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Review—Exterior Calculus
•Last lecture we saw exterior calculus (differentiation & integration of forms)

•As a review, let’s try solving an equation involving differential forms

Given:
Find:

(…is that what you expected?)



•Solving even very easy differential equations by hand can be hard!

•If equations involve data, forget about solving them by hand!

•Instead, need way to approximate solutions via computation

•Basic idea:

•replace domain with mesh

•replace differential forms with values on mesh

•replace differential operators with matrices

Discrete Exterior Calculus—Motivation

(from Elcott et al, “Stable, Circulation-Preserving, Simplicial Fluids”)



Discrete Exterior Calculus—Basic Operations
•In smooth exterior calculus, we saw many operations (wedge product, Hodge star, 

exterior derivative, sharp, flat, …)

•For solving equations on meshes, the most basic operations are typically the discrete 
exterior derivative (d) and the discrete Hodge star (★), which we’ll ultimately 
encode as sparse matrices.
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Composition of Operators
•By composing matrices, we can easily solve equations involving operators like those 

from vector calculus (grad, curl, div, Laplacian…) but in much greater generality 
(e.g., curved surfaces, k-forms…) and on complicated domains (meshes)

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.



Discretization & Interpolation
•Two basic operations needed to 

translate between smooth & discrete 
quantities:

•Discretization — given a continuous 
object, how do I turn it into a finite 
(or discrete) collection of 
measurements?

•Interpolation — given a discrete 
object (representing a finite collection 
of measurements), how do I come up 
with a continuous object that agrees 
with (or interpolates) it?
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Discretization & Interpolation—Differential Forms
•In the particular case of a differential k-

form:

•Discretization happens via 
integration over oriented k-simplices 
(known as the de Rham map)

•Interpolation is performed by taking 
linear combinations of continuous 
functions associated with k-simplices 
(known as Whitney interpolation)

•With these operations, becomes easy to 
translate some pretty sophisticated 
equations into algorithms!
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Discretization



Discretization—Basic Idea

Basic idea: integrate k-forms over k-simplices.

Given a continuous differential form, how can we approximate it on a mesh?

Doesn’t tell us everything about the form… but enough to solve interesting equations!



Discretization of Forms (de Rham Map)

The map from continuous forms to discrete 
forms is called the discretization map, or 
sometimes the de Rham map.

Key idea: discretization just means “integrate a k-form over k-simplices.”  
Result is just a list of values.



Integrating a 0-form over Vertices
•Suppose we have a 0-form

•What does it mean to integrate it over a vertex v?

•Easy: just take the value of the function at the 
location p of the vertex!

Example:

Key idea: integrating a 0-form at vertices of a mesh just “samples” the function



•Suppose we have a 1-form α in the plane

•How do we integrate it over an edge e?

•Basic recipe:

•Compute unit tangent T

•Apply α to T, yielding function α(T)

•Integrate this scalar function over edge

•Result gives “total circulation”

•Can use numerical quadrature for tough integrals

•Though in practice, rare to actually integrate!
•More often, discrete 1-form values come from, e.g., operations on discrete 0-form

Integrating a 1-form over an Edge

e T

pi

a



Integrating a 1-Form over an Edge—Example

A: Let’s first compute the edge length L and unit tangent T:

An arc-length parameterization of the edge is given by

By plugging in all these expressions/values, our integral simplifies to

…why not let T := (p0-p1)/L?



Orientation & Integration
Mt. Washington

Point State Park

405ft

Mt. Washington

Point State Park

-405ft



Discretizing a 1-form—Example



Integrating a 2-form Over a Triangle
•Suppose we have a 2-form ω in R3

•How do we integrate it over a triangle t?

•Similar recipe to 1-form:

•Compute orthonormal basis T1,T2 for triangle

•Apply ω to T1,T2, yielding a function ω(T1,T2)

•Integrate this scalar function over triangle

•Value encodes how well triangle is “lined up” 
with 2-form on average, times area of triangle

•Again, rare to actually integrate explicitly!

Q: Here, what determines the orientation of t?



Orientation and Integration
•In general, reversing the orientation of a simplex will reverse the sign of the integral.

•E.g., suppose we have a discrete 1-form α.  Then for each edge ij,

•Q: Suppose we have a 2-form β.  What do you think the relationship is between…

•Q: What’s the rule in general?

•A: Discrete k-form values change sign under odd permutation.  (Sound familiar? :-))



Discrete Differential Forms



Discrete Differential k-Form
•Abstractly, a discrete differential k-form is just any 

assignment of a value to each oriented k-simplex.

•For instance, in 2D:

•values at vertices encode a discrete 0-form

•values at edges encode a discrete 1-form

•values at faces encode a discrete 2-form

•Conceptually, values represent integrated k-forms

•In practice, almost never comes from direct integration!

•More typically, values start at vertices (samples of some 
function); 1-forms, 2-forms, etc., arise from applying 
operators like the (discrete) exterior derivative
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Matrix Encoding of Discrete Differential k-Forms
•We can encode a discrete k-form as a column 

vector with one entry for every k-simplex.

•To do so, we need to first assign a unique 
index to each k-simplex

•The order of these indices can be 
completely arbitrary

•We just need some way to put elements of 
our mesh into correspondence with entries 
of the vector

•Simplest example: a discrete 0-form can be 
encoded as a vector with |V| entries
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Careful: In code, indices often start from 0 rather than 1!



Matrix Encoding of Discrete Differential 1-Form
•A discrete differential 1-form is a 

value per edge of an oriented 
simplicial complex.

•To encode these values as a column 
vector, we must first assign a 
unique index to each edge of our 
complex.

•If we then have values on edges, 
we know how to assign them to 
entries of the vector encoding the 
discrete 1-form.

Careful that if we ever change the orientation of an edge, we must also negate the value in our row vector!
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Matrix Encoding of Discrete Differential 2-Form
•Same idea for encoding a discrete differential 2-form as a column vector

•Assign indices to each 2-simplex; now we know which values go in which entries
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In the discrete setting, duality between “things that get measured” (k-vectors) and 
“things that measure” (k-forms) is captured by notion of chains and cochains.



Simplicial Chain
•Suppose we think of each k-simplex as its own basis vector
•Can specify some region of a mesh via a linear combination of simplices.

Example.

0

Q: What does it means when we have a coefficient other than 0 or 1?  (Or negative?)
A: Roughly speaking, “n copies” of that simplex.  (Or opposite orientation.)

(Formally: chain group Ck is the free abelian group generated by the k-simplices.)



Arithmetic on Simplicial Chains
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Boundary Operator on Simplices



Boundary Operator on Simplicial Chains

Example.

Note: boundary of boundary is always empty!



Coboundary Operator on Simplices
The coboundary of an oriented k-simplex σ is the collection of all oriented (k+1)-
simplices that contain σ, and which have the same relative orientation.

Example.

Example.

(Analogy: simplicial star)



Simplicial Cochain

Example.

A simplicial k-cochain is basically any linear map from a simplicial k-chain to a number.

(Formally: cochain group is group of homomorphisms from cochains to reals.)



Simplicial Cochains & Discrete Differential Forms
Suppose a simplicial k-cochain is given by the integrated values from a discrete k-form

Q: What does it mean (geometrically) when we apply it to a simplicial k-chain?

A: Our discrete k-form values come from integrating a smooth k-form over each k-
simplex.  So, we just get the integral over the region specified by the chain:
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Interpolation



Interpolation—0-Forms

Note: result is a continuous 0-form.



Barycentric Coordinates—Revisited
•Recall that any point in a k-simplex can be 

expressed as a weighted combination of 
the vertices, where the weights sum to 1.

•The weights ti are called the barycentric 
coordinates.

•The Lagrange basis for a vertex i is given 
explicitly by the barycentric coordinates of 
i in each triangle containing i.



Interpolation—k-Forms (Whitney Map)



Discretization & Interpolation
•Fact: Suppose we have a discrete differential k-form.  If we interpolate by Whitney 

bases, then discretize via the de Rham map (i.e., by integration), then we recover the 
exact same discrete k-form.

Q: What about the other direction?  If we discretize a continuous k-form then 
interpolate, will we always recover the same continuous k-form?

(smooth differential k-forms)

(discrete differential k-forms)

(interpolate)(discretize)



Discrete Exterior Derivative



Reminder: Exterior Derivative
•Recall that in the smooth setting, the exterior derivative…

•…maps differential k-forms to differential (k+1)-forms

•…satisfies a product rule:

•…yields zero when you apply it twice:

•…is similar to the gradient for 0-forms

•…is similar to curl for 1-forms

•…is similar to divergence when composed w/ Hodge star

•To get discrete exterior derivative, we are simply going to 
evaluate the smooth exterior derivative and integrate the 
result over (oriented) simplices



Discrete Exterior Derivative (0-Forms)

φ - primal 0-form (vertices)

dφ - primal 1-form (edges)
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Discrete Exterior Derivative (1-Forms)
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In general: discrete exterior derivative is coboundary operator for cochains.



Discrete Exterior Derivative—Examples
When applying the discrete exterior derivative, must 
be careful to take orientation into account.

Example (0-form)
2
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(Also notice that exterior derivative 
has nothing to do with length!)

Example (1-form)
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3 – 9 – 7 = –13
9 + 2 + (-5) = 6



Discrete Exterior Derivative—Matrix Representation
•The discrete exterior derivative on k-forms, which we will 

denote by dk, is a linear map from values on k-simplices to 
values on (k+1)-simplices:
•d0 maps values on vertices to values on edges

•d1 maps values on edges to values on triangles

•d2 maps values on triangles to values on tetrahedra
•…

•We can encode each operator to a matrix, by assigning an 
indices to mesh elements (just as when we encoded discrete 
k-forms as column vectors)

•This matrix turns out to be just a signed incidence matrix, 
which we saw in our discussion of the oriented simplicial 
complex



Discrete Exterior Derivative d0—Example
•To build the exterior derivative on 0-

forms, we first need to assign an index 
to each vertex and each edge

– A discrete 0-form is a list of |V| 
values (one per vertex)

– A discrete 1-form is a list of |E| 
values (one per edge)

•The discrete exterior derivative d0 is 
therefore a |E|x|V| matrix, taking 
values at vertices to values at edges
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Discrete Exterior Derivative d1—Example
•To build the exterior derivative on 1-

forms, we first need to assign an index 
to each edge and each face

– A discrete 0-form is a list of |E| 
values (one per edge)

– A discrete 1-form is a list of |F| 
values (one per face)

•The discrete exterior derivative d1 is 
therefore a |F|x|E| matrix, taking 
values at edges to values at faces

•This time, we need to be more careful 
about relative orientation

Example.
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Exterior Derivative Commutes w/ Discretization
•By definition, the discrete exterior derivative satisfies a very important property:

Taking  the  smooth  exterior  derivative  and then 
discretizing yields the same result  as discretizing 
and then applying the discrete exterior derivative.

Corollary: applying discrete d twice yields zero (why?)



Exactness of Discrete Exterior Derivative
•To confirm that applying discrete exterior derivative twice yields zero, we can just 

multiply the exterior derivative matrices for 0- and 1-forms:



Dual Forms



Reminder: Poincaré Duality

primal

dual

0-cell1-cell2-cell

0-simplex 1-simplex 2-simplex



Dual Discrete Differential k-Form

(Can also formalize via dual chains, dual cochains…)

Just as a discrete differential k-form was a value per 
k-simplex, a dual discrete differential k-form is a value 
per k-cell:

dual 2-form

• a dual 0-form is a value dual vertex
• a dual 1-form is a value per dual edge
• a dual 2-form is a value per dual cell



Primal vs. Dual Discrete Differential k-Forms

primal dual

0-forms vertices dual vertices 
(triangles)

1-forms edges dual edges 
(edges)

2-forms triangle dual cells 
(vertices)

Let’s compare primal and dual discrete forms on a triangle mesh:

Note: no such thing as “primal” and “dual” forms in smooth setting!
Q: Is the dimension of primal and dual k-forms always the same?



Dual Exterior Derivative
•Discrete exterior derivative on dual k-forms works 

in essentially the same way as for primal forms:

•To get the derivative on a (k+1)-cell, sum up 
values on each k-cell along its boundary

•Sign of each term in the sum is determined by 
relative orientation of (k+1)-cell and k-cell

Example.

–7 + 7 – 2 + (–3) + 5 - 5 + 3 = –2

7
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5 3

-7–2

Notice: as with primal d, we don’t need lengths, areas, …



Dual Forms: Interpolation & Discretization
•For primal forms, it was easy to make connection to smooth forms via interpolation

•k-simplices have clear geometry: convex hull of vertices

•k-forms have straightforward basis: Whitney forms
•Not so clear cut for dual forms!

•e.g., can’t interpolate dual 0-form with linear function

•nonconvex cells even more challenging…
•leads to question of generalizing barycentric coordinates

•k-cells may not sit in a k-dimensional linear subspace
•e.g., 2-cells in 3D can be non-planar

•Nonetheless, still easy to work with dual forms formally/abstractly (e.g., d)



Discrete Hodge Star



Reminder: Hodge Star

Analogy: orthogonal complement
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Discrete Hodge Star—1-forms in 2D

primal 1-form
(circulation)

dual 1-form
(flux)
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Discrete Hodge Star—2-forms in 3D
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Diagonal Hodge Star

Key idea: divide by primal area, 
multiply by dual area.  (Why?)



Matrix Representation of Diagonal Hodge Star
•Since the diagonal Hodge star on k-forms simply multiples each discrete k-form 

value by a constant (the volume ratio), it can be encoded via a diagonal matrix



Geometry of Dual Complex
•For exterior derivative, needed only connectivity of the dual cells
•For Hodge star, also need a specific geometry

•Many possibilities for location of dual vertices:
•circumcenter (c) — center of sphere touching all vertices

•most typical choice

•pros: primal & dual are orthogonal (greater accuracy)
•cons: can yield, e.g., negative lengths/areas/volumes…

•barycenter (b) — average of all vertex coordinates
•pros: dual volumes are always positive

•cons: primal & dual not orthogonal (lower accuracy)
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Possible Choices for Discrete Hodge Star
•Many choices—none give exact results!
•Volume ratio

•diagonal matrix; most typical choice in DEC (Hirani, Desbrun et al)
•typical choice: circumcentric dual (Delaunay/Voronoi)
•more general orthogonal dual (weighted triangulation/power diagram)
•can also use barycentric dual (e.g., Auchmann & Kurz, Alexa & Wardetzky)

•Galerkin Hodge star
•L2 norm on Whitney forms

•non-diagonal, but still sparse; standard in, e.g., FEEC (Arnold et al).
•appropriate “mass lumping” again yields circumcentric Hodge star

(Thanks: Fernando de Goes)



Computing Volumes
•Evaluating the Hodge star boils down to computing ratios of dual/primal volumes

•These ratios often have simple closed-form expressions (don’t compute circumcenters!)
Example: 2D circumcentric dual



Summary



Discrete Exterior Calculus—Basic Operators
•Basic operators can be summarized in a very useful diagram (here in 2D):



Composition of Operators
•By composing matrices, we can easily solve equations involving operators like those 

from vector calculus (grad, curl, div, Laplacian…) but in much greater generality 
(e.g., curved surfaces, k-forms…) and on complicated domains (meshes)

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.



Other Discrete Operators?
•Many other operators in exterior calculus (wedge, sharp, flat, Lie derivative, …)

•E.g., wedge product on two discrete 1-forms:

(More broadly, many open questions about how to discretize exterior calculus…)



Discrete Exterior Calculus - Summary
•integrate k-form over k-simplices

•result is discrete k-form

•sign changes according to orientation

•can also integrate over dual elements (dual forms)

•Hodge star converts between primal and dual (approximately!)

•multiply by ratio of dual/primal volume

•discrete exterior derivative is just a sum

•gives exact value (via Stokes’ theorem)

•Still plenty missing!  (Wedge, sharp, flat, Lie derivative, ...)
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Applications
•Lots! (And growing.) We’ll see many as we continue with the course.



Thanks!
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