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Review — Exterior Calculus

e Last lecture we saw exterior calculus (differentiation & integration of forms)

* As a review, let’s try solving an equation involving ditferential forms

Given: the 2-form w := dx A dy on R?
Find: a 1-form « such that da = w.

Well, any 1-form on R* can be expressed as « = udx + vdy for some pair of
coordinate functions u,v : R? — RR.

We therefore want to find u, v such that du N dx +dov Ndy = dx N dy.

Recalling that dx A dy = —dy N\ dx, we must have v = %x and u = — %y.

In other words, | a = 5 (xdy — ydx).

(...is that what you expected?)



Discrete Exterior Calculus — Motivation

e Solving even very easy differential equations by hand can be hard!

¢ [f equations involve data, forget about solving them by hand!

* Instead, need way to approximate solutions via computation

e Basic idea:

e replace domain with mesh
e replace differential forms with values on mesh

o replace differential operators with matrices

(from Elcott et al, “Stable, Circulation-Preserving, Simplicial Fluids”)



Discrete Exterior Calculus — Basic Operations

 In smooth exterior calculus, we saw many operations (wedge product, Hodge star,
exterior derivative, sharp, flat, ...)

e For solving equations on meshes, the most basic operations are typically the discrete
exterior derivative (d) and the discrete Hodge star ( % ), which we’ll ultimately
encode as sparse matrices.

dp = gfl dx’ *(aydxt + apdx?) = —wodx! + aqdx?
-1 1 0 07 - b "w; 0 0 0 0 &1
0 -1 1 0 4)1 0 w, 0 0 O &y
1 0 -1 0 <l>2 0 0 w3 0 0 &g
-1 0 0 1 4)3 0 0 0 wy O &y
0 0 1 -1 | LY~ 0 0 0 0 ws || as




Composition of Operators

e By composing matrices, we can easily solve equations involving operators like those
from vector calculus (grad, curl, div, Laplacian...) but in much greater generality
(e.g., curved surfaces, k-forms...) and on complicated domains (meshes)

grad — d| curl — *pdq

div — x; 'dg*

A — *aldg*l do

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.



Discretization & Interpolation

* Two basic operations needed to
translate between smooth & discrete
quantities:

* Discretization — given a continuous
object, how do I turn it into a finite
(or discrete) collection of
measurements?

* Interpolation — given a discrete
object (representing a finite collection
of measurements), how do I come up
with a continuous object that agrees
with (or interpolates) it?
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Discretization & Interpolation — Differential Forms

¢ In the particular case of a differential k-

inteqgration over oriented k-simplices SERERS
(known as the de Rham map)
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* Interpolation is performed by taking
linear combinations of continuous
functions associated with k-simplices

(known as Whitney interpolation)
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e With these operations, becomes easy to
translate some pretty sophisticated
equations into algorithms!
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Discretization — Basic Idea

Given a continuous differential form, how can we approximate it on a mesh?
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Basic idea: integrate k-forms over k-simplices.

Doesn’t tell us everything about the form... but enough to solve interesting equations!



Discretization of Forms (de Rham Map)

Let K be an oriented simplicial complex on R", and let a be a ditferential k-
form on R”. For each k-simplex ¢ € K, the corresponding value of the discrete

k-form @ is given by T
e _
\ <\>\§X<,,>® \ 1.27
Wy 1= W /\f/\7\/\\/\7\ 8.34
/\\\/Ar\i/\»v\\/\
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The map from continuous forms to discrete <\ PN /I\I/ \ 21>
forms is called the discretization ma \/ ity pdawrd 3
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Key idea: discretization just means “integrate a k-form over k-simplices.”
Result is just a list of values.




Integrating a O-form over Vertices

e Suppose we have a 0-form ¢
e What does it mean to integrate it over a vertex v?

e Easy: just take the value of the function at the
location p of the vertex!

Example:
d(x,y) := x° +y* + cos(4(x +y))
p=(1,-1)

/Ugb: ¢(p) =1+ 1+ cos(0) = 3

Key idea: integrating a 0-form at vertices of a mesh just “samples” the function



Integrating a 1-form over an Edge
e
/

e Suppose we have a 1-form a in the plane

* How do we integrate it over an edge e?

* Basic recipe: /

e Compute unit tangent T

e Apply a to T, yielding function a(T)
e Integrate this scalar function over edge Ry = / N — /

* Result gives “total circulation”

e Can use numerical guadrature for tough integrals / x ~ length(e) ( Z ocpl )

e Though in practice, rare to actually integrate! )

* More often, discrete 1-form values come from, e.g., operations on discrete 0-form



Integrating a 1-Form over an Edge — Example

In IR?, consider a 1-form a := xydx — x*dy
and an edge e with endpoints pg
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Q: Whatis [, «?

A: Let’s first compute the edge length L and unit tangent T:
L:=|p1—po|l =V17  T:=(p1—po)/L=(4-1)/V17

Hence, a(T) = (4xy + x?)//17.

An arc-length parameterization of the edge is given by

p(s) :=po+ t(p1—po), s€l0,L]

By plugging in all these expressions/values, our integral simplifies to

L L 7
_ 7 _ _
/O “Dps) 85 = 171 ./0 ts - Lds V17 ...why not let T := (po-p1)/L?



Orientation & Integration
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Discretizing a 1-form — Example

Example. Let M be the unit square [0, 1]* with a complex
K embedded as shown on the right. Using x, y to denote
coordinates on M, the 1-form w := 2dx is discretized by
integrating over each edge:

0] = elw:folw % dézfolzdfzz.

. 1 1

Uy = ezw:fofw % dészOdsz.f

. 2 2

w3 = [, w= [ w(\%(aax aay)> al = |, \%GM:Z.

Question: Why does W = Ws?
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Integrating a 2-form QOver a Triangle

e Suppose we have a 2-form w in R3

e How do we integrate it over a triangle ¢?

 Similar recipe to 1-form:
e Compute orthonormal basis T1,T> for triangle
e Apply w to T1,T>, yielding a function w(T1,12)
e Integrate this scalar function over triangle

e Value encodes how well triangle is “lined up”
with 2-form on average, times area of triangle

* Again, rare to actually integrate explicitly!
t

Q: Here, what determines the orientation of t?



Orientation and Integration

 In general, reversing the orientation of a simplex will reverse the sign of the integral.

eE.o., suppose we have a discrete 1-form . Then for each edge ij,

i] ji ; X
* Q: Suppose we have a 2-form 3. What do you think the relationship is between...
A
k | ]

Bik = PBiki Pjik = — Prij ]
7
1

e Q: What's the rule in general?

e A: Discrete k-form values change sign under odd permutation. (Sound familiar? :-))



Discrete Differential Forms



Discrete Differential k-Form

» Abstractly, a discrete differential k-form is just any
assignment of a value to each oriented k-simplex.

¢ For instance, in 2D:
* values at vertices encode a discrete 0-form
e values at edges encode a discrete 1-form
e values at faces encode a discrete 2-form
» Conceptually, values represent integrated k-forms
® [n practice, almost never comes from direct integration!

e More typically, values start at vertices (samples of some
function); 1-forms, 2-forms, etc., arise from applying
operators like the (discrete) exterior derivative




Matrix Encoding of Discrete Differential k-Forms

* We can encode a discrete k-form as a column ¢:V—R
vector with one entry for every k-simplex.

*'To do so, we need to first assign a unique
index to each k-simplex

e The order of these indices can be
completely arbitrary

* We just need some way to put elements of
our mesh into correspondence with entries
of the vector

e Simplest example: a discrete 0-form can be p=1¢ - v |

encoded as a vector with | V| entries
Careful: In code, indices often start from O rather than 1!



Matrix Encoding of Discrete Differential 1-Form

o A discrete differential 1-form is a

. indices values
value per edge of an oriented
simplicial complex.
N N
e To encode these values as a column ) 5 \ 1 11 05 \-8.7
vector, we must first assign a
unique index to each edge of our 6 4 9.4 1.2
complex.
P > >
3 0.89

e [f we then have values on edges,

we know how to assign them to
entries of the vector encoding the x=|—-87 —11 089 12 05 94 ]T
discrete 1-form.

Careful that if we ever change the orientation of an edge, we must also negate the value in our row vector!



Matrix Encoding of Discrete Differential 2-Form

e Same idea for encoding a discrete ditferential 2-form as a column vector

 Assign indices to each 2-simplex; now we know which values go in which entries

indices values

w=1[.41 22 35 41 57 ]



Chains & Cochains

In the discrete setting, duality between “things that get measured” (k-vectors) and
“things that measure” (k-forms) is captured by notion of chains and cochains.

SMOOTH DISCRETE
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Stmplicial Chain

e Suppose we think of each k-simplex as its own basis vector

e Can specify some region of a mesh via a linear combination of simplices.

A o\
& & &P

Example.

N2> N

03404+ 06+ 07409 03 + 305 + 03
Q: What does it means when we have a coefficient other than 0 or 1? (Or negative?)
A: Roughly speaking, “n copies” of that simplex. (Or opposite orientation.)

(Formally: chain group Ck is the free abelian group generated by the k-simplices.)



Arithmetic on Simplicial Chains

C1 =63 — €12 618 — €15 T € — €1

— €15 T €19 — €17 — €8 — €2 — &6
C1+C)=e€3—¢€p+e18— €65 +e6—€1t+ers+e19—e17y—e8—€r—¢6¢

= €3 —€1p T €18 —€1 1T €619 — €17 —eg — €2 =:! (3



Boundary Operator on Simplices

Definition. Let ¢ := (vg,...,v;) be an oriented k-simplex. Its boundary is the
oriented k — 1-simplex

k ’Z)O
00 := Z(-l)”(vo,. : .,%. : .,Uk),
p=0 e
where % indicates that the pth vertex is omitted. . Vs

Example. Consider the 2-simplex o := (vg, v1, v3).
[ts boundary is the 1-chain (vg, v1) + (v1,v3) + (v3,7p).

Example. Consider the 1-simplex e := (vg, v1).
[ts boundary is the 0-chain de = v — vy.

Example. Consider the 0-simplex (v7).
Its boundary is the empty set.



Boundary Operator on Simplicial Chains

The boundary operator can be extended to any chain by linearity, i.e.,

aZCiO'i — Zciaiﬁi.
1 1 0

Example. )

0

Note: boundary of boundary is always empty!



Coboundary Operator on Simplices

The coboundary of an oriented k-simplex o is the collection of all oriented (k+1)-
simplices that contain o, and which have the same relative orientation.

Example.

Example.

<>

—

—

(Analogy: simplicial star)



Stmplicial Cochain
A simplicial k-cochain is basically any linear map from a simplicial k-chain to a number.

n
a(c1oq + -+ Cn0n) = Y aic;
1=1

Ay

Vi,

Example.

—143+1=5

| |
O = OO WoO Rk OO
| |

1 03 + 305 + 03

N

0;)

(Formally: cochain group is group of homomorphisms from cochains to reals.)



Simplicial Cochains & Discrete Differential Forms

Suppose a simplicial k-cochain is given by the integrated values from a discrete k-form
Q: What does it mean (geometrically) when we apply it to a simplicial k-chain?

A: Our discrete k-form values come from integrating a smooth k-form over each k-
simplex. So, we just get the integral over the region specified by the chain:

A

Av A(C) = 3 + &y + &y + Ag
ng - /(73U04U0f77U08

N 1= / o C = 03+04+07+0%
0



Discrete Differential Form

Definition. Let M be a manifold simplicial complex. A (primal) discrete differential
k-form is a simplicial k-cochain on M. We will use () to denote the set of k-forms.

SMOOTH DISCRETE

0

/ W
U3 a
k-vector ‘ k-form k-chain
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Interpolation —0-Forms

On any simplicial complex K, the hat function a.k.a. Lagrange basis ¢; is a real-valued
function that is linear over each simplex and satisties

¢i(vj) = dij,

for each vertex v, 1.e., it equals 1 at vertex 1 and 0O at vertex j. Given a (primal)
discrete O-form u : V' — IR, we can construct an interpolating 1-form via

Z Ui,

x/iW?\V/V\zﬁ/%% ,

1.e., we simply weight the hat functions by S S <AL —
j PAVANE e S

values at vertices. A VAVASNE

Note: result is a continuous O-form. hat function ¢,



Barycentric Coordinates — Reuvisited

e Recall that any point in a k-simplex can be
expressed as a weighted combination of
the vertices, where the weights sum to 1.

e The weights t; are called the barycentric

coordinates.

1

J

e The Lagrange basis for a vertex i is given 0,0,

explicitly by the barycentric coordina

1 in each triangle containing i.

k
= {Z Lipi
i=0

k

Y ti=1,1>0Vi

1=0

|

Po =

1
tes of
p; = (0,1,0)
100



Interpolation —k-Forms (Whitney Map)

Definition. Let ¢; be the hat functions on a simplicial complex. The Whitney 1-forms
are differential 1-forms associated with each oriented edge ij, given by

Gij == ¢; dp; — ¢; d¢;

(Note that ¢;; = —¢;;). The Whitney 1-forms can be used to interpolate a discrete
1-form @ (value per edge) via
) @ijij. ]
]

More generally, the Whitney k-form associated with an ori-
ented k-simplex (i, ..., i) is given by 04 s

! cdd: A - A dd N T 5 |
pz%)qbl’? Pio N+ N APr, N 1 A k  Whitney 1-form ¢;;



Discretization & Interpolation

* Fact: Suppose we have a discrete differential k-form. If we interpolate by Whitney
bases, then discretize via the de Rham map (i.e., by integration), then we recover the
exact same discrete k-form.

() (smooth differential k-forms)

(discretize) / ¢ (interpolate)

ﬁk (discrete differential k-forms)

Q: What about the other direction? If we discretize a continuous k-form then
interpolate, will we always recover the same continuous k-form?



Discrete Exterior Derivative



Reminder: Exterior Derivative

* Recall that in the smooth setting, the exterior derivative...

..maps differential k-forms to differential (k

..is similar to the gradient for O-forms

..1s similar to curl for 1-forms

1)-forms

.satisfies a product rule: d(a A B) =da A B+ (—1)*a A dp

..yields zero when you apply it twice: dod =0

..is similar to divergence when composed w/ Hodge star

e To get discrete exterior derivative, we are simply going to
evaluate the smooth exterior derivative and integrate the
result over (oriented) simplices

........
............

\\\\\\\\\\\\\




Discrete Exterior Derivative (0-Forms)

¢ - primal 0-form (vertices)

do - primal 1-form (edges)

01

(@)e:/edq) — Be¢ :(152—431



Discrete Exterior Derivative (1-Forms)

a - primal 1-form (edges)

da - primal 2-form (triangles)

3 3
(Zz&)a:/d(x:/ w :Z/a:Z&i
4 oo i=17¢ i=1

In general: discrete exterior derivative is coboundary operator for cochains.



Discrete Exterior Derivative — Examples

When applying the discrete exterior derivative, must
be caretul to take orientation into account.

Example (0-form) Example (1-form)
2 0 2 /

/ 0 / 2

(Also notice that exterior derivative

has nothing to do with length!) 9+2+(-5)=6



Discrete Exterior Derivative — Matrix Representation

e The discrete exterior derivative on k-forms, which we will
denote by d, is a linear map from values on k-simplices to
values on (k+1)-simplices:

* dp maps values on vertices to values on edges

* d; maps values on edges to values on triangles

* 4, maps values on triangles to values on tetrahedra (1’ _i _(1) (1) 8
o E¥ = > 0 0 —-1 1
3 0 1 0 -1
e We can encode each operator to a matrix, by assigning an +[ 0 -1 1 0
indices to mesh elements (just as when we encoded discrete
k-forms as column Vectorsg 01 2 3 4
. . . . . , p_0[1 10 0-1
e This matrix turns out to be just a signed incidence matrix, 10011 1

which we saw in our discussion of the oriented simplicial
complex



Discrete Exterior Derivative do— Example

e To build the exterior derivative on 0-
forms, we first need to assign an index
to each vertex and each edge

— A discrete O-form is a list of | V|
values (one per vertex)

— A discrete 1-formis alistof | E|
values (one per edge)

e The discrete exterior derivative dpis
therefore a | E x| V| matrix, taking
values at vertices to values at edges




Discrete Exterior Derivative di— Example

e To build the exterior derivative on 1-
forms, we first need to assign an index
to each edge and each face

— A discrete O-form is a list of [ E |
values (one per edge)

— A discrete 1-form is a list of | F |
values (one per face)

e The discrete exterior derivative d; is £
therefore a | FIx | E| matrix, taking f,
values at edges to values at faces

e This time, we need to be more careful
about relative orientation

Example.




Exterior Derivative Commutes w/ Discretization

By definition, the discrete exterior derivative satisfies a very important property:

Taking the smooth exterior derivative and then
discretizing yields the same result as discretizing

and then applying the discrete exterior derivative.

h d - du
J

v R Y

54 d - du

Corollary: applying discrete d twice yields zero (why?)

%&)&

R &R

)

smooth exterior derivative

discrete exterior derivative
de Rham map (discretization)

SMOOot!
discre
SMOOot!

N k-form

e k-form

N (k+1)-form

discrete (k+1)-form



Exactness of Discrete Exterior Derivative

 To confirm that applying discrete exterior derivative twice yields zero, we can just
multiply the exterior derivative matrices for 0- and 1-forms:

1 0
: : 1 1
pdg |00 -1 -1 1 0
0 0
0 1

11 1 0 0

—_— O O O
|
o O
o O
o O
o O
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Dual Forms




Reminder: Poincaré Duality

0-simplex 1-simplex 2-simplex

VAVARNEGES

I
w D <P A

2-cell 1-cell 0-cell




Dual Discrete Differential k-Form

Consider the (Poincaré) dual K* of a manifold simplicial complex K.

Just as a discrete ditferential k-form was a value per
k-simplex, a dual discrete differential k-form is a value
per k-cell:

.

* a dual O-form is a value dual vertex
* a dual 1-form is a value per dual edge
* a dual 2-form is a value per dual cell

e

-
AT

dual 2-form

(Can also formalize via dual chains, dual cochains...)



Primal vs. Dual Discrete Differential k-Forms

Let’s compare primal and dual discrete forms on a triangle mesh:

primal dual '
dual vertices 4'

0-forms vertices (triangles) .

dual edges
1-forms edges (edges) ‘b
2-forms triangle dual cells \

(vertices)

Note: no such thing as “primal” and “dual” forms in smooth setting!

Q: Is the dimension of primal and dual k-forms always the same?



Dual Exterior Derivative

e Discrete exterior derivative on dual k-forms works
in essentially the same way as for primal forms:

2
e To get the derivative on a (k+1)-cell, sum up ; 7
values on each k-cell along its boundary )
e Sign of each term in the sum is determined by o
relative orientation of (k+1)-cell and k-cell >
Example. 5 .

Let a be a dual discrete 1-form (one value per dual edge)
Then dua 1s a value per 2-cell, obtained by summing over dual edges
(As usual, relative orientation matters!)
-7+7-2+(-3)+5-5+3==-2

Notice: as with primal d, we don’t need lengths, areas, ...



Dual Forms: Interpolation & Discretization

e For primal forms, it was easy to make connection to smooth forms via interpolation
¢ k-simplices have clear geometry: convex hull of vertices
¢ k-forms have straightforward basis: Whitney forms

e Not so clear cut for dual forms!

¢ec.g., can’t interpolate dual O-form with linear function

e nonconvex cells even more challenging...

* Jeads to question of generalizing barycentric coordinates
* k-cells may not sit in a k-dimensional linear subspace
ee.g., 2-cells in 3D can be non-planar

e Nonetheless, still easy to work with dual forms formally /abstractly (e.g., d)



ete Hodge Star




Reminder: Hodge Star ()

Analogy: orthogonal complement k— (n—k)



Discrete Hodge Star —1-forms in 2D

primal 1-form dual 1-form
(circulation) (flux)



Discrete Hodge Star —2-forms in 3D

o 1 1

S O™

gab ~
Wab
Ajik

*Wijk =

Ajjr — area of triangle 17k primal 2-form dual 1-form
L. — length of dual edge ab



Diagonal Hodge Star

Definition. Let (); and ()} , denote the primal k-forms and dual (n — k) forms

(respectively on an n-dimensional simplicial manifold M. The diagonal Hodge star is
P y P 8 8

amap x : () — ()" , determined by

_ o

= o

*x0(0)

for each k-simplex ¢ in M, where ¢ is the corresponding dual cell, and | - | denotes
the volume of a simplex or cell.

Key idea: divide by primal area,
multiply by dual area. (Why?)

c—triangle
c*—dual edge



Matrix Representation of Diagonal Hodge Star

e Since the diagonal Hodge star on k-forms simply multiples each discrete k-form
value by a constant (the volume ratio), it can be encoded via a diagonal matrix

*
o7

01| 0

*k L= - IRNXN
7
0 N

01, . ..,0nN — k-simplices in the primal mesh
0F,...,0n — (n—k)-cells in the dual mesh
- | — volume of a simplex or cell

x € RV*N — matrix for Hodge star on primal k-forms



Geometry of Dual Complex

 For exterior derivative, needed only connectivity of the dual cells

* For Hodge star, also need a specific geometry

* Many possibilities for location ot dual vertices:

e circumcenter (c) — center of sphere touching all vertices

e most typical choice

e pros: primal & dual are orthogonal (greater accuracy)

e cons: can yield, e.g., negative lengths/areas/volumes...
e barycenter (b) — average of all vertex coordinates |

* pros: dual volumes are always positive

e cons: primal & dual not orthogonal (lower accuracy)

— —
e am = =



Possible Choices for Discrete Hodge Star

e Many choices—none give exact results!

 Volume ratio

e diagonal matrix; most typical choice in DEC (Hirani, Desbrun et al)
e typical choice: circumcentric dual (Delaunay / Voronoi)
e more general orthogonal dual (weighted triangulation/power diagram)
e can also use barycentric dual (e.g., Auchmann & Kurz, Alexa & Wardetzky)

* Galerkin Hodge star

¢ [, norm on Whitney forms
e non-diagonal, but still sparse; standard in, e.g., FEEC (Arnold et al).

* appropriate “mass lumping” again yields circumcentric Hodge star

(Thanks: Fernando de Goes)



Computing Volumes

e Evaluating the Hodge star boils down to computing ratios of dual/primal volumes

e These ratios often have simple closed-form expressions (don’t compute circumcenters!)

Example: 2D circumcentric dual ]

k
[\

VALY,

gdual 1 !
‘ gprimal — z(cot & + cot ﬁi]-) |
/

1 1

Ajix o /s(s—Lij) (s—Ljx) (s—Lx;)
/

A - - B
dual _ s Y (212] cot ocfck + 02 cota) 1
iike F s = 5(lij + Lix + Cri)






Discrete Exterior Calculus — Basic Operators

* Basic operators can be summarized in a very useful diagram (here in 2D):

d dq
(2o - () - ()9
*0 x1 x9
\ \ \
* * *
QQ R T 1 R T 0
dg dq

() — primal k-forms
()7 — dual k-forms



Composition of Operators

e By composing matrices, we can easily solve equations involving operators like those
from vector calculus (grad, curl, div, Laplacian...) but in much greater generality
(e.g., curved surfaces, k-forms...) and on complicated domains (meshes)

grad — d| curl — *pdq

div — x; 'dg*

A — *aldg*l do

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.



Other Discrete Operators?

e Many other operators in exterior calculus (wedge, sharp, flat, Lie derivative, ...)

eE.g., wedge product on two discrete 1-forms:

(More broadly, many open questions about how to discretize exterior calculus...)



Discrete Exterior Calculus - Summary

* integrate k-form over k-simplices ’ ﬂ
e result is discrete k-form /\
b

e sign changes according to orientation

\

e can also integrate over dual elements (dual forms) ]

e Hodge star converts between primal and dual (approximately!)

e multiply by ratio of dual/primal volume

e discrete exterior derivative is just a sum Q

e gives exact value (via Stokes’ theorem)

o Still plenty missing! (Wedge, sharp, flat, Lie derivative, ...)




Applications

e Lots! (And growing.) We’ll see many as we continue with the course.

’:ﬁ —=-

* - dt‘
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Thanks!
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