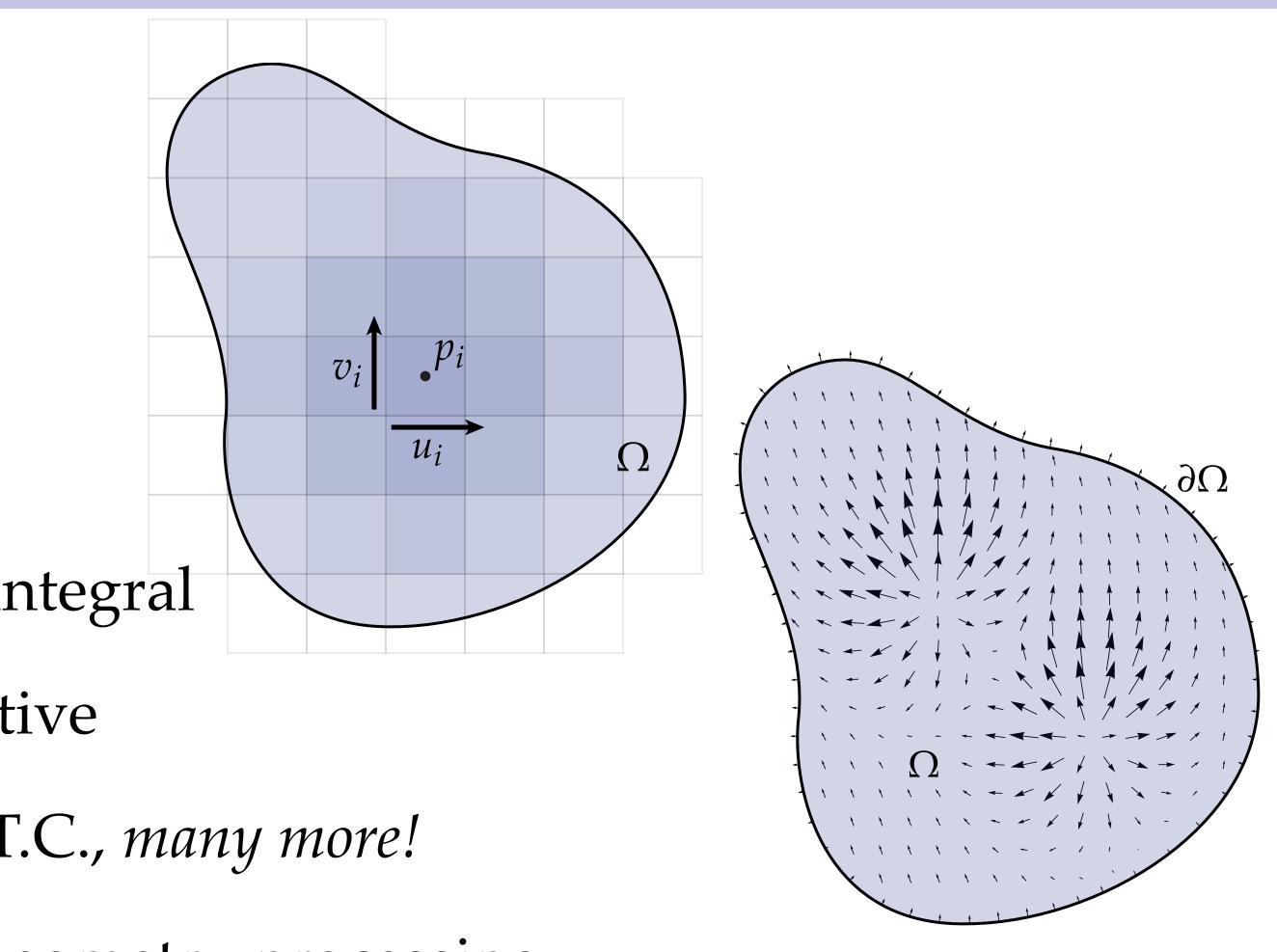
120

f(x)



Integration & Stokes' Theorem - Summary

- Integration
 - break domain into small pieces
 - measure each piece with *k*-form
- Stokes' theorem
 - convert region integral to boundary integral
 - super useful—lets us "skip" a derivative
 - special cases: divergence theorem, F.T.C., many more!
 - will use *over and over* again in DEC/geometry processing



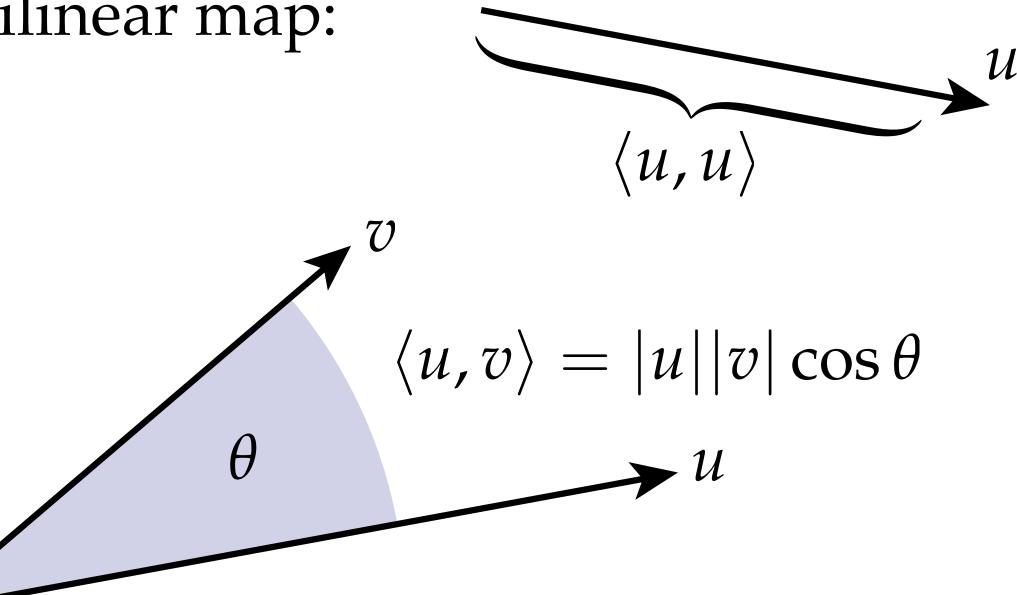
 $\int_{M} d\alpha = \int_{\partial M} \alpha$

Inner Product on Differential k-Forms

Inner Product – Review

- Recall that a *vector space* V is any collection of "arrows" that can be added, scaled, ... • **Q**: What's an *inner product* on a vector space?
- A: Loosely speaking, a way to talk about lengths, angles, etc., in a vector space
- More formally, a symmetric positive-definite bilinear map:

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R} \langle u, v \rangle = \langle v, u \rangle \langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \langle au, v \rangle = a \langle u, v \rangle \langle u, u \rangle \ge 0; \langle u, u \rangle = 0 \iff u = 0$$
 for all vectors *u*,*v*,*w* in *V* and scalars *a*.



(Geometric interpretation of these rules?)

Euclidean Inner Product—Review

- Most basic inner product: inner product of two vectors in Euclidean Rⁿ
- Just sum up the product of components:

$$u = u^{1}e_{1} + \dots + u^{n}e_{n}$$

$$v = v^{1}e_{1} + \dots + v^{n}e_{n}$$

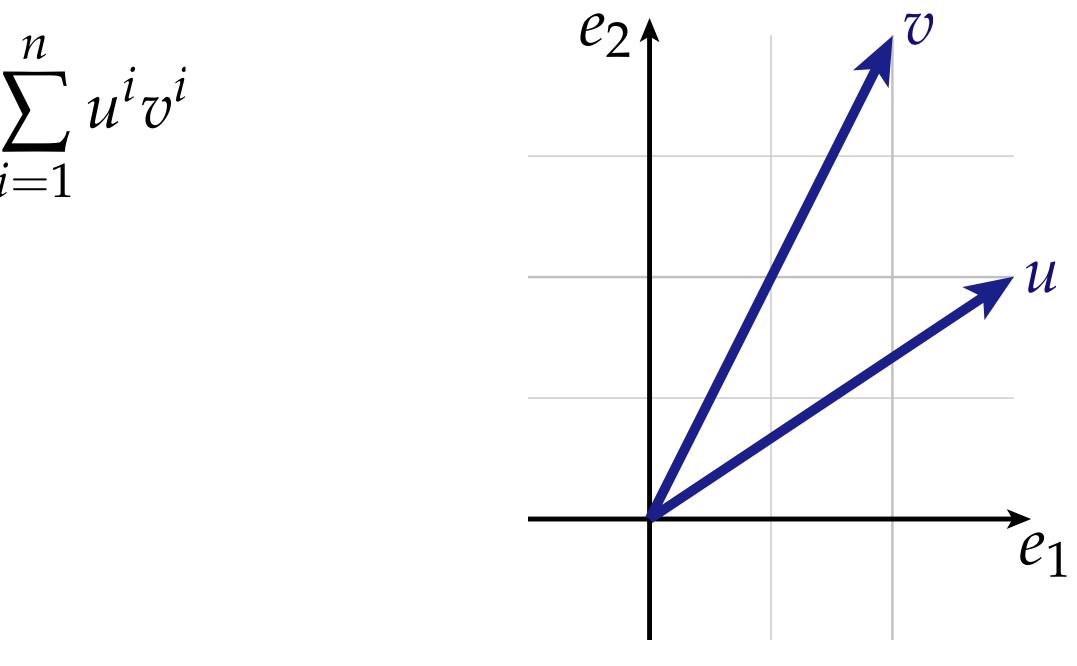
$$\langle u, v \rangle := i$$

Example.

$$u = 3e_1 + 2e_2$$

 $v = 2e_1 + 4e_2$
 $\langle u, v \rangle = 3 \cdot 2 + 2 \cdot 4 = 14$

(Does this operation satisfy all the requirements of an inner product?)

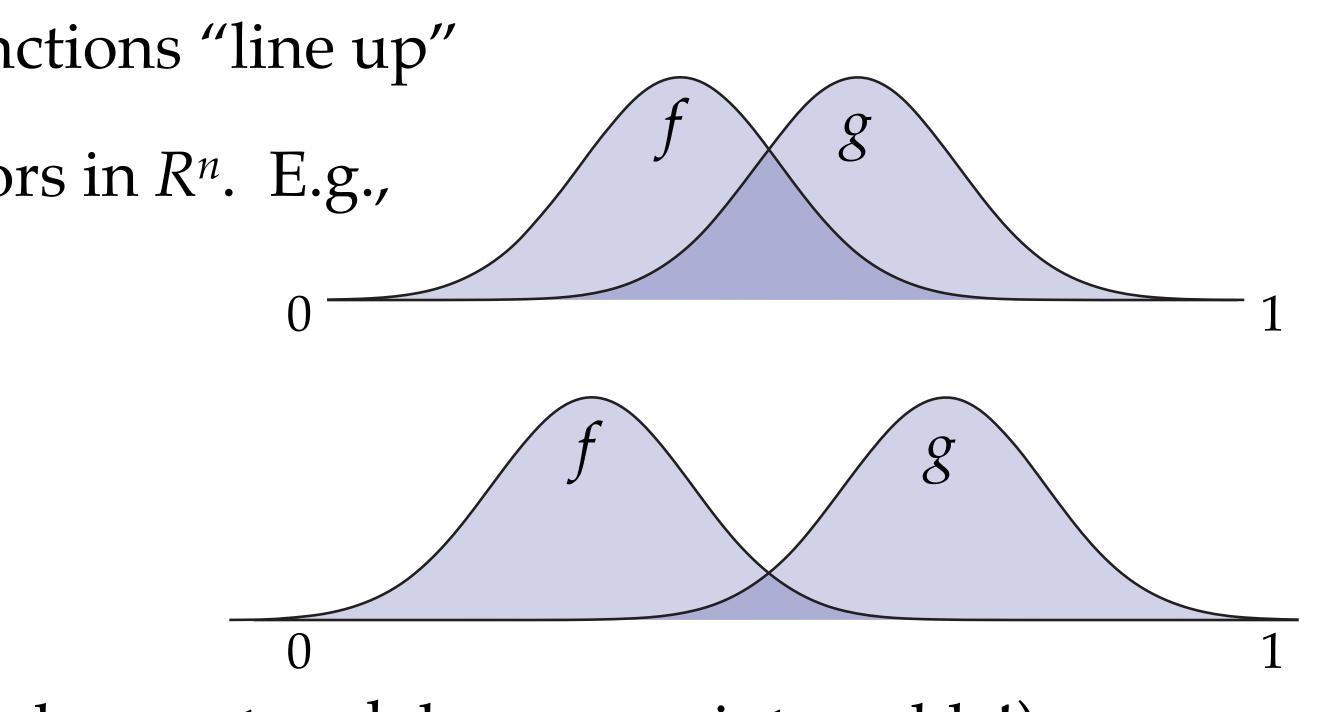


L² Inner Product of Functions / 0-forms

- Remember that in many situations, *functions* are also vectors
- What does it mean to measure the inner product between functions?
- Want some notion of how well two functions "line up"
- One idea: mimic what we did for vectors in *Rⁿ*. E.g.,

$$f: [0,1] \to \mathbb{R}$$
$$g: [0,1] \to \mathbb{R}$$
$$\langle \langle f,g \rangle \rangle := \int_0^1 f(x)g(x)dx$$

- Called the L² inner product. (Note: f and g must each be square-integrable!)
- Does this capture notion of "lining up"? Does it obey rules of inner product?



Inner Product on k-Forms

Definition. Let $\alpha, \beta \in \Omega^k$ be any two differential k-forms. Their (L^2) inner product is defined as*

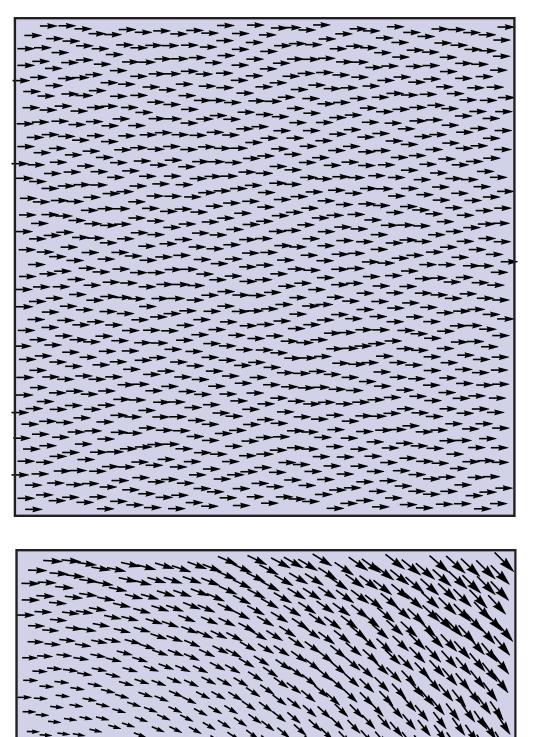
- $\langle \langle \alpha, \beta \rangle \rangle$:
- **Q**: What happens when *k*=0?
- **A:** We just get the usual L^2 inner product on functions.
- **Q**: What's the degree (*k*) of the integrand? Why is that important?
- **A:** Integrand is always an *n*-form, which is the only thing we can integrate in *n*-D!

*Some authors define the integrand as $\alpha \wedge \star \beta$; our convention is consistent with the convention that in 2D the 1-form Hodge star is a *counter*-clockwise rotation.

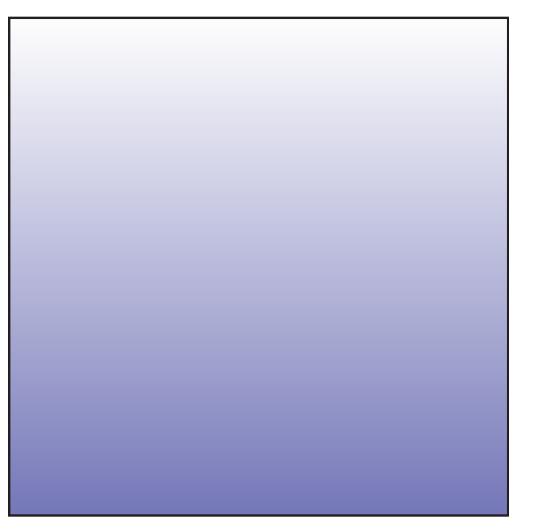
$$= \int_{\Omega} \star \alpha \wedge \beta$$

Inner Product of 1-Forms—Example

α



Example. Consider two 1-forms on the unit square $[0,1] \times [0,1]$ given by



 $\star \alpha \wedge \beta$

$$\alpha := du,$$

 $\beta := v du - u dv.$

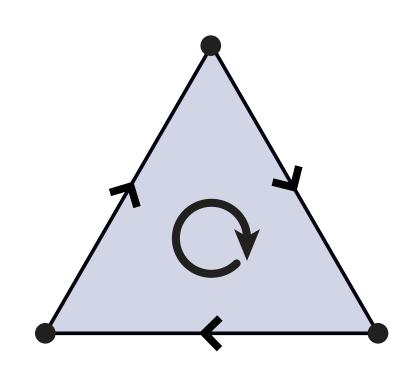
Their inner product is

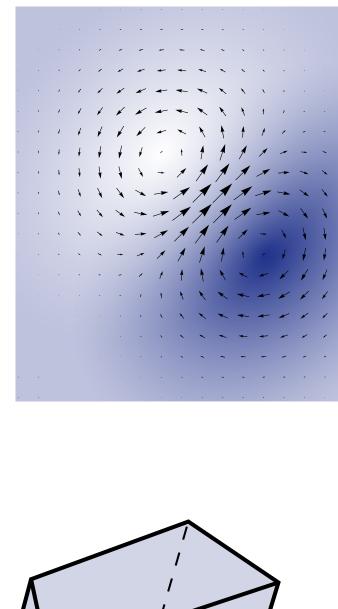
$$\langle \langle \alpha, \beta \rangle \rangle = \int_0^1 \int_0^1 (\star \alpha) \wedge \beta =$$
$$\int_0^1 \int_0^1 dv \wedge (v \, du - u \, dv) =$$
$$-\int_0^1 \int_0^1 v \, du \wedge dv = \frac{1}{2}.$$

Summary

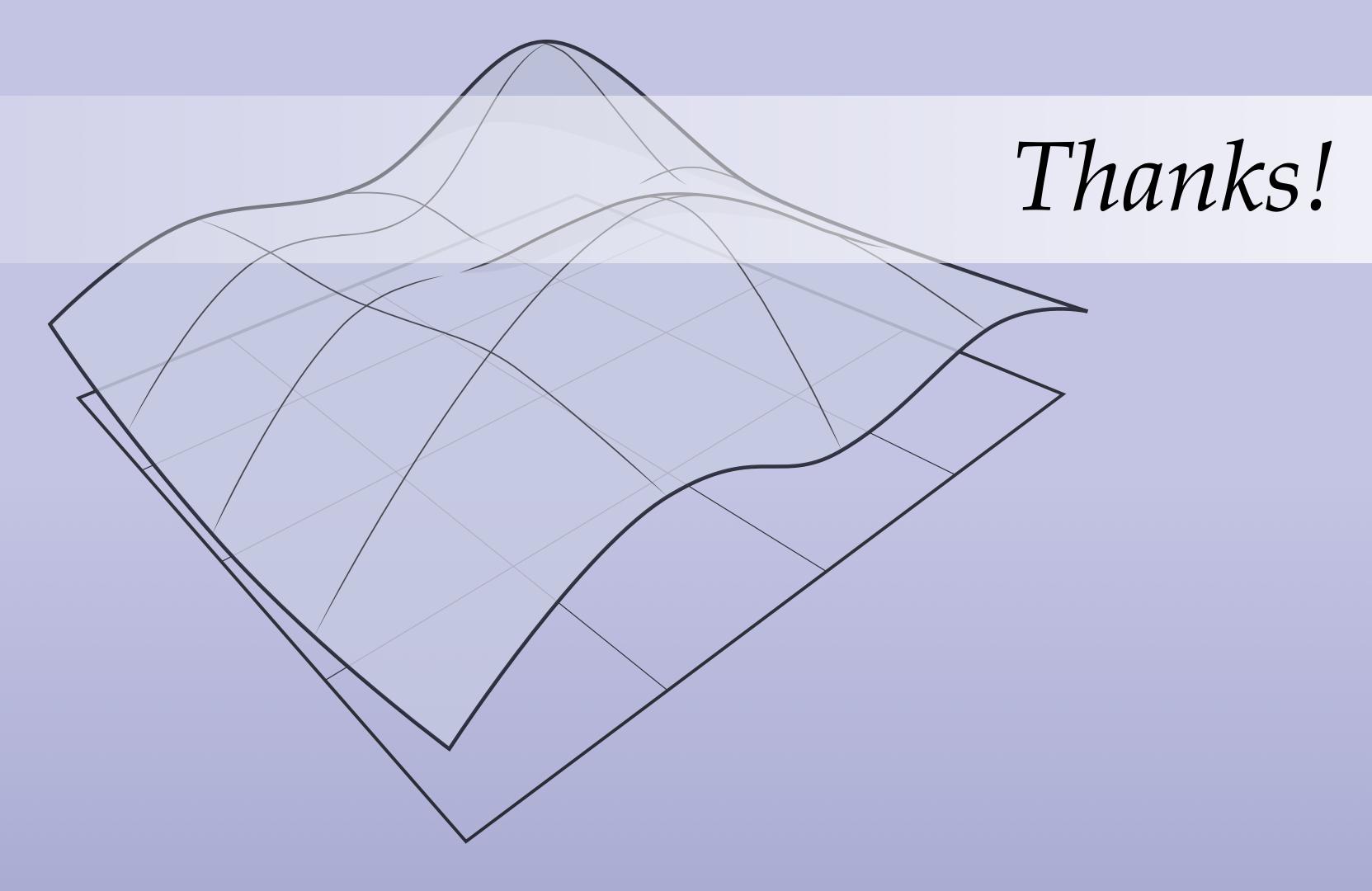
Exterior Calculus – Summary

- What we've seen so far:
- *Exterior algebra*: language of volumes (*k*-vectors)
- *k-form*: measures a k-dimensional volume
- *Differential forms: k*-form at each point of space
- *Exterior calculus*: differentiate / integrate forms
- *Simplicial complex*: mesh made of vertices, edges, triangles...
- Next up:
 - Put all this machinery together
 - *Integrate* to get discrete exterior calculus (DEC)





		•	
			-
Ì			
X	`	`	
¥	ł	,	•
ł	ŧ	1	
¥	Ŧ	•	
¥	ŧ	,	
1	,		
/	,		
,	,		



DISCRETE DIFFERENTIAL GEOMETRY AN APPLIED INTRODUCTION