DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858B • Fall 2017

LECTURE 6: DISCRETE EXTERIOR CALCULUS

DISCRETE DIFFERENTIAL **JEOMETRY:** AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858B • Fall 2017

Review—Exterior Calculus

- Last lecture we saw *exterior calculus* (differentiation & integration of forms)
- As a review, let's try *solving an equation* involving differential forms

<u>Given</u>: the 2-form $\omega := dx \wedge dy$ on \mathbb{R}^2 **Find:** a 1-form α such that $d\alpha = \omega$.

Well, any 1-form on \mathbb{R}^2 can be expressed as $\alpha = udx + vdy$ for some pair of coordinate functions $u, v : \mathbb{R}^2 \to \mathbb{R}$.

We therefore want to find u, v such that $du \wedge dx + dv \wedge dy = dx \wedge dy$.

Recalling that $dx \wedge dy = -dy \wedge dx$, we must have $v = \frac{1}{2}x$ and $u = -\frac{1}{2}y$.

In other words, $\alpha = \frac{1}{2}(xdy - ydx)$.

(... is that what you expected?)

Discrete Exterior Calculus—Motivation

- Solving even *very easy* differential equations by hand can be hard!
- If equations involve data, *forget* about solving them by hand!
- Instead, need way to approximate solutions via computation
- Basic idea:
 - replace domain with mesh
 - replace differential forms with values on mesh
 - replace differential operators with matrices

(from Elcott et al, "Stable, Circulation-Preserving, Simplicial Fluids")

Discrete Exterior Calculus—Basic Operations

- exterior derivative, sharp, flat, ...)
- For solving equations on meshes, the most basic operations are typically the **discrete exterior derivative** (*d*) and the **discrete Hodge star** (**★**), which we'll ultimately encode as sparse matrices.

$$d\phi = \frac{\partial \phi}{\partial x^{i}} dx^{i} \qquad \qquad \star (\alpha_{1} dx^{1} + \alpha_{2})$$

$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} \phi_{1} \\ \phi_{2} \\ \phi_{3} \\ \phi_{4} \end{bmatrix} \qquad \qquad \begin{bmatrix} w_{1} & 0 \\ 0 & w_{2} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

• In smooth exterior calculus, we saw many operations (wedge product, Hodge star,

Composition of Operators

(e.g., curved surfaces, k-forms...) and on complicated domains (meshes)

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.

• By composing matrices, we can easily solve equations involving operators like those from vector calculus (grad, curl, div, Laplacian...) but in much greater generality

Discretization & Interpolation

- Two basic operations needed to translate between smooth & discrete quantities:
 - **Discretization** given a continuous object, how do I turn it into a finite (or *discrete*) collection of measurements?
 - Interpolation given a discrete object (representing a finite collection of measurements), how do I come up with a continuous object that agrees with (or *interpolates*) it?

- In the particular case of a differential *k*form:
 - **Discretization** happens via *integration* over oriented *k*-simplices (known as the *de Rham map*)
 - Interpolation is performed by taking linear combinations of continuous functions associated with *k*-simplices (known as *Whitney interpolation*)
- With these operations, becomes easy to translate some pretty sophisticated equations into algorithms!

Discretization & Interpolation – Differential Forms

Discretization

Discretization – Basic Idea

Basic idea: integrate *k*-forms over *k*-simplices. Doesn't tell us *everything* about the form... but enough to solve interesting equations!

Given a continuous differential form, how can we approximate it on a mesh?

Discretization of Forms (de Rham Map)

Let K be an oriented simplicial complex on \mathbb{R}^n , and let α be a differential kform on \mathbb{R}^n . For each k-simplex $\sigma \in K$, the corresponding value of the discrete *k*-form $\hat{\omega}$ is given by

$$\hat{\omega}_{\sigma} := \int_{\sigma} \omega$$

The map from continuous forms to discrete forms is called the *discretization map*, or sometimes the *de Rham map*.

Key idea: *discretization* just means "integrate a k-form over k-simplices." Result is just a list of values.

Integrating a 0-form over Vertices

- Suppose we have a 0-form ϕ
- What does it mean to integrate it over a vertex *v*?
- Easy: just take the value of the function at the location *p* of the vertex!

Example:

$$\phi(x, y) := x^2 + y^2 + \cos(4(x + y))$$
$$p = (1, -1)$$
$$\int_v \phi = \phi(p) = 1 + 1 + \cos(0) = 3$$

Key idea: integrating a 0-form at vertices of a mesh just "samples" the function

Integrating a 1-form over an Edge

- Suppose we have a 1-form α in the plane
- How do we integrate it over an edge *e*?
- Basic recipe:
 - Compute unit tangent *T*
 - Apply α to *T*, yielding function $\alpha(T)$
 - Integrate this scalar function over edge
- Result gives "total circulation"
- Can use *numerical quadrature* for tough integrals Je
- Though in practice, rare to actually integrate!

Integrating a 1-Form over an Edge—Example

In \mathbb{R}^2 , consider a 1-form $\alpha := xydx - x^2$ and an edge *e* with endpoints $p_0 :=$

Q: What is $\int_{\rho} \alpha$? **A:** Let's first compute the edge length *L* and unit tangent *T*:

$$L := |p_1 - p_0| = \sqrt{17} \qquad T := (p_1 - p_1)$$

Hence, $\alpha(T) = (4xy + x^2) / \sqrt{17}$.

An arc-length parameterization of the edge is given by

$$p(s) := p_0 + \frac{s}{L}(p_1 - p_0), \quad s \in [0,$$

By plugging in all these expressions/va
$$\int_0^L \alpha(T)_{p(s)} ds = \frac{7}{17L} \int_0^L 4s - L \, ds =$$

 $\sqrt{17}$

 $p_0)/L = (4, -1)/\sqrt{17}$

alues, our integral simplifies to

...why not let $T := (p_0 - p_1)/L?$

Discretizing a 1-form—Example

Example. Let *M* be the unit square $[0, 1]^2$ with a complex K embedded as shown on the right. Using *x*, *y* to denote coordinates on *M*, the 1-form $\omega := 2dx$ is discretized by integrating over each edge:

$$\widehat{\omega}_{1} = \int_{e_{1}} \omega = \int_{0}^{1} \omega \left(\frac{\partial}{\partial x}\right) d\ell = \int_{0}^{1} 2 d\ell$$

$$\widehat{\omega}_{2} = \int_{e_{2}} \omega = \int_{0}^{1} \omega \left(\frac{\partial}{\partial y}\right) d\ell = \int_{0}^{1} 0 d\ell$$

$$\widehat{\omega}_{3} = \int_{e_{3}} \omega = \int_{0}^{\sqrt{2}} \omega \left(\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)\right)$$
...

Question: Why does $\widehat{\omega}_1 = \widehat{\omega}_3$?

- $d\ell = 2.$
- $d\ell = 0.$

 $\int d\ell = \int_0^{\sqrt{2}} \frac{2}{\sqrt{2}} \, d\ell = 2.$

Integrating a 2-form Over a Triangle

- Suppose we have a 2-form ω in R^3
- How do we integrate it over a triangle *t*?
- Similar recipe to 1-form:
 - Compute orthonormal basis T_1, T_2 for triangle
 - Apply ω to T_1, T_2 , yielding a function $\omega(T_1, T_2)$
 - Integrate this scalar function over triangle
- Value encodes how well triangle is "lined up" with 2-form on average, times area of triangle
- Again, rare to actually integrate explicitly!
- **Q**: Here, what determines the *orientation* of t?

Orientation and Integration

- In general, reversing the **orientation** of a simplex will reverse the **sign** of the integral. • E.g., suppose we have a discrete 1-form α . Then for each edge *ij*, $\alpha_{ij} = -\alpha_{ji}$ α_{ii}

• **Q**: Suppose we have a 2-form β . What do you think the relationship is between...

$$\beta_{ijk} = \beta_{jki} \qquad \qquad \beta_{jik} = -\beta_{kij}$$

- **Q**: What's the rule in general?

• A: Discrete k-form values change sign under odd permutation. (Sound familiar? :-))

Discrete Differential Forms

Discrete Differential k-Form

- Abstractly, a *discrete differential k-form* is just any assignment of a value to each oriented *k*-simplex.
- For instance, in 2D:
 - values at **vertices** encode a discrete **0-form**
 - values at **edges** encode a discrete **1-form**
 - values at **faces** encode a discrete **2-form**
- Conceptually, values represent integrated k-forms
- *In practice,* almost never comes from direct integration!
- More typically, values start at vertices (samples of some function); 1-forms, 2-forms, *etc.*, arise from applying operators like the (discrete) exterior derivative

- We can encode a discrete *k*-form as a column vector with one entry for every *k*-simplex.
- To do so, we need to first assign a unique *index* to each *k*-simplex
 - The order of these indices can be completely arbitrary
 - We just need some way to put elements of our mesh into correspondence with entries of the vector
- Simplest example: a discrete 0-form can be encoded as a vector with |V| entries

Matrix Encoding of Discrete Differential k-Forms

Careful: In code, indices often start from 0 rather than 1!

Matrix Encoding of Discrete Differential 1-Form

- A discrete differential 1-form is a value per edge of an oriented simplicial complex.
- To encode these values as a column vector, we must first assign a unique index to each edge of our complex.
- If we then have values on edges, we know how to assign them to entries of the vector encoding the discrete 1-form.

Careful that if we ever change the orientation of an edge, we must also negate the value in our row vector!

 $\alpha = \begin{bmatrix} -8.7 & -1.1 & 0.89 & 1.2 & 0.5 & 9.4 \end{bmatrix}^{T}$

Matrix Encoding of Discrete Differential 2-Form

- Same idea for encoding a discrete differential 2-form as a column vector
- Assign indices to each 2-simplex; now we know which values go in which entries

$$\omega = \begin{bmatrix} .41 & .2 \end{bmatrix}$$

22 .35 .41 .57

Chains & Cochains

In the discrete setting, duality between "things that get measured" (k-vectors) and "things that measure" (k-forms) is captured by notion of chains and cochains.

Simplicial Chain

- Suppose we think of each *k*-simplex as its own basis vector
- Can specify some region of a mesh via a linear combination of simplices.

Example.

Q: What does it means when we have a coefficient other than 0 or 1? (Or *negative*?)
A: Roughly speaking, "*n* copies" of that simplex. (Or opposite *orientation*.)
(Formally: *chain group* C_k is the free abelian group generated by the *k*-simplices.)

its own basis vector a linear combination of simplices.

Arithmetic on Simplicial Chains

 $c_{1} = e_{3} - e_{12} + e_{18} - e_{15} + e_{6} - e_{1}$ $c_{2} = e_{15} + e_{19} - e_{17} - e_{8} - e_{2} - e_{6}$ $c_{1} + c_{2} = e_{3} - e_{12} + e_{18} - e_{15} + e_{6} - e_{1} + e_{15} + e_{19} - e_{17} - e_{8} - e_{2} - e_{6}$ $= e_{3} - e_{12} + e_{18} - e_{1} + e_{19} - e_{17} - e_{8} - e_{2} =: c_{3}$

Definition. Let $\sigma := (v_0, \ldots, v_k)$ be an oriented k-simplex. Its boundary is the oriented k - 1-simplex

$$\partial \sigma := \sum_{p=0}^{k} (-1)^p (z)$$

where v_p indicates that the *p*th vertex is omitted.

Example. Consider the 2-simplex $\sigma := (v_0, v_1, v_3)$. Its boundary is the 1-chain $(v_0, v_1) + (v_1, v_3) + (v_3, v_0)$.

Example. Consider the 1-simplex $e := (v_0, v_1)$. Its boundary is the 0-chain $\partial e = v_1 - v_0$.

Example. Consider the 0-simplex (v_1) . Its boundary is the empty set.

Simplices

Boundary Operator on Simplicial Chains

The boundary operator can be extended to any chain by linearity, *i.e.*,

Note: boundary of boundary is *always* empty!

Coboundary Operator on Simplices

The *coboundary* of an oriented k-simplex σ is the collection of all oriented (k+1)simplices that contain σ , and which have the same relative orientation.

Simplicial Cochain

A *simplicial k-cochain* is basically any **linear** map from a simplicial *k*-chain to a number.

 $\alpha(c_1\sigma_1+\cdots$

(Formally: *cochain group* is group of homomorphisms from cochains to reals.)

$$+c_n\sigma_n) = \sum_{i=1}^n \alpha_i c_i$$

Simplicial Cochains & Discrete Differential Forms

Q: What does it mean (geometrically) when we apply it to a simplicial *k*-chain?

simplex. So, we just get the integral over the region specified by the chain:

- Suppose a simplicial *k*-cochain is given by the integrated values from a discrete *k*-form
- **A:** Our discrete *k*-form values come from integrating a smooth *k*-form over each *k*-

Discrete Differential Form

Definition. Let *M* be a manifold simplicial complex. A (primal) discrete differential *k-form* is a simplicial *k*-cochain on *M*. We will use Ω_k to denote the set of *k*-forms.

Interpolation

Interpolation — 0-Forms

function that is linear over each simplex and satisfies

 $\phi_i(v_i)$

discrete 0-form $u: V \to \mathbb{R}$, we can construct an *interpolating* 1-form via

i.e., we simply weight the hat functions by values at vertices.

Note: result is a *continuous* 0-form.

On any simplicial complex K, the hat function a.k.a. Lagrange basis ϕ_i is a real-valued

$$) = \delta_{ij},$$

for each vertex v_i , *i.e.*, it equals 1 at vertex *i* and 0 at vertex *j*. Given a (primal)

Barycentric Coordinates—Revisited

- Recall that any point in a *k*-simplex can be expressed as a weighted combination of the vertices, where the weights sum to 1.
- The weights *t_i* are called the *barycentric* coordinates.
- The Lagrange basis for a vertex *i* is given explicitly by the barycentric coordinates of *i* in each triangle containing *i*.

$$\sigma = \left\{ \sum_{i=0}^{k} t_i p_i \left| \sum_{i=0}^{k} t_i = 1, \ t_i \ge 0 \ \forall i \right. \right\}$$

Definition. Let ϕ_i be the hat functions on a simplicial complex. The Whitney 1-forms are differential 1-forms associated with each oriented edge *ij*, given by

 $\phi_{ij} := \phi_i$

(Note that $\phi_{ij} = -\phi_{ji}$). The Whitney 1-forms can be used to interpolate a discrete 1-form $\widehat{\omega}$ (value per edge) via

More generally, the *Whitney k-form* associated with an oriented *k*-simplex (i_0, \ldots, i_k) is given by

$$k! \sum_{p=0}^{k} \phi_{i_p} d\phi_{i_0} \wedge \cdots \wedge d\phi_{i_p} \wedge \cdots$$

s (Whitney Map)

$$d\phi_j - \phi_j \, d\phi_i$$

 $\sum_{ii} \widehat{\omega}_{ij} \phi_{ij}.$ $\cdot \wedge d\phi_{i_k}$ *Whitney* 1*-form* ϕ_{ij}

Discretization & Interpolation

exact same discrete k-form.

Q: What about the other direction? If we discretize a continuous *k*-form then interpolate, will we always recover the same continuous *k*-form?

• **Fact:** Suppose we have a discrete differential *k*-form. If we interpolate by Whitney bases, then discretize via the de Rham map (i.e., by integration), then we recover the

> $(\mathbf{M}_k (smooth differential k-forms))$ (discretize) $\int \phi$ (interpolate) $\widehat{\Omega}_k$ (discrete differential k-forms)

Discrete Exterior Derivative

Reminder: Exterior Derivative

- Recall that in the smooth setting, the exterior derivative...
 - ...maps differential *k*-forms to differential (*k*+1)-forms
 - ... satisfies a product rule: $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$
 - ... yields zero when you apply it twice: $d \circ d = 0$
 - ... is similar to the *gradient* for 0-forms
 - ... is similar to *curl* for 1-forms
 - ... is similar to *divergence* when composed w / Hodge star
- To get **discrete** exterior derivative, we are simply going to evaluate the smooth exterior derivative and integrate the result over (oriented) simplices

t	t	t	1	1	1	1	1	1	1	1	1	1	1	1
t	t	t	1	1	1	1	1	1	1	1	1	1	1	1
x	١	t	t	1	1	1	1	1	1	1	1	1	1	1
-	`	X	ł	t	1	1	1	1	1	1	1	1	1	1
-	-	-	×	1	1	1	1	1	1	1	1	1	1	1
*	-	-	-	Ì			,	,	,	1	7	*	7	, T
*	*	*	1	,	,				,	,	1	1	1	1
*	¥	*	*	+	/	/	,			-	,	1	*	1
*	*	¥	*	*	*	1	/	'	•		-	-	-	-
*	*	*	*	*	*	+	+	1	,	1	`	•	-	-
¥ √	¥ 1	¥ 	¥ 	*	*	*	*	+	+	,	•	` +	ì	
	1	1	4	*	4	+	+	+	, ,	, ,	¥	ţ	ŧ	ŧ
	1	1	4	+	+	+	+	+	+	¥	¥	¥	¥	ŧ
•					1 1 1 1 1	+ + +	1 1 1 1 1 1 1 1				• •			
-	-	1 1	* *		۲ ۱	1 .	* -		*	*	· ·	•	•	
-	-	*-			ŧ	*	×)			ŧ	+ +	1		
-	-	-	× ,	<	7					*	* *	· · ·	-	•
		1	1	<i>i</i> + +	X	X	X		ł		• •	- +	-	-
				• •	*	*	* *		Ň	* *	* *	+ +	+ +	-
					-	*	* 1	1	t	X	* *			
						,	× 1 1 1		t t	۲ ۲	• •			•
						'	1 1	1	t	١	۰	•		
	×	4	s		*(d(*	X	[¢])	1				
		•	•	 	-	+		 	•					
	,	'	· ·	 	*	+	• •		```	•				
,	,	,			*	*		1	t	,				
r 1	/	* +	* *	4	*	+	× +		1	-		•	•	
	ŧ	ŧ	1 1	• •	-	1	1 1	1	*			×	`	
1	٢	*	× >	* *		×	* 7 * 7		*	*	x x X X	N N	1	1
•	X			• →	*	1	1 1	1	-	¥	+ +	ŧ	ł	1
•	\ \	`			1	1	1 1	+	1	+	* *	ŧ	ŧ	1
	۰ ۱	``````````````````````````````````````	• •		1	1	+ +	1	-	+	+ +	¥	,	,
	х х	•	• •		1	† *	* *		*	* *	* *	+	, ,	, ,
	x • •	•			1	+ + + + + + + + + + + + + + + + + + + +	* * *		* * * *	* * *	\$ \$ \$ \$ \$ \$ \$	+ + + + + + + + + + + + + + + + + + + +	1 , ,	•
	•	•		· · ·	1	/ * * * *	* * * * *		* * * * *	* * *	\$ \$ \$ \$ 1 1 	+ + + + + + + + + + + + + + + + + + + +	 	•

 $(\star (dX^{\flat}))^{\sharp}$

Discrete Exterior Derivative (0-Forms)

 ϕ - *primal 0-form* (vertices)

 $d\phi$ - primal 1-form (edges)

 v_2 $(\widehat{d\phi})_e = \int_e d\phi = \int_{\partial e} \phi = \hat{\phi}_2 - \hat{\phi}_1$

Discrete Exterior Derivative (1-Forms)

α - primal 1-form (edges)

 $d\alpha$ - primal 2-form (triangles)

 $(d\alpha)_{\sigma}$ –

In general: discrete exterior derivative is *coboundary* operator for *cochains*.

Discrete Exterior Derivative—Examples

When applying the discrete exterior derivative, must be careful to take *orientation* into account.

(Also notice that exterior derivative has *nothing* to do with length!)

- The discrete exterior derivative on *k*-forms, which we will denote by d_k , is a linear map from values on k-simplices to values on (k+1)-simplices:
 - *d*⁰ maps values on vertices to values on edges
 - *d*₁ maps values on edges to values on triangles
 - *d*₂ maps values on triangles to values on tetrahedra
- We can encode each operator to a matrix, by assigning an indices to mesh elements (just as when we encoded discrete *k*-forms as column vectors)
- This matrix turns out to be just a *signed incidence matrix*, which we saw in our discussion of the oriented simplicial complex

Discrete Exterior Derivative—Matrix Representation

			0		1			2	
	0	Γ	1	_		1		0	
	1		—1	L		0		1	
$E^{0} =$	2		C)		0	_	-1	
	3		C)		1		0	
	4		C)		1		1	
				0	1		2	3	4
r1		0		1	1		0	0	—1
$m{L}$	—	1		C	0		1	1	1

Discrete Exterior Derivative d_0 —Example

- To build the exterior derivative on 0forms, we first need to assign an index to each *vertex* and each *edge*
 - -A discrete 0-form is a list of |V|values (one per vertex)
 - -A discrete 1-form is a list of |E|values (one per edge)
- The discrete exterior derivative *d*₀ is therefore a $|E| \times |V|$ matrix, taking values at vertices to values at edges

Discrete Exterior Derivative d_1 —Example

- To build the exterior derivative on 1forms, we first need to assign an index to each *edge* and each *face*
 - -A discrete 0-form is a list of |E|values (one per edge)
 - A discrete 1-form is a list of |*F*| values (one per face)
- The discrete exterior derivative *d*₁ is therefore a |*F*|x|*E*| matrix, taking values at edges to values at faces
- This time, we need to be more careful about relative orientation

Example.

 $\alpha \in \mathbb{R}^{|E|}$ $\omega \in \mathbb{R}^{|F|}$ $d_1 \in \mathbb{R}^{|F| \times |E|}$

• By definition, the discrete exterior derivative satisfies a very important property:

Taking the **smooth** exterior derivative and then discretizing yields the same result as *discretizing* and then applying the **discrete** exterior derivative.

Corollary: applying discrete d twice yields zero (why?)

Exterior Derivative Commutes w/ Discretization

Exactness of Discrete Exterior Derivative

multiply the exterior derivative matrices for 0- and 1-forms:

• To confirm that applying discrete exterior derivative twice yields zero, we can just

Reminder: Poincaré Duality

0-simplex

primal

dual

2-cell

1-simplex

2-simplex

1-cell

0-cell

Dual Discrete Differential k-Form

Consider the (Poincaré) dual *K*^{*} of a manifold simplicial complex *K*.

Just as a discrete differential *k*-form was a value per *k*-simplex, a *dual discrete differential k-form* is a value per *k*-cell:

- a dual **0-form** is a value **dual vertex**
- a dual **1-form** is a value per **dual edge**
- a dual **2-form** is a value per **dual cell**

(Can also formalize via dual chains, dual cochains...)

dual 2-form

Primal vs. Dual Discrete Differential k-Forms

Let's compare primal and dual discrete forms on a triangle mesh:

	primal	dı
0-forms	vertices	dual v (<i>tria</i> 1
1-forms	edges	dual (<i>ed</i>
2-forms	triangle	dual (ver

Note: no such thing as "primal" and "dual" forms in smooth setting! **Q:** Is the dimension of primal and dual *k*-forms always the same?

Dual Exterior Derivative

- Discrete exterior derivative on *dual* k-forms works in essentially the same way as for primal forms:
 - To get the derivative on a (*k*+1)-cell, sum up values on each *k*-cell along its boundary
 - Sign of each term in the sum is determined by relative orientation of (*k*+1)-cell and *k*-cell

Example.

Let α be a dual discrete 1-form (one value per dual edge) Then $d\alpha$ is a value per 2-cell, obtained by summing over dual edges (As usual, relative orientation matters!) **Notice:** as with primal *d*, we don't need lengths, areas, ...

-7 + 7 - 2 + (-3) + 5 - 5 + 3 = -2

Dual Forms: Interpolation & Discretization

- For primal forms, it was easy to make connection to smooth forms via *interpolation*
 - *k*-simplices have clear geometry: *convex hull of vertices*
 - *k*-forms have straightforward basis: *Whitney forms*
- Not so clear cut for dual forms!
 - e.g., can't interpolate dual 0-form with linear function
 - nonconvex cells even more challenging...
 - leads to question of *generalizing* barycentric coordinates
 - k-cells may not sit in a k-dimensional linear subspace
 - e.g., 2-cells in 3D can be non-planar
- Nonetheless, still easy to work with dual forms formally / abstractly (e.g., d)

Discrete Hodge Star

Reminder: Hodge Star (*)

Analogy: *orthogonal complement*

$\star(u \wedge v) = w$

 $k \mapsto (n-k)$

Discrete Hodge Star – 1-forms in 2D

primal 1-form (circulation)

dual 1-form (flux)

 ℓ^{\star}

Discrete Hodge Star – 2-forms in 3D

 A_{ijk} — area of triangle *ijk* ℓ_{ab} — length of dual edge *ab*

primal 2-form

dual 1-form

a

b

 $\star \widehat{\omega}_{ijk} = \frac{\ell_{ab}}{A_{ijk}} \widehat{\omega}_{ab}$

Diagonal Hodge Star

a map $\star : \Omega_k \to \Omega_{n-k}^{\star}$ determined by

 $\star \alpha(\sigma) =$

for each k-simplex σ in M, where σ^* is the corresponding dual cell, and $|\cdot|$ denotes the volume of a simplex or cell.

Key idea: divide by primal area, multiply by dual area. (Why?)

Definition. Let Ω_k and Ω_{n-k}^* denote the primal k-forms and dual (n-k) forms (respectively on an *n*-dimensional simplicial manifold *M*. The *diagonal Hodge star* is

$$= \frac{|\sigma^{\star}|}{|\sigma|} \alpha(\sigma)$$

Matrix Representation of Diagonal Hodge Star

 $\sigma_1, \ldots, \sigma_N - k$ -simplices in the primal mesh $\sigma_1^{\star}, \ldots, \sigma_N^{\star} - (n-k)$ -cells in the dual mesh $|\cdot|$ — volume of a simplex or cell $\star_k \in \mathbb{R}^{N \times N}$ — matrix for Hodge star on primal *k*-forms

• Since the diagonal Hodge star on k-forms simply multiples each discrete k-form value by a constant (the volume ratio), it can be encoded via a *diagonal* matrix

Geometry of Dual Complex

- For exterior derivative, needed only *connectivity* of the dual cells
- For Hodge star, also need a specific geometry
- Many possibilities for location of dual vertices:
 - **circumcenter** (*c*) center of sphere touching all vertices
 - most typical choice
 - pros: primal & dual are orthogonal (greater accuracy)
 - cons: can yield, e.g., negative lengths/areas/volumes...
 - **barycenter** (*b*) average of all vertex coordinates
 - pros: dual volumes are always positive
 - cons: primal & dual not orthogonal (lower accuracy)

Possible Choices for Discrete Hodge Star

- Many choices—*none* give exact results!
- Volume ratio
 - diagonal matrix; most typical choice in DEC (Hirani, Desbrun et al)
 - typical choice: circumcentric dual (Delaunay / Voronoi)
 - more general orthogonal dual (weighted triangulation/power diagram)
 - can also use barycentric dual (e.g., Auchmann & Kurz, Alexa & Wardetzky)
- <u>Galerkin Hodge star</u>
 - *L*₂ norm on Whitney forms
 - non-diagonal, but still sparse; standard in, e.g., FEEC (Arnold et al).
 - appropriate "mass lumping" again yields circumcentric Hodge star

(Thanks: Fernando de Goes)

Computing Volumes

- Evaluating the Hodge star boils down to computing ratios of dual/primal volumes
- These ratios often have simple closed-form expressions (*don't compute circumcenters!*)

Example: 2D circumcentric dual

Summary

Discrete Exterior Calculus—Basic Operators

• Basic operators can be summarized in a very useful diagram (here in 2D):

 Ω_k — primal *k*-forms Ω_k^{\star} — dual *k*-forms

Composition of Operators

(e.g., curved surfaces, k-forms...) and on complicated domains (meshes)

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.

• By composing matrices, we can easily solve equations involving operators like those from vector calculus (grad, curl, div, Laplacian...) but in much greater generality

Other Discrete Operators?

- Many other operators in exterior calculus (wedge, sharp, flat, Lie derivative, ...)
- E.g., wedge product on two discrete 1-forms:

(More broadly, many open questions about how to discretize exterior calculus...)

Discrete Exterior Calculus - Summary

- integrate *k*-form over *k*-simplices
 - result is *discrete k*-form
 - sign changes according to orientation
- can also integrate over dual elements (*dual* forms)
- Hodge star converts between primal and dual (*approximately*!)
 - multiply by ratio of dual/primal volume
- discrete exterior derivative is just a sum
 - gives *exact* value (via Stokes' theorem)
- Still plenty missing! (Wedge, sharp, flat, Lie derivative, ...)

Applications

• Lots! (And growing.) We'll see many as we continue with the course.

DISCRETE DIFFERENTIAL GEOMETRY AN APPLIED INTRODUCTION