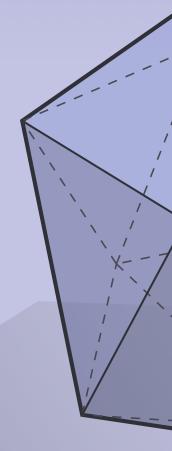
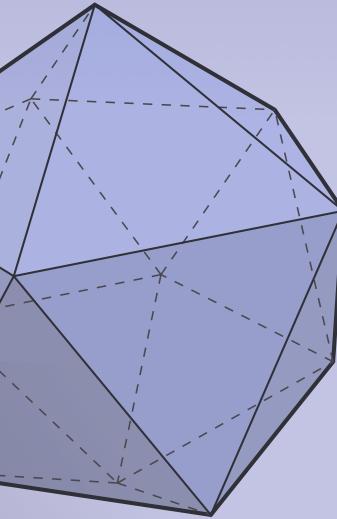
DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858B • Fall 2017



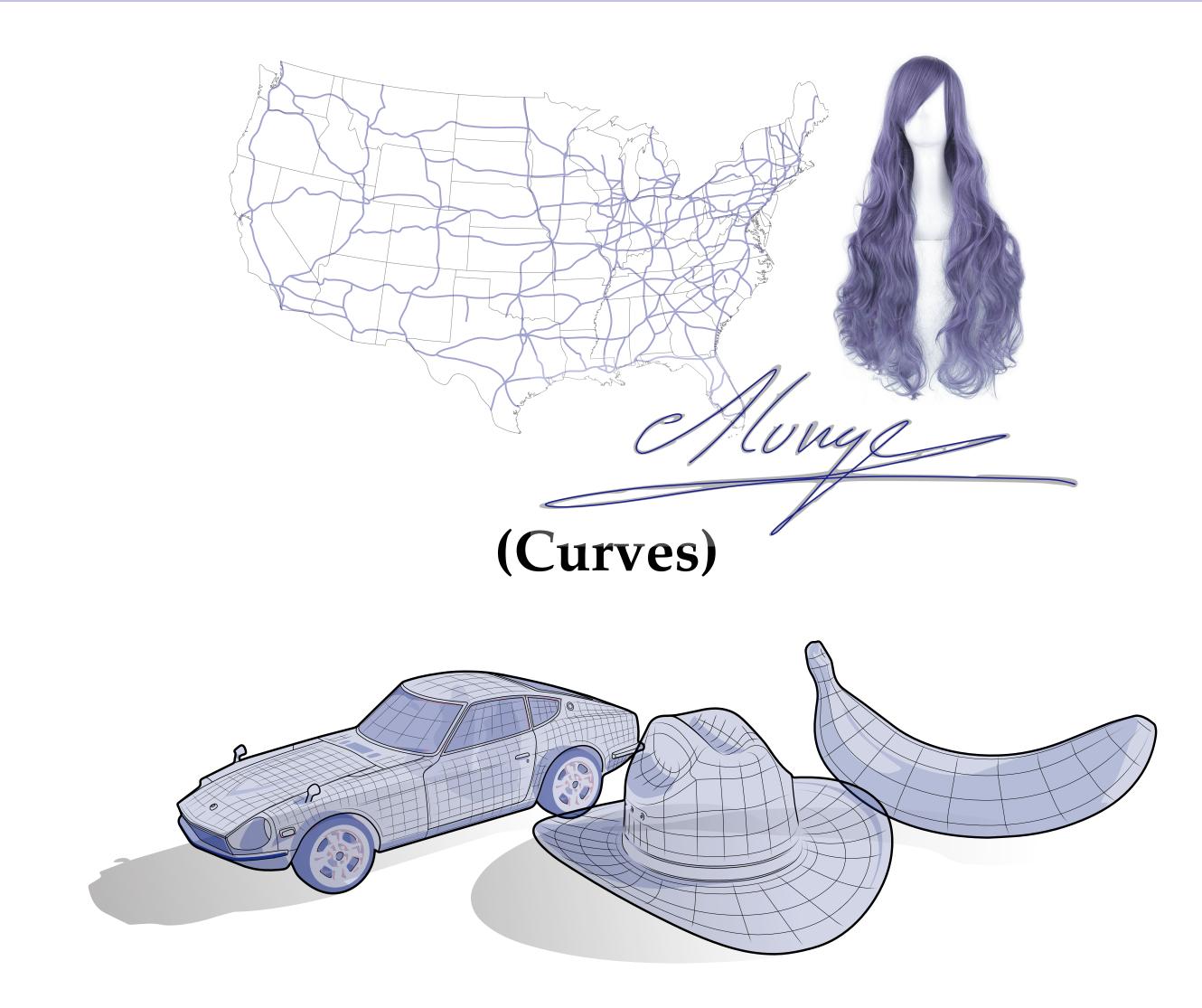
DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858B • Fall 2017

LECTURE 8: SURFACES



From Curves to Surfaces

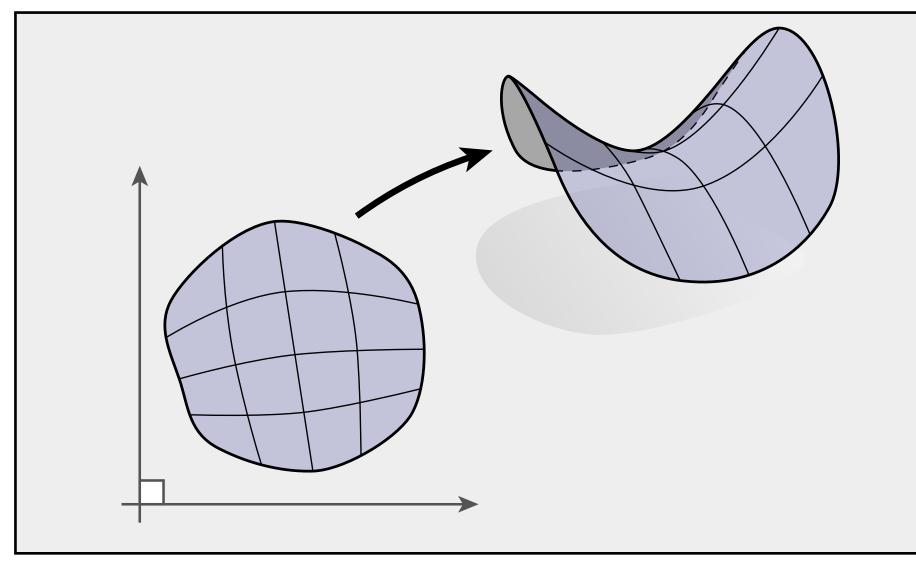
- **Previously:** saw how to talk about 1D curves (both smooth and discrete)
- Today: will study 2D curved surfaces (both smooth and discrete)
 - Some concepts remain the same (e.g., differential); others need to be generalized (*e.g.*, curvature)
 - Still use exterior calculus as our lingua franca

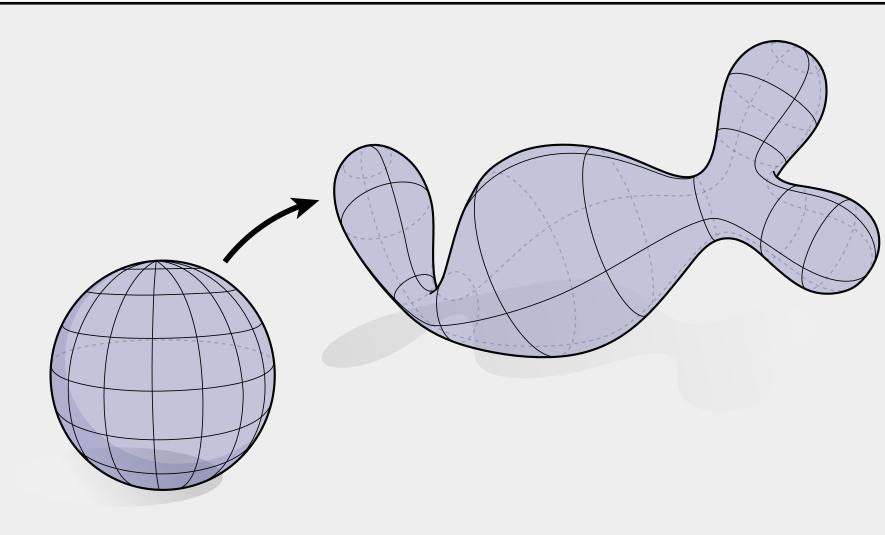


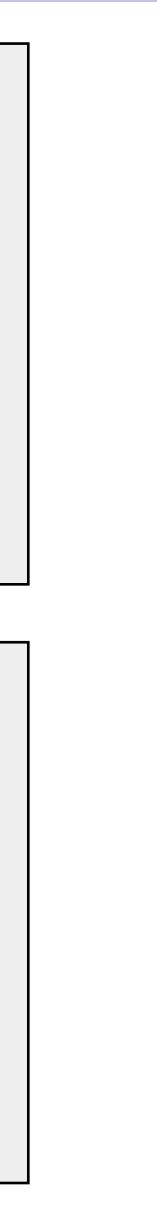
(Surfaces)

Surfaces—Local vs. Global View

- So far, we've only studied exterior calculus in \mathbb{R}^n
- Will therefore be easiest to think of surfaces expressed in terms of patches of the plane (local picture)
- Later, when we study topology & smooth manifolds, we'll be able to more easily think about "whole surfaces" all at once (global picture)
- Global picture is *much* better model for discrete surfaces (meshes)...







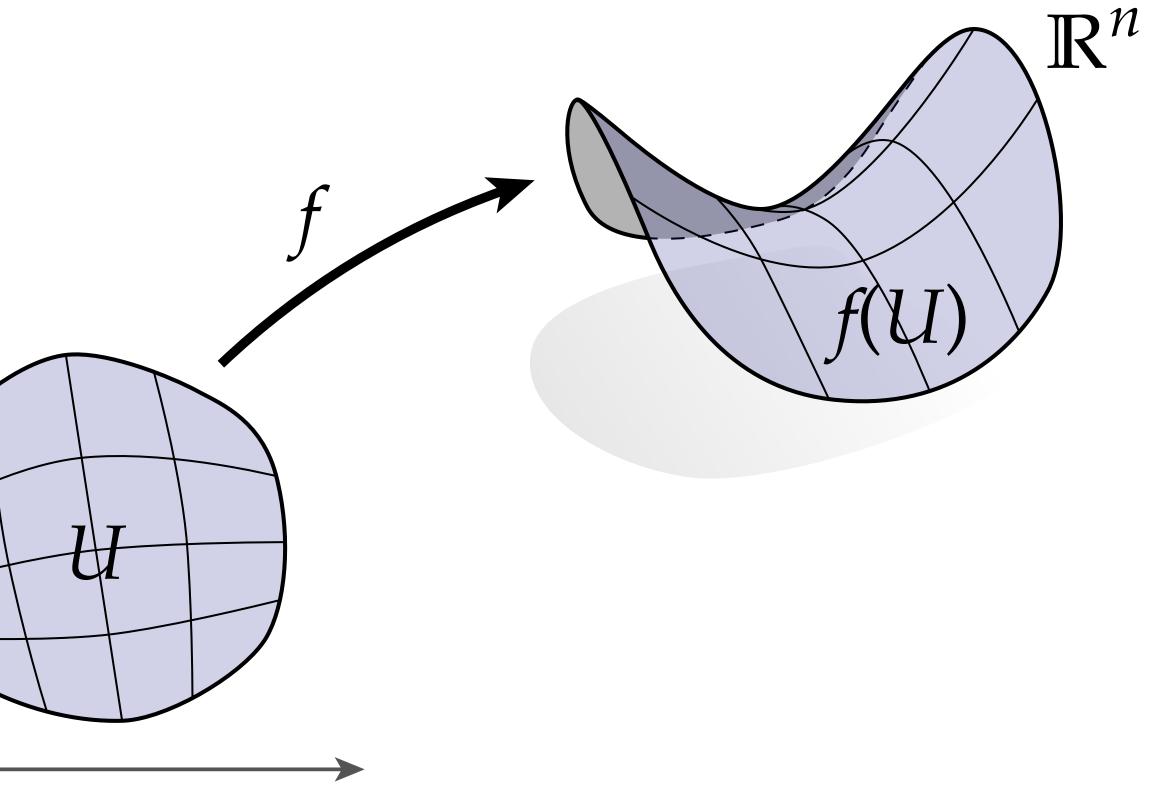
Parameterized Surfaces

Parameterized Surface

A parameterized surface is a map from a two-dimensional region $U \subset \mathbb{R}^2$ into \mathbb{R}^2 :

$f: U \to \mathbb{R}^n$

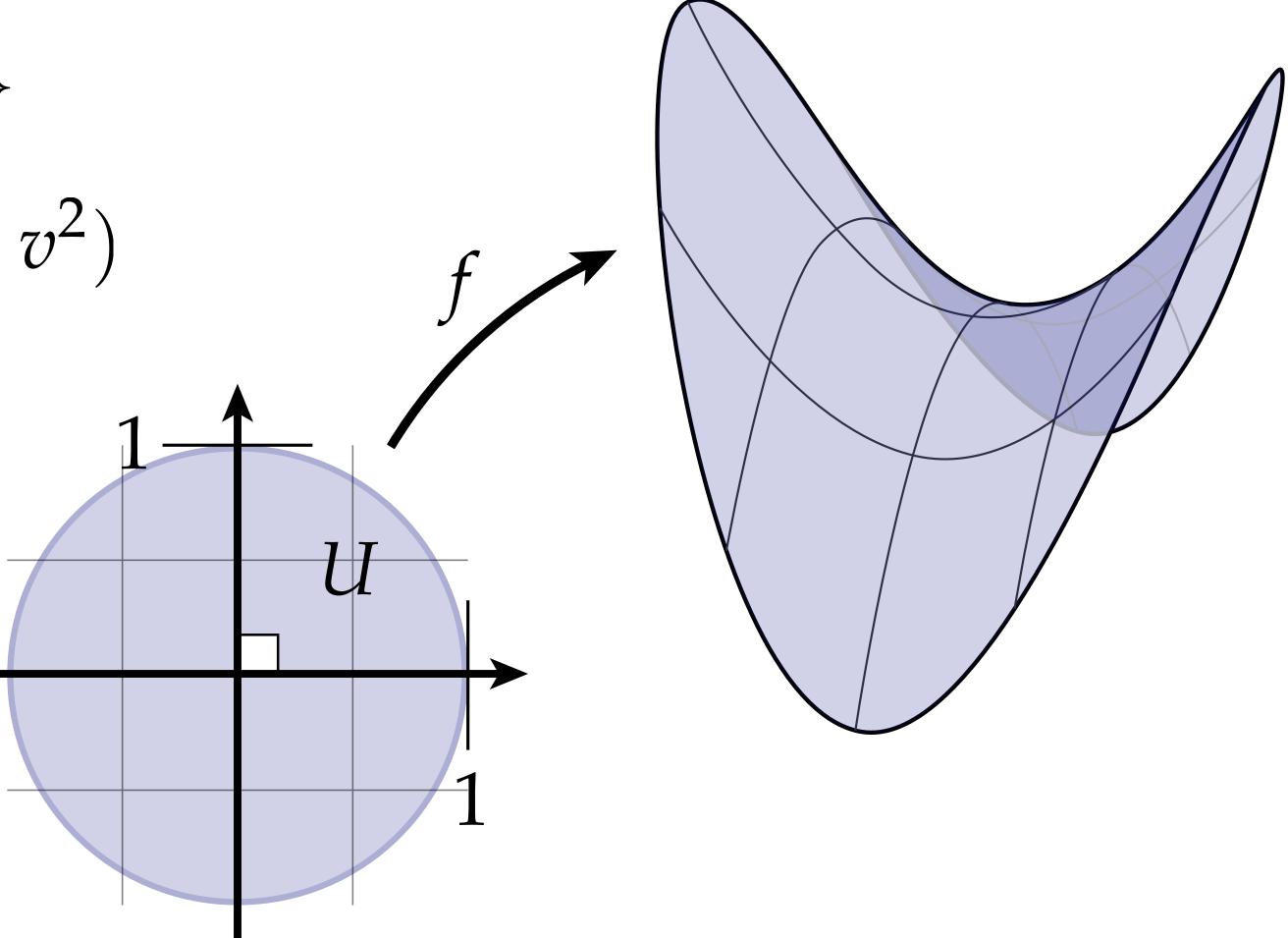
The set of points f(U) is called the **image** of the parameterization.



Parameterized Surface—Example

- $U := \{ (u, v) \in \mathbb{R}^2 : u^2 + v^2 \le 1 \}$
- $f: U \to \mathbb{R}^3$; $(u, v) \mapsto (u, v, u^2 v^2)$

• As an example, we can express a *saddle* as a parameterized surface:

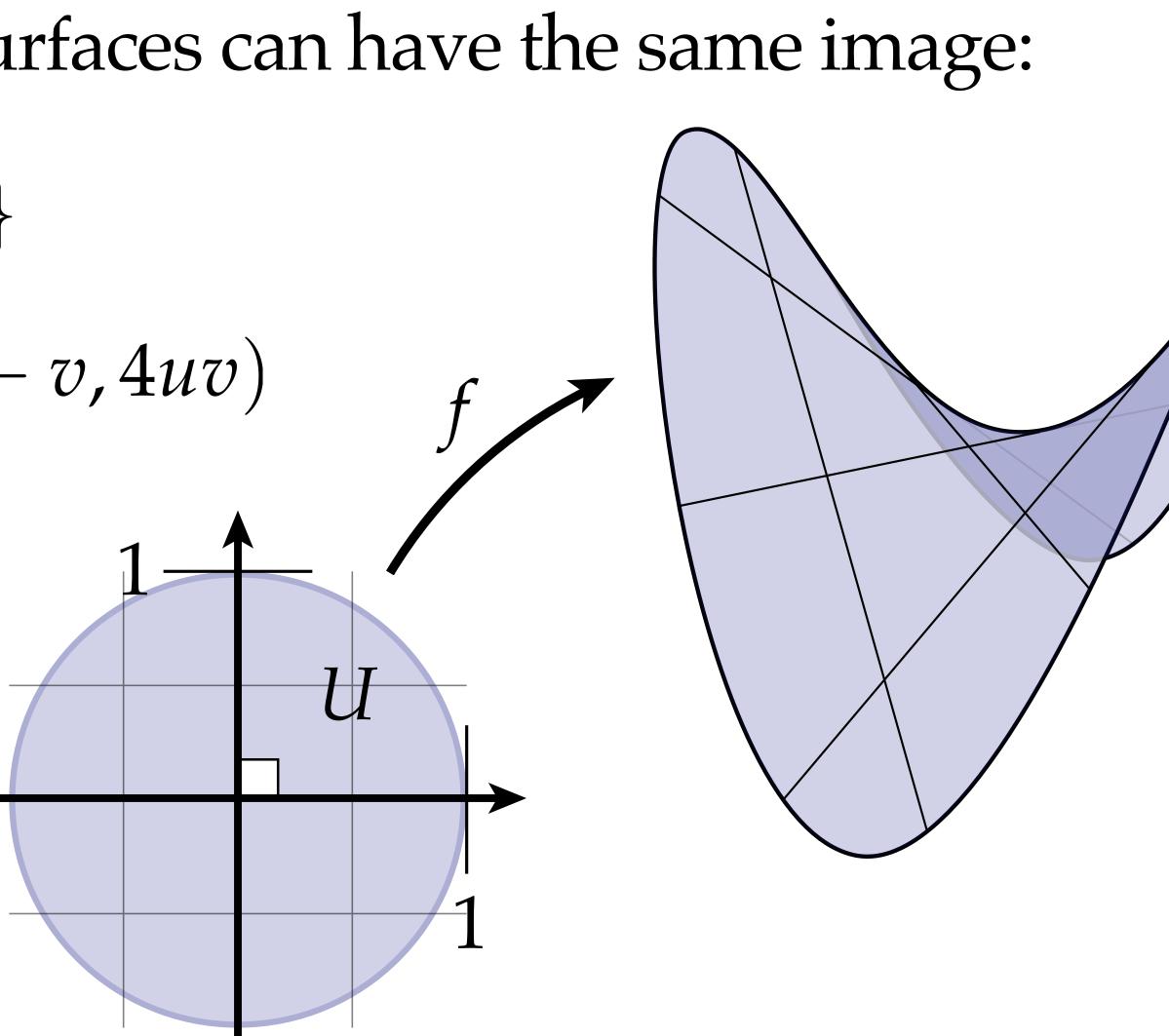


Reparameterization

- Many different parameterized surfaces can have the same image:
- $U := \{ (u, v) \in \mathbb{R}^2 : u^2 + v^2 \le 1 \}$
- $f: U \to \mathbb{R}^3$; $(u, v) \mapsto (u + v, u v, 4uv)$

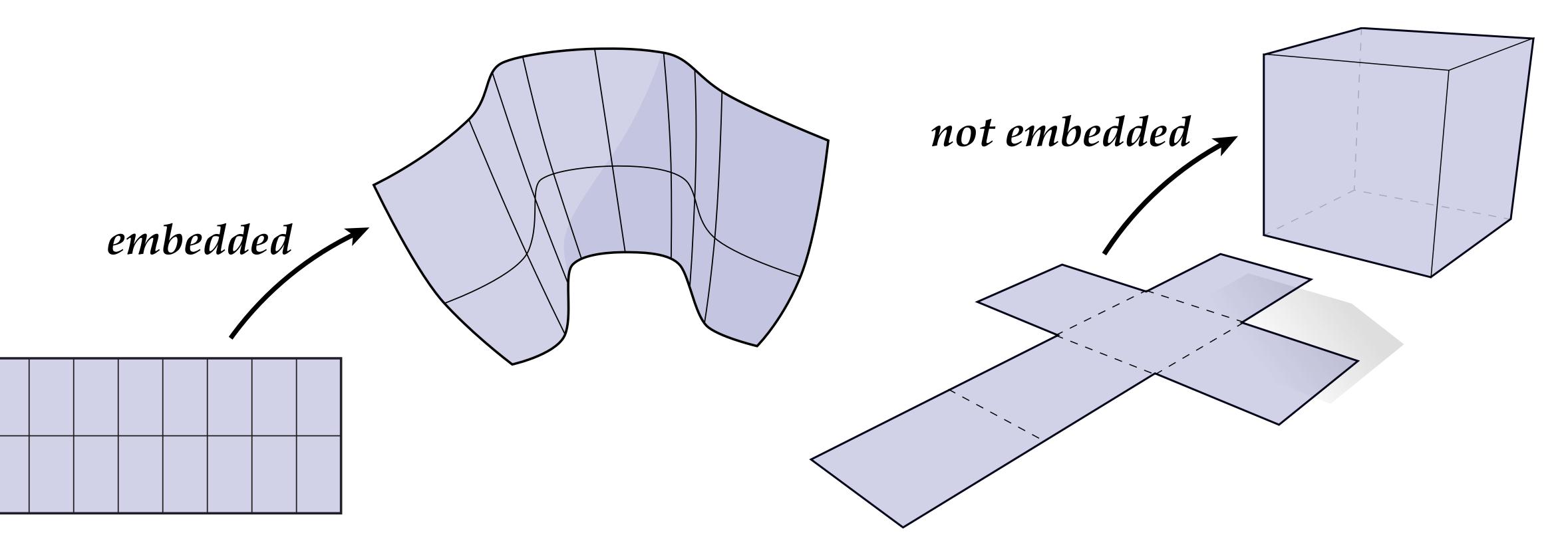
This *"reparameterization symmetry"* can be a major challenge in applications—*e.g.,* trying to decide if two parameterized surfaces (or meshes) describe the same shape.

Analogy: graph isomorphism



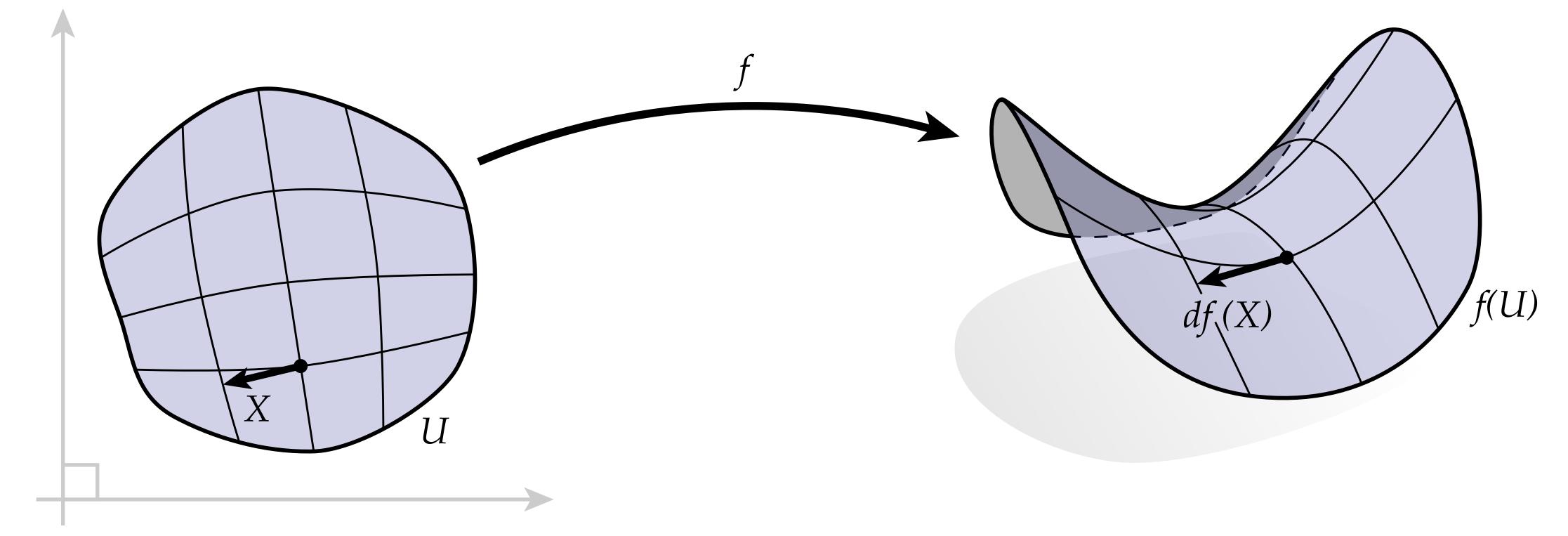
Embedded Surface

- Roughly speaking, an **embedded** surface does not self-intersect
- More precisely, a parameterized surface is an embedding if it is a continuous injective map, and has a continuous inverse on its image



Differential of a Surface

Intuitively, the *differential* of a parameterized surface tells us how tangent vectors on the domain get mapped to vectors in space:



We say that df "pushes forward" vectors X into R^n , yielding vectors df(X)

Differential in Coordinates

In coordinates, the differential is simply the exterior derivative:

 $f: U \to \mathbb{R}^3$; $(u, v) \mapsto (u, v, u^2 - v^2)$

$$df = \frac{\partial f}{\partial u} du + \frac{\partial f}{\partial v} dv =$$

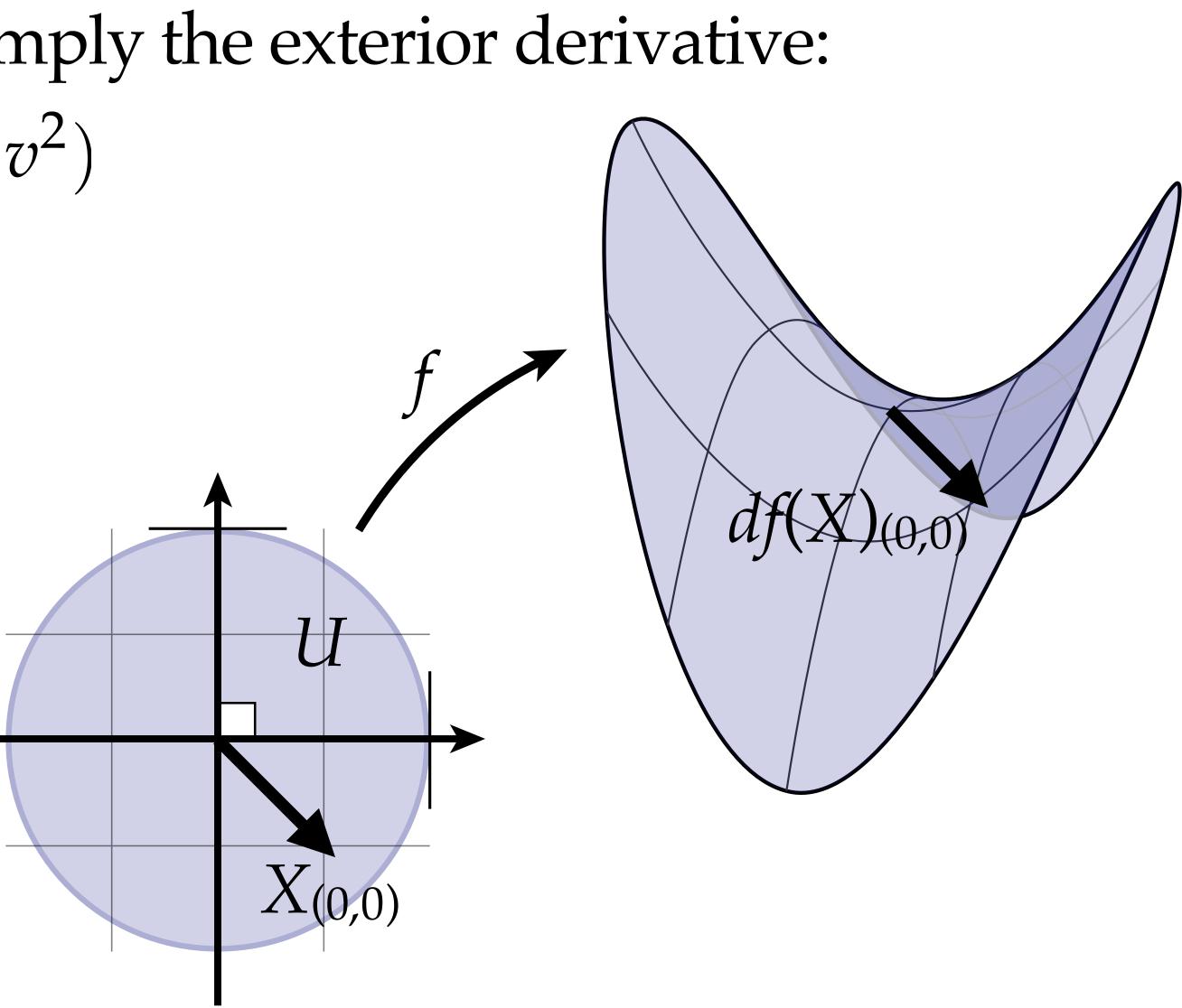
(1,0,2u)du + (0,1,-2v)dv

Pushforward of a vector field:

$$X := \frac{3}{4} \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)$$

$$df(X) = \frac{3}{4} (1, -1, 2(u+v))$$

E.g., at $u = v = 0$: $\left(\frac{3}{4}, -\frac{3}{4}, 0 \right)$



Differential—Matrix Representation (Jacobian)

Definition. Consider a map $f : \mathbb{R}^n \to \mathbb{R}^m$, and let x_1, \ldots, x_n be coordinates on \mathbb{R}^n . Then the *Jacobian* of f is the matrix

 $J_{f} := \begin{bmatrix} \partial f^{1} / \partial x^{1} \\ \vdots \\ \partial f^{m} / \partial x^{1} \end{bmatrix}$

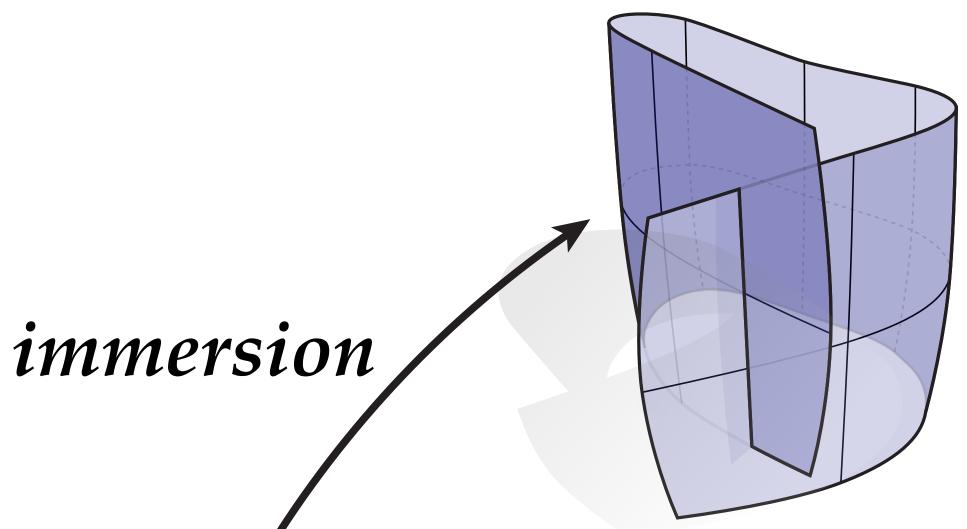
where f^1, \ldots, f^m are the components of f w.r.t. some coordinate system on \mathbb{R}^m . This matrix represents the differential in the sense that $df(X) = J_f X$.

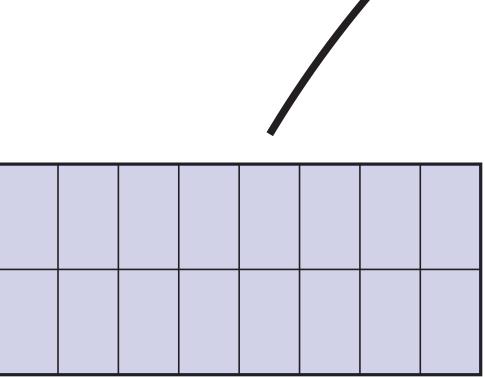
(In solid mechanics, also known as the *deformation gradient*.) **Note:** does not generalize to infinite dimensions! (E.g., maps between functions.)

$$\cdots \partial f^{1}/\partial x^{n} \\ \vdots \\ \cdots \partial f^{m}/\partial x^{n} \end{bmatrix}$$

Immersed Surface

• A parameterized surface *f* is an *immersion* if its differential is nondegenerate, *i.e.*, if df(X) = 0 if and only if X = 0.





Intuition: no region of the surface gets "pinched"

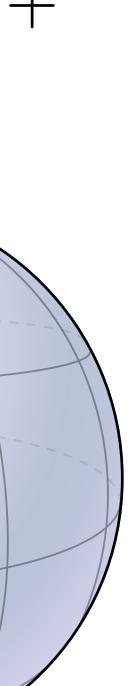
Immersion — Example

Consider the standard parameterization of the sphere:

- $f(u,v) := (\cos(u)\sin(v), \sin(u)\sin(v), \cos(v))$
- **Q**: Is *f* an immersion? A: No: when v = 0 we get $(0, 0, 0) du + (\cos(u), \sin(u), -\sin(v)) dv$

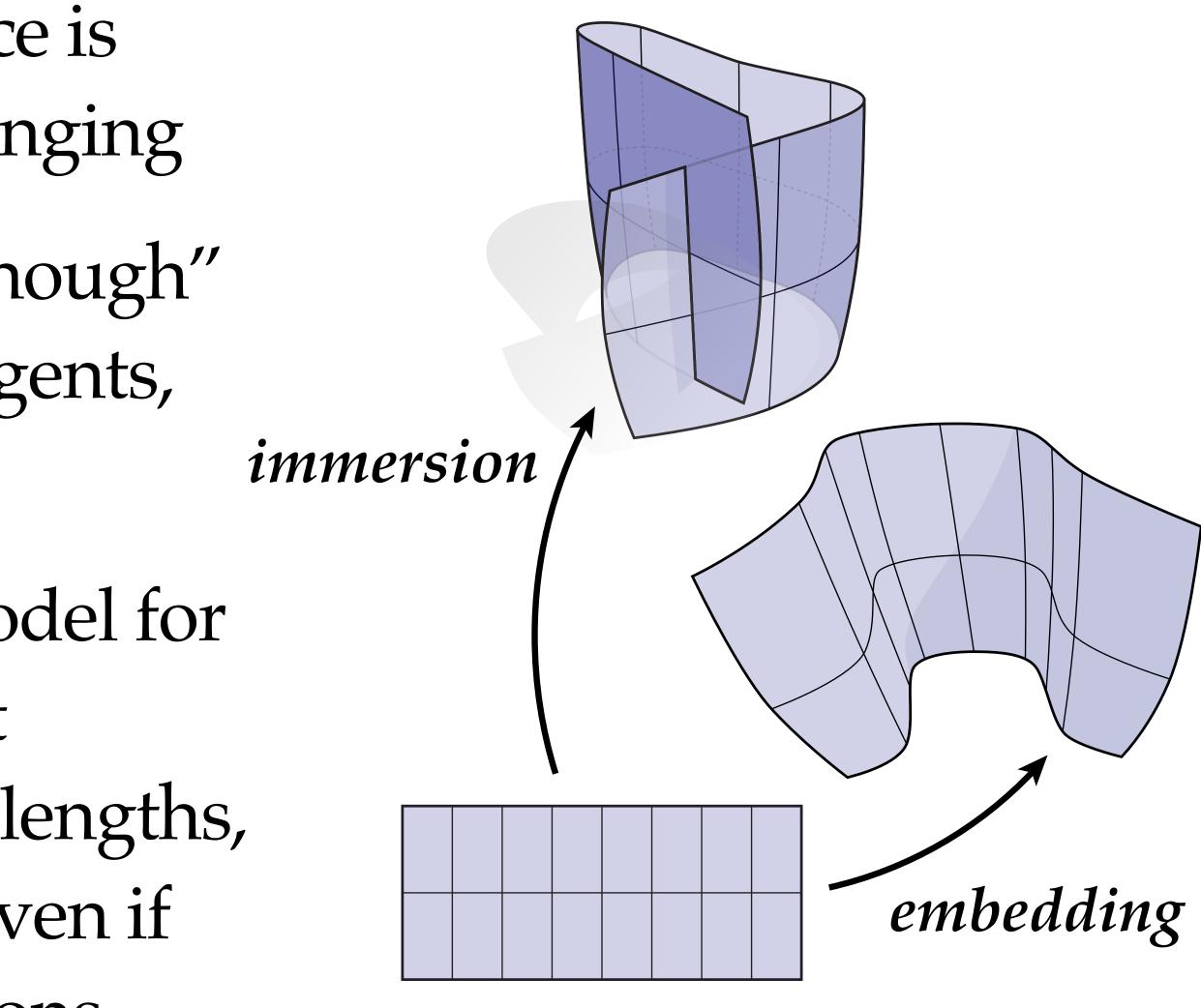
Nonzero tangents mapped to zero!

$df = \frac{\partial f}{\partial u} du + \frac{\partial f}{\partial \tau} dv = \begin{pmatrix} -\sin(u)\sin(v), & \cos(u)\sin(v), & 0 \\ \cos(u)\cos(v), & \cos(v)\sin(u), & -\sin(v) \end{pmatrix} \frac{\partial u}{\partial v}$ \mathcal{U} π 2π



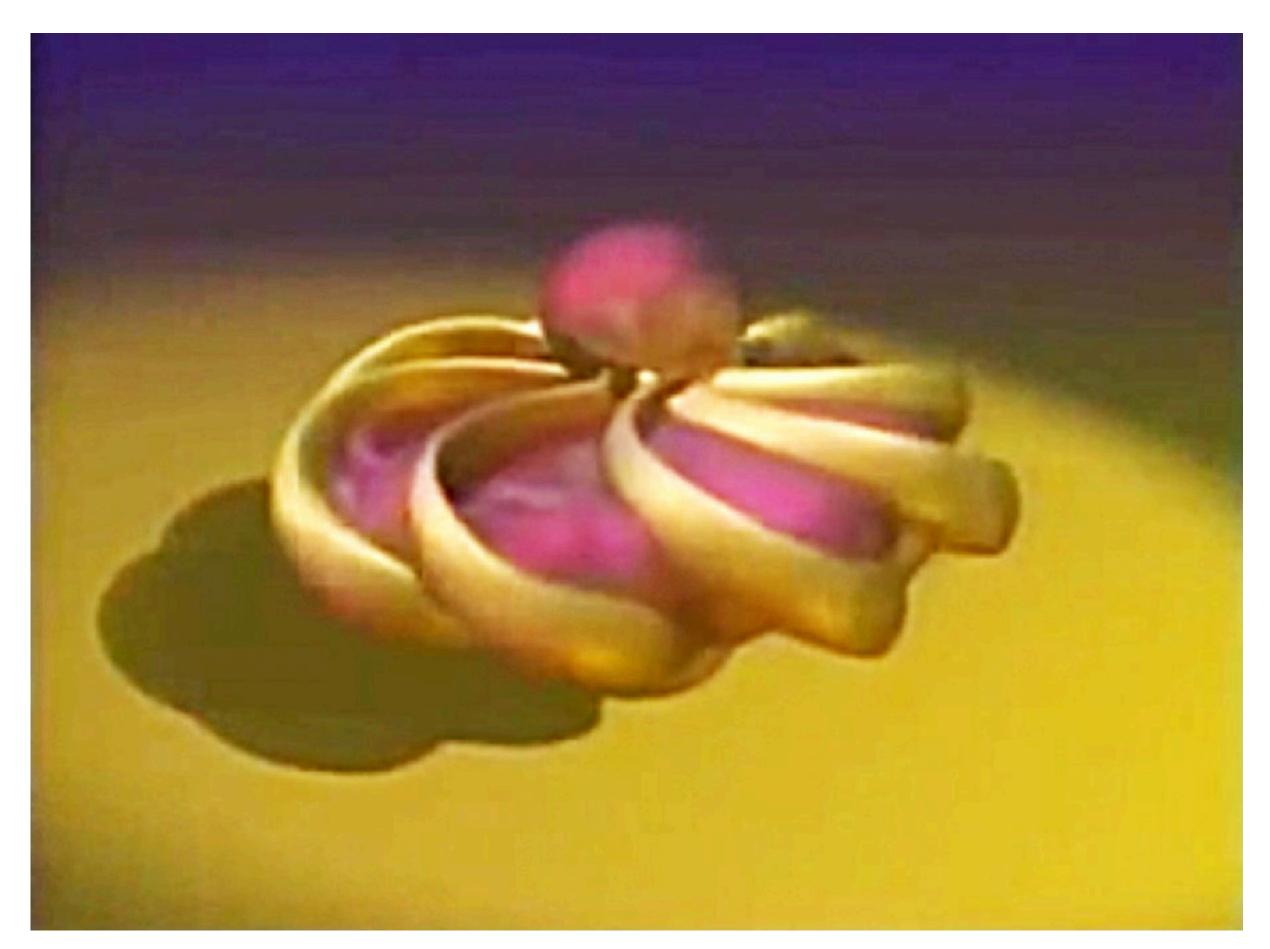
Immersion vs. Embedding

- In practice, ensuring that a surface is globally embedded can be challenging
- Immersions are typically "nice enough" to define local quantities like tangents, normals, metric, etc.
- Immersions are also a natural model for the way we typically think about meshes: most quantities (angles, lengths, etc.) are perfectly well-defined, even if there happen to be self-intersections



Sphere Eversion

Turning a Sphere Inside-Out (1994)



https://youtu.be/-6g3ZcmjJ7k

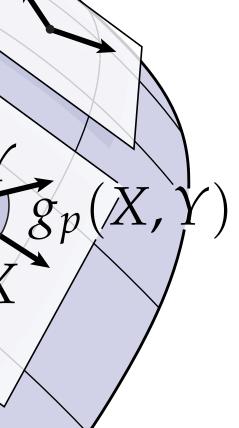
Riemannian Metric

Riemann Metric

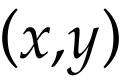
- Many quantities on manifolds (curves, surfaces, etc.) ultimately boil down to measurements of *lengths* and *angles* of tangent vectors
- This information is encoded by the so-called *Riemannian metric**
- Abstractly: smoothly-varying positive-definite bilinear form
- For immersed surface, can (and will!) describe more concretely/geometrically

***Note:** *not* the same as a point-to-point distance metric d(x,y)

M



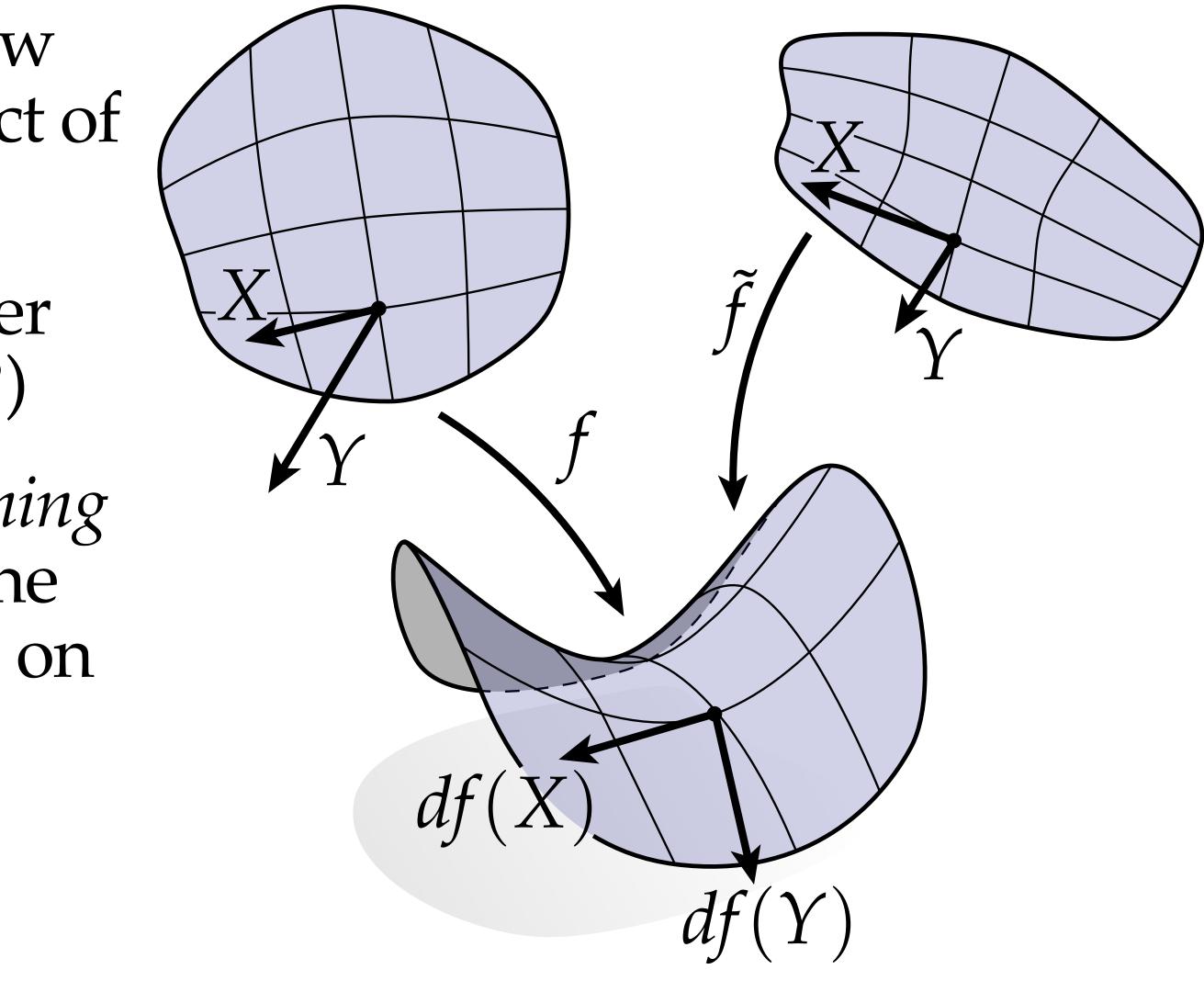
 $T_pM p$



Metric Induced by an Immersion

- Given an immersed surface *f*, how should we measure inner product of vectors *X*, *Y* on its domain *U*?
- We should **not** use the usual inner product on the plane! (Why not?)
- Planar inner product tells us *nothing* about actual length & angle on the surface (and changes depending on choice of parameterization!)
- Instead, use induced metric

 $g(X,Y) := \langle df(X), df(Y) \rangle$



Key idea: must account for "stretching"

Induced Metric—Matrix Representation

• Metric is a bilinear map from a pair of vectors to a scalar, which we can represent as a 2x2 matrix I called the *first fundamental form*:

$$g(X,Y) = X^T I Y$$

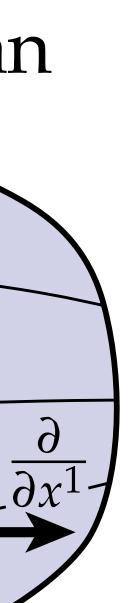
$$\Rightarrow \mathbf{I}_{ij} = g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right) = \left\langle df\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right) \right\rangle$$

- Alternatively, can express first fundamental form via Jacobian:

$$\Rightarrow \mathbf{I} = J_f^\mathsf{T} J_f$$

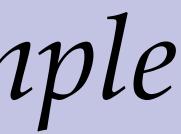
 $\left(\frac{\partial}{\partial x^i}\right), df\left(\frac{\partial}{\partial x^j}\right)\right)$

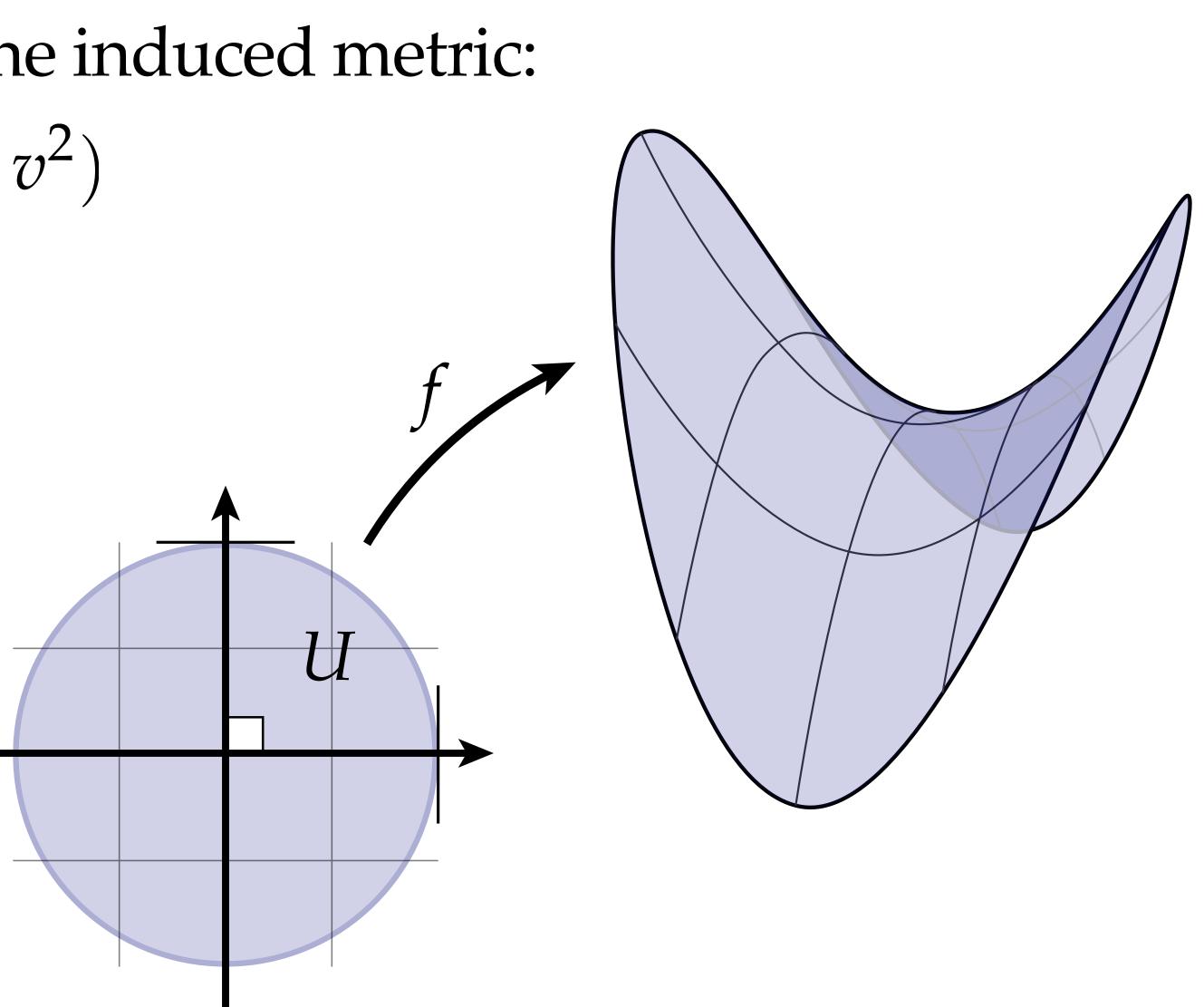
 $g(X,Y) = \langle df(X), df(Y) \rangle = (J_f X)^{\mathsf{T}} (J_f Y) = X^{\mathsf{T}} (J_f^{\mathsf{T}} J_f) Y$



Induced Metric—Example

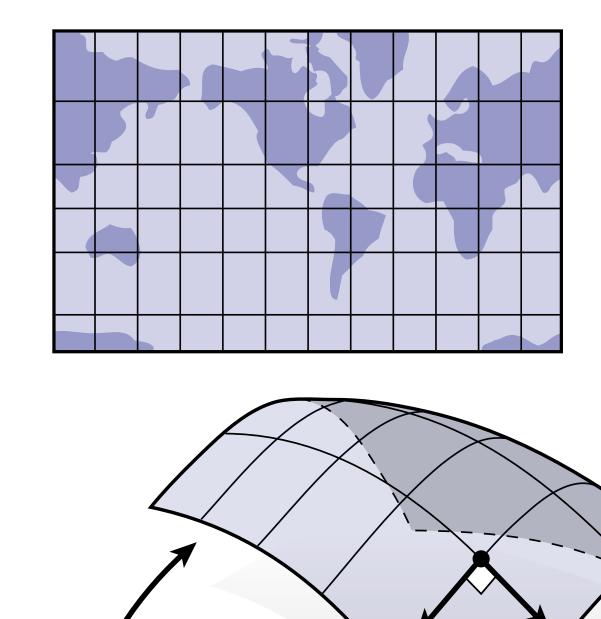
Can use the differential to obtain the induced metric: $f: U \to \mathbb{R}^3$; $(u, v) \mapsto (u, v, u^2 - v^2)$ df = (1, 0, 2u)du + (0, 1, -2v)dv $J_f = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2u & -2v \end{bmatrix}$ $\mathbf{I} = J_f^{\mathsf{T}} J_f$ $\begin{bmatrix} 1+4u^2 & -4uv \\ -4uv & 1+4v^2 \end{bmatrix}$

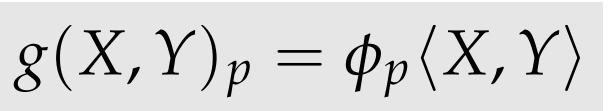




Conformal Coordinates

- As we've just seen, there can be a complicated relationship between length & angle on the domain (2D) and the image (3D)
- For curves, we simplified life by using an *arc-length* or *isometric* parameterization: lengths on domain are identical to lengths along curve
- For surfaces, usually not possible to preserve all *lengths* (e.g., globe). Remarkably, however, can always preserve *angles* (conformal)
- Equivalently, a parameterized surface is *conformal* if at each point the induced metric is simply a positive rescaling of the 2D Euclidean metric





Example (Enneper Surface)

Consider the surface

$$f(u,v) := \begin{bmatrix} uv^2 + u - \frac{1}{3}v(v^2 - 3u) \\ (u - v)(u) \end{bmatrix}$$

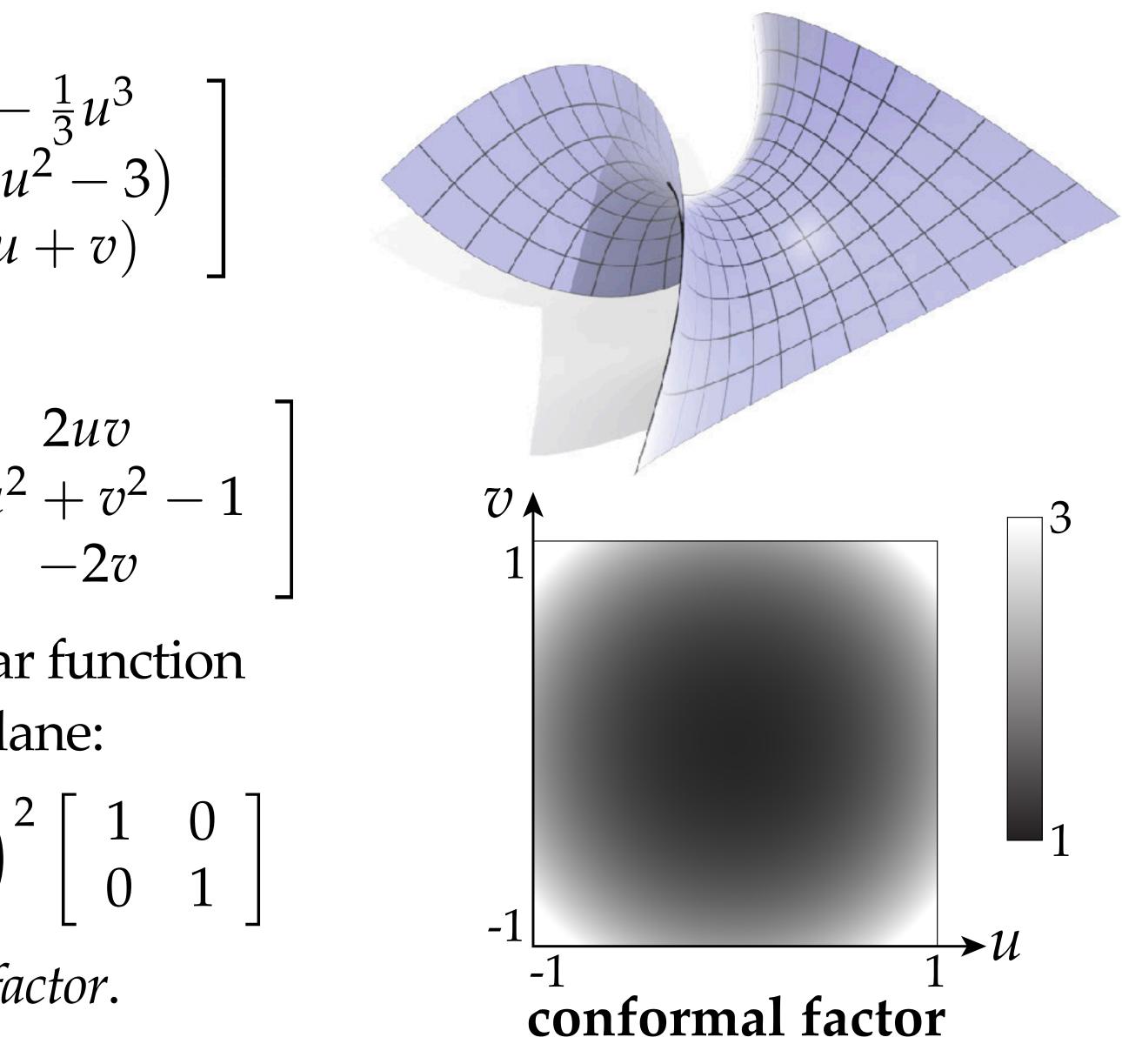
Its Jacobian matrix is

$$J_f = \begin{bmatrix} -u^2 + v^2 + 1 \\ -2uv & -u^2 \\ 2u \end{bmatrix}$$

Its metric then works out to be just a scalar function times the usual metric of the Euclidean plane:

$$\mathbf{I} = J_f^T J_f = \left(u^2 + v^2 + 1\right)^2$$

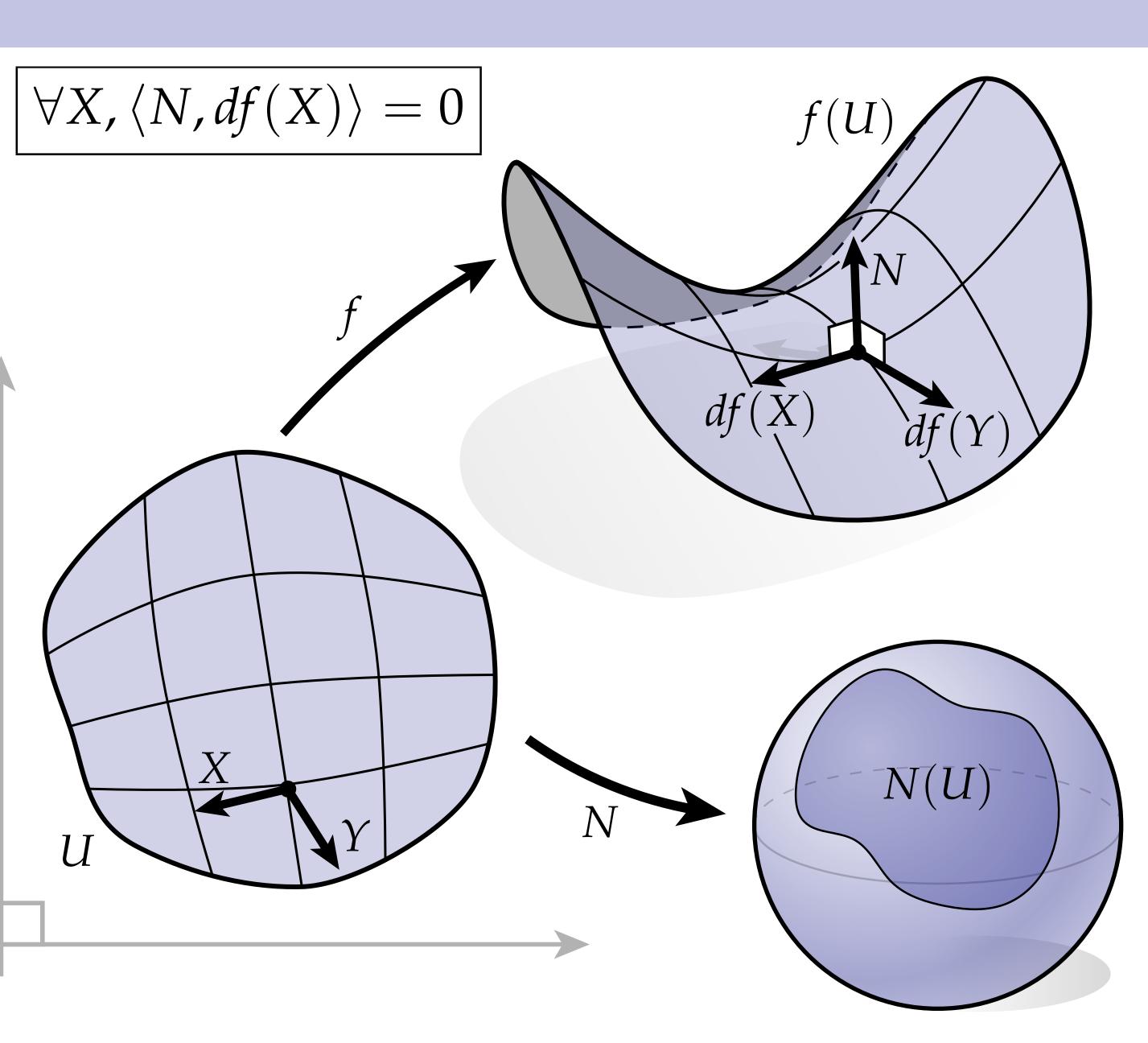
This function is called the *conformal scale factor*.



Gauss Map

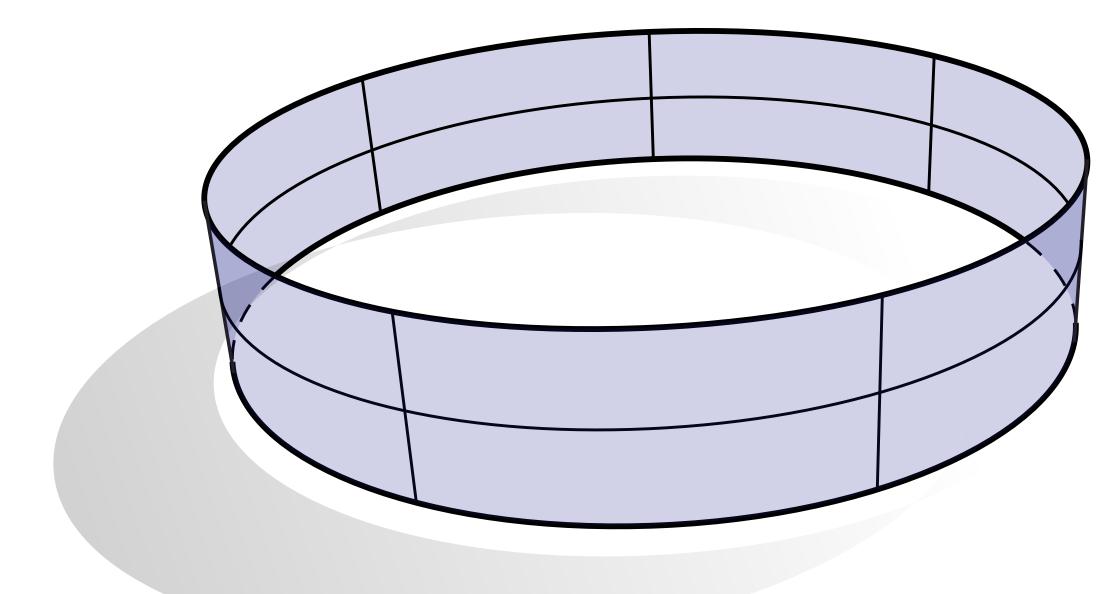
Gauss Map

- A vector is **normal** to a surface if it is orthogonal to all tangent vectors
- **Q**: Is there a *unique* normal at a given point?
- A: No! Can have different magnitudes/directions.
- The Gauss map is a *continuous* map taking each point on the surface to a *unit* normal vector
- Can visualize Gauss map as a map from the surface to the unit sphere

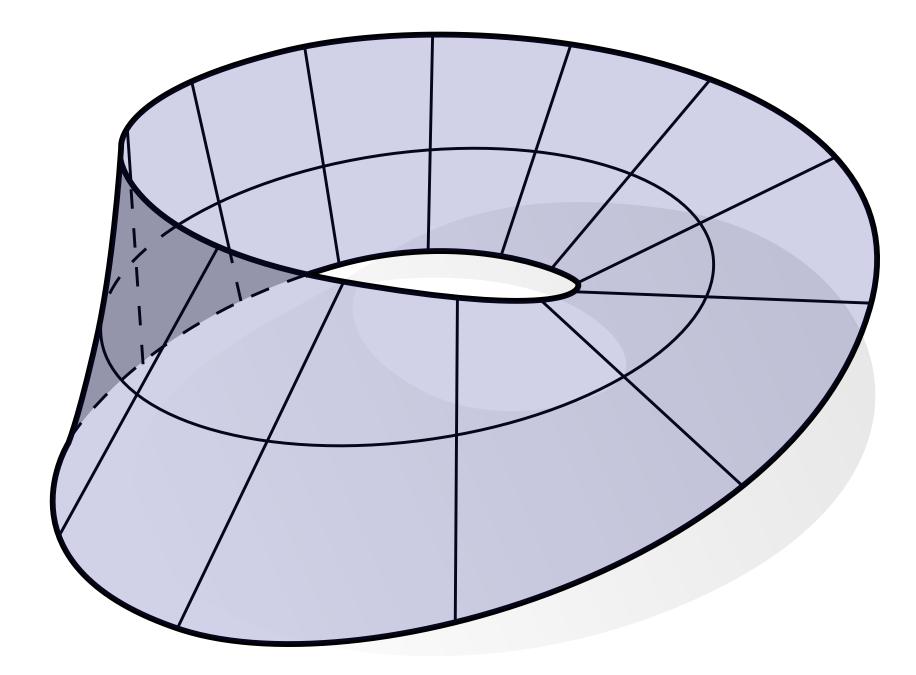


Orientability

Not every surface admits a Gauss map (globally):



orientable



nonorientable

Gauss Map—Example

Can obtain unit normal by taking the cross product of two tangents*:

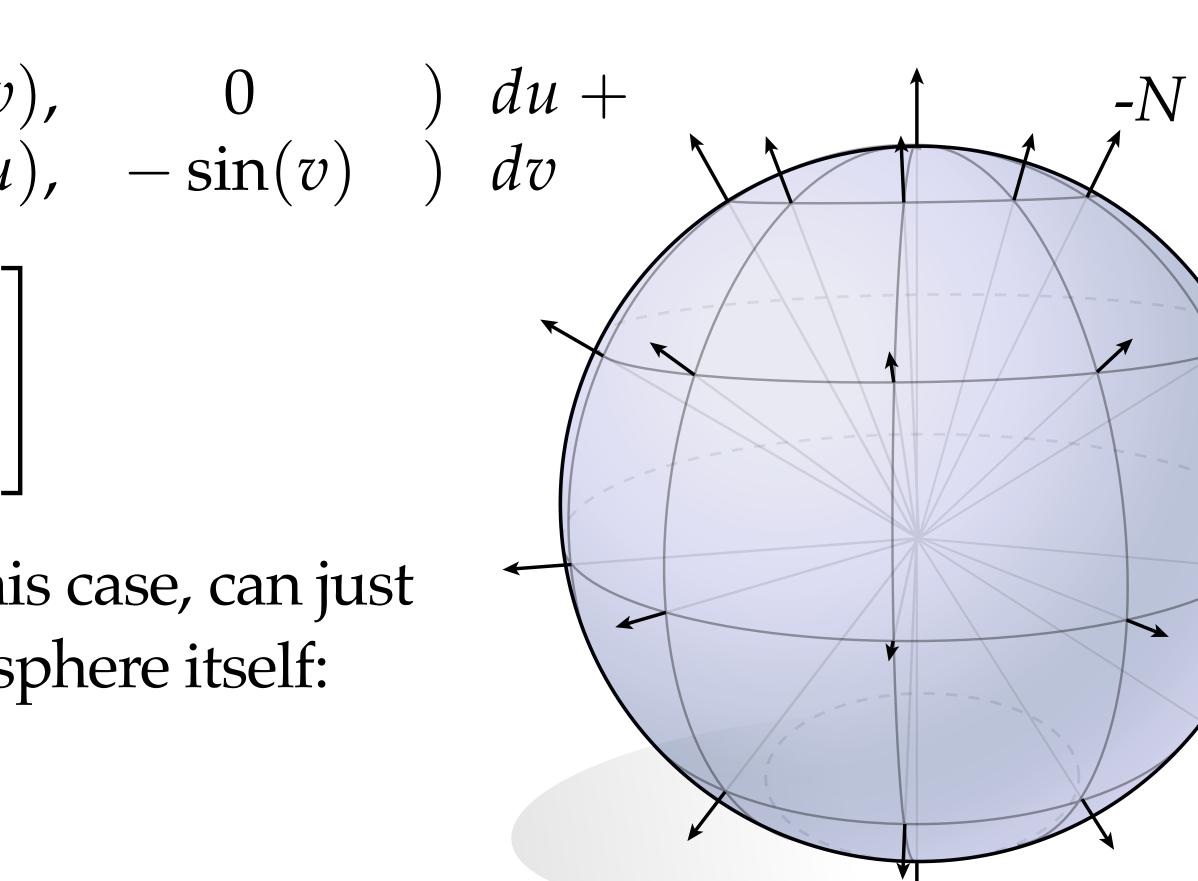
- $f := (\cos(u)\sin(v), \sin(u)\sin(v), \cos(v))$
- $df = \begin{pmatrix} -\sin(u)\sin(v), & \cos(u)\sin(v), & 0 \\ \cos(u)\cos(v), & \cos(v)\sin(u), & -\sin(v) \end{pmatrix} du + \int dv$

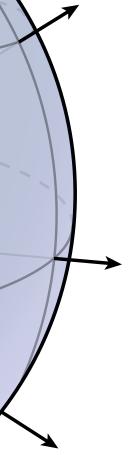
$$df(\frac{\partial}{\partial u}) \times df(\frac{\partial}{\partial v}) = \begin{bmatrix} -\cos(u)\sin^2(v) \\ -\sin(u)\sin^2(v) \\ -\cos(v)\sin(v) \end{bmatrix}$$

To get *unit* normal, divide by length. In this case, can just notice we have a constant multiple of the sphere itself:

$$\Rightarrow N = -f$$

*Must not be parallel!



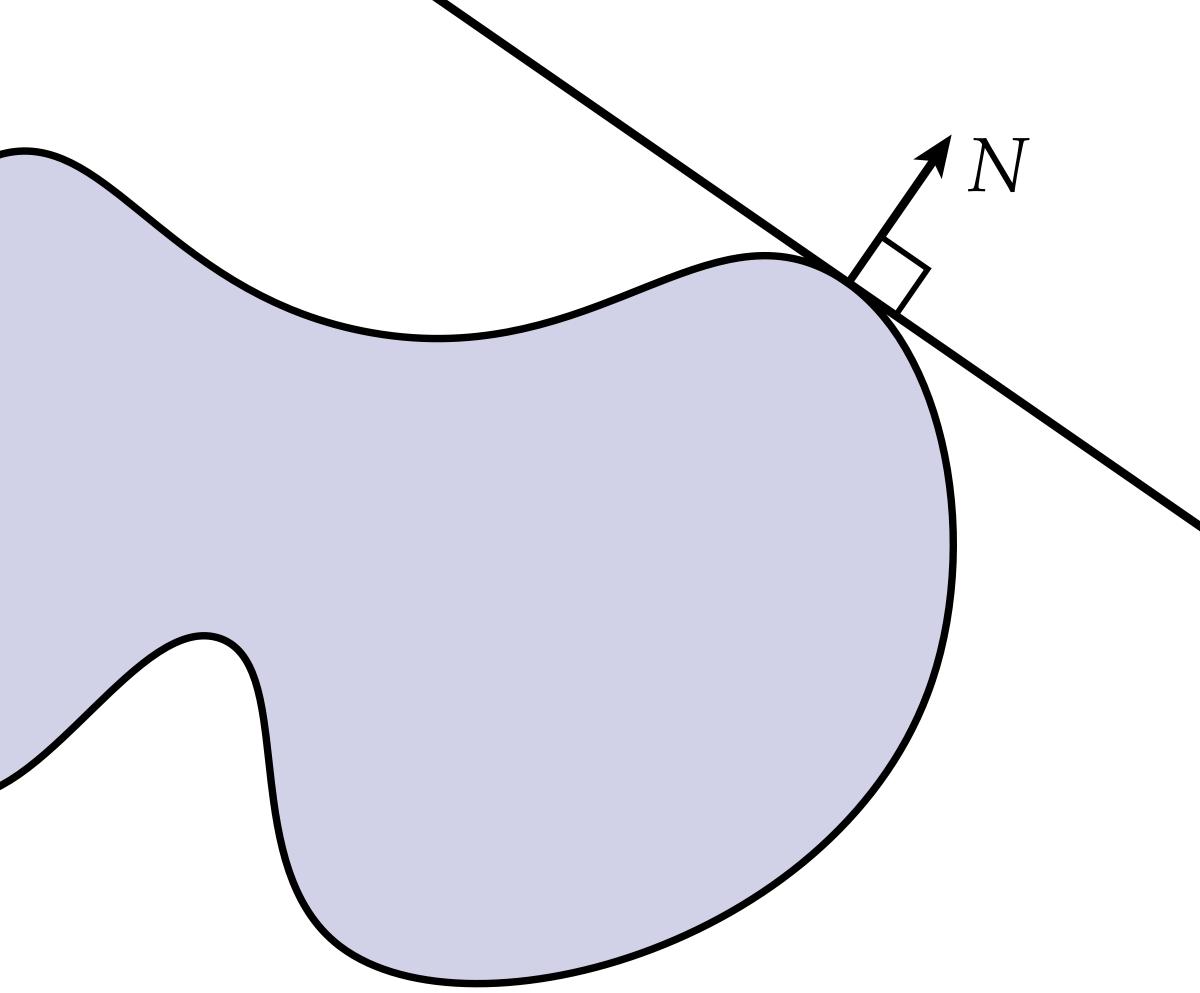


Surjectivity of Gauss Map

- has this normal? (N = u)
- Yes! **Proof** (Hilbert):

Q: Is the Gauss map *injective*?

• Given a unit vector *u*, can we always find some point on a surface that



Vector Area

- Given a little patch of surface Ω , what's the "average normal"?
- Can simply integrate normal over the patch, divide by area:

 $\frac{1}{\operatorname{area}(\Omega)}$

- Integrand *N dA* is called the **vector area**. (Vector-valued 2-form)
- Can be easily expressed via exterior calculus*:
 - $df \wedge df(X,Y) = df(X)$

2df(Z)

2Nd

 $\implies \left| \mathcal{A} = \frac{1}{2} df \wedge df \right|$

what's the "average normal"? er the patch, divide by area:

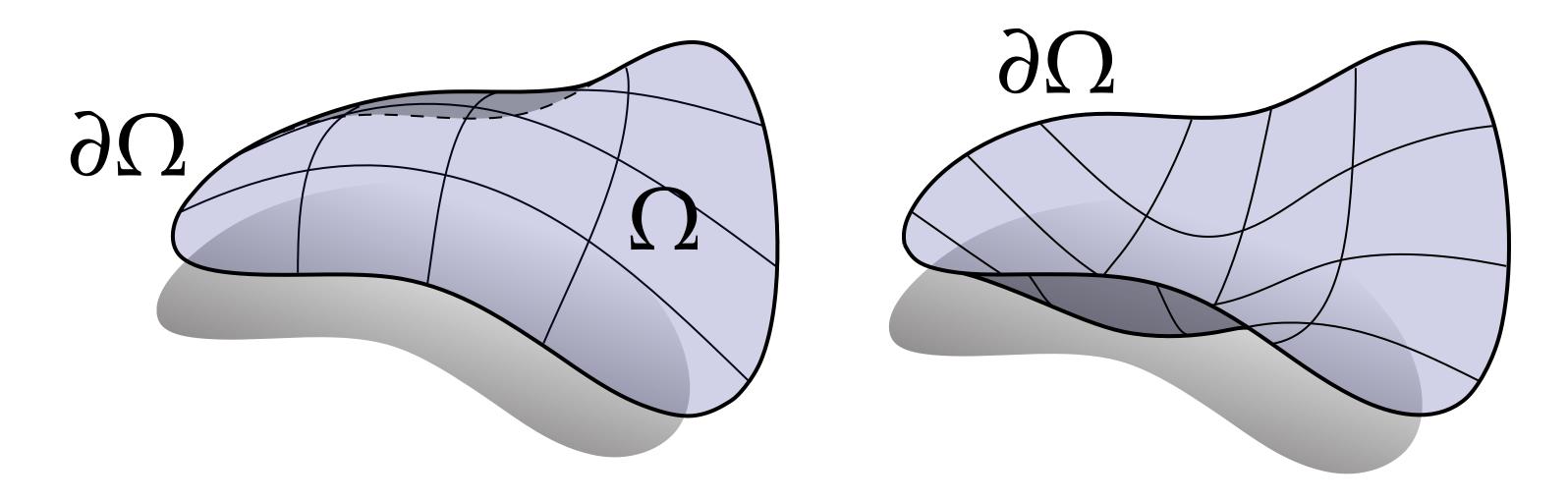
$$\overline{O}\int_{\Omega} N dA$$

or area. (Vector-valued 2-form) rior calculus*:

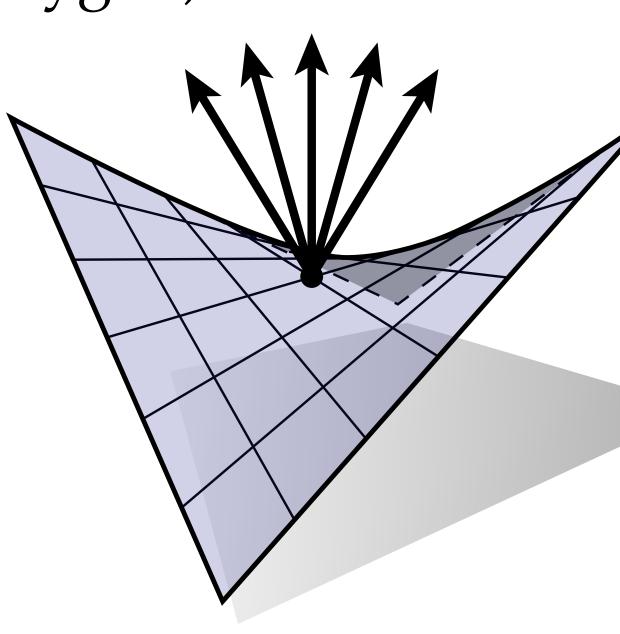
$$f(Y) \times df(Y) - df(Y) \times df(X) = X \times df(Y) = A(X,Y)$$

Vector Area, continued

- By expressing vector area this way, we make an interesting observation: $2\int_{\Omega} N \, dA = \int_{\Omega} df \wedge df = \int_{\Omega} d(f \, df)$
- Hence, vector area is the same for any two patches w/ same boundary
- Can define "normal" given **only** boundary (*e.g.*, nonplanar polygon)
- **Corollary:** *integral of normal vanishes for any closed surface*



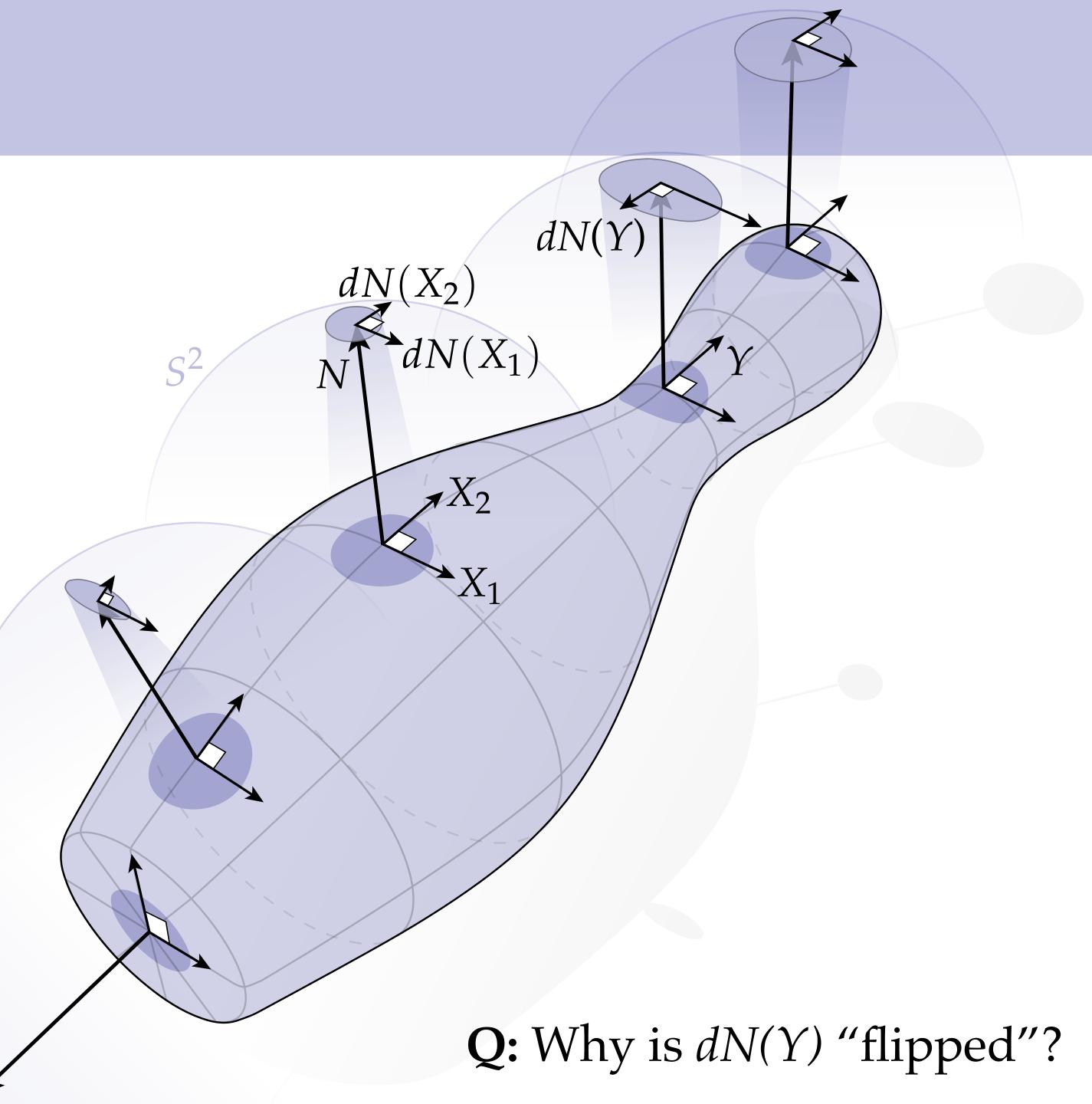
$$f(t) = \int_{\partial \Omega} f df = \int_{\partial \Omega} f(s) \times df(T(s)) ds$$



Curvature

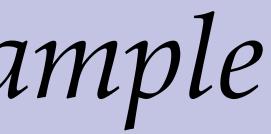
Weingarten Map

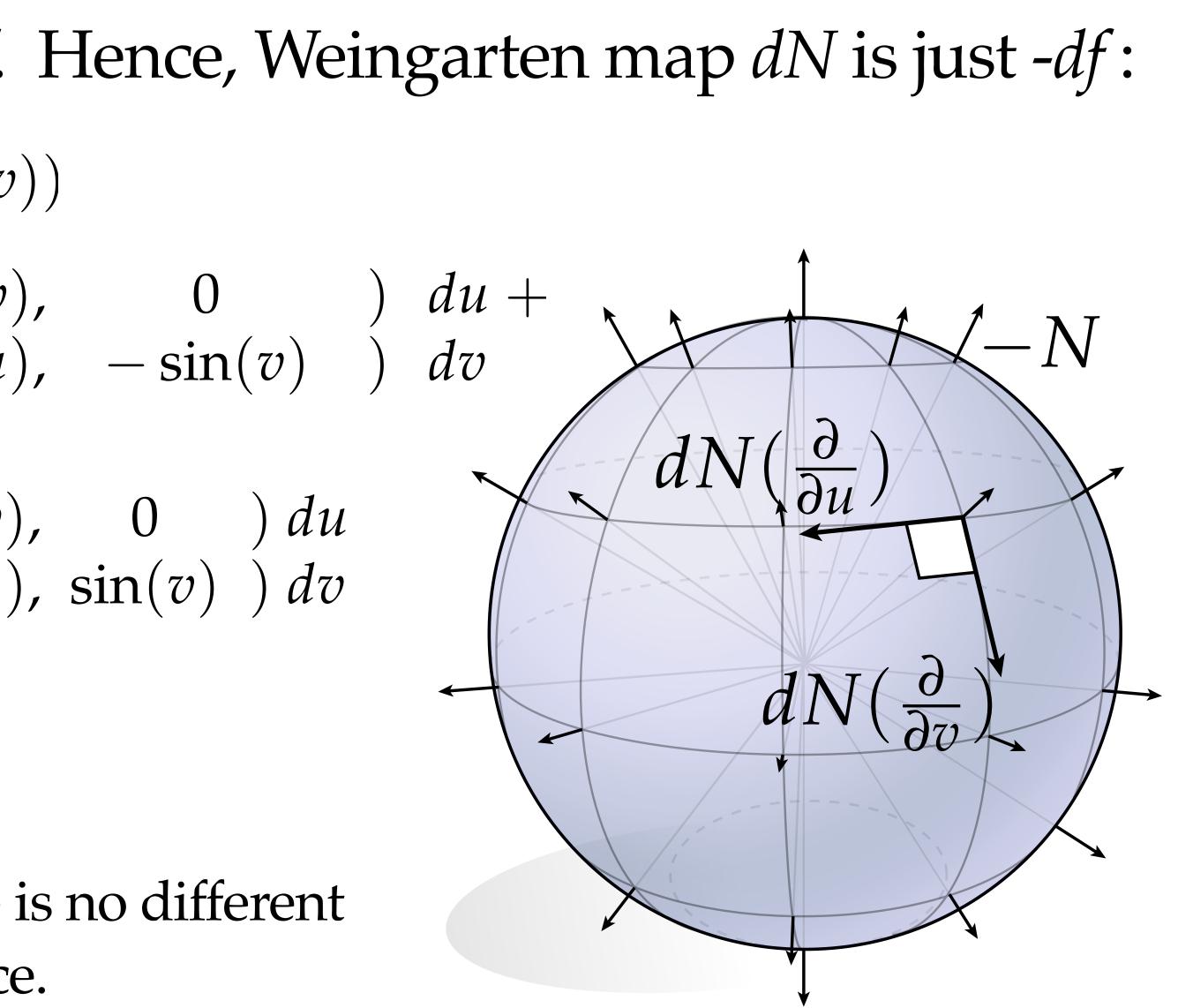
- The **Weingarten** map *dN* is the differential of the Gauss map *N*
- At each point, tells us the change in the normal vector along any given direction *X*
- Since change in *unit* normal cannot have any component in the normal direction, *dN*(*X*) is always tangent to the surface
- Can also think of it as a vector tangent to the unit sphere *S*²



- Recall that for the sphere, N = -f. Hence, Weingarten map dN is just -df: $f := (\cos(u)\sin(v), \sin(u)\sin(v), \cos(v))$
- $df = \begin{pmatrix} -\sin(u)\sin(v), & \cos(u)\sin(v), & 0 \\ \cos(u)\cos(v), & \cos(v)\sin(u), & -\sin(v) \end{pmatrix} \frac{du + u}{dv}$
- $dN = \begin{pmatrix} \sin(u)\sin(v), -\cos(u)\sin(v), 0 \end{pmatrix} du$ $(-\cos(u)\cos(v), -\cos(v)\sin(u), \sin(v) \end{pmatrix} dv$

Key idea: computing the Weingarten map is no different from computing the differential of a surface.





Normal Curvature

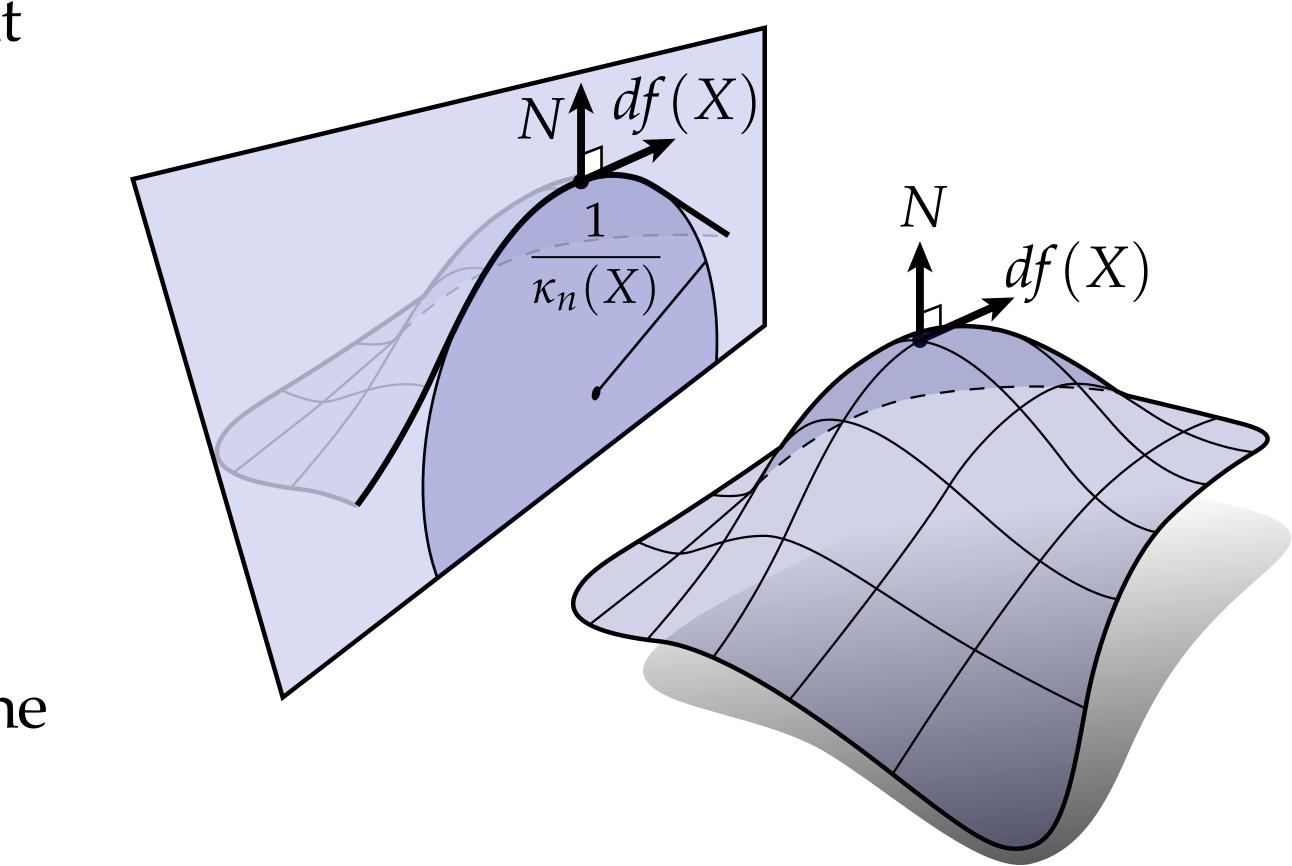
- we'll instead consider how quickly the *normal* is changing.*
- In particular, **normal curvature** is rate at which normal is bending along a given tangent direction:

$$\kappa_N(X) := \frac{\langle df(X), dN(X) \rangle}{|df(X)|^2}$$

• Equivalent to intersecting surface with normal-tangent plane and measuring the usual curvature of a plane curve

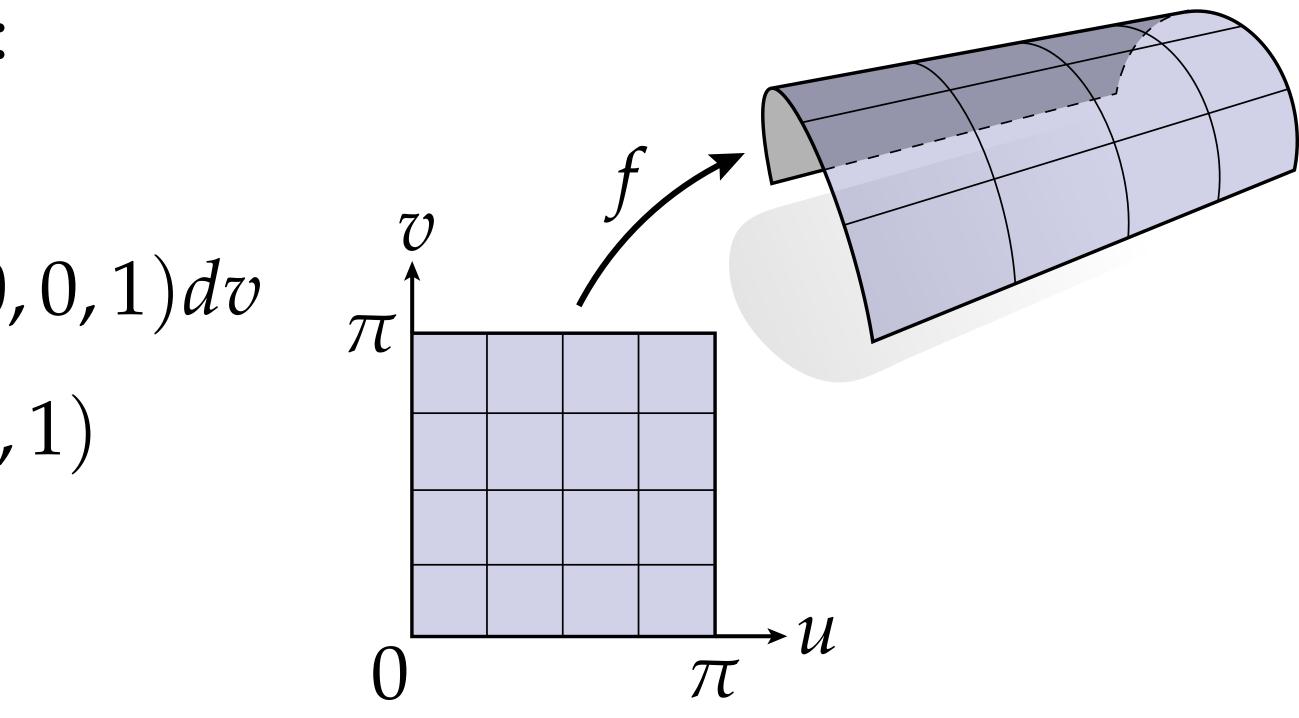
*For plane curves, what would happen if we instead considered change in *N*?

• For curves, curvature was the rate of change of the *tangent*; for immersed surfaces,



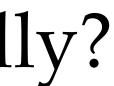
Normal Curvature—Example

Consider a parameterized cylinder: $f(u,v) := (\cos(u), \sin(u), v)$ $df = (-\sin(u), \cos(u), 0)du + (0, 0, 1)dv$ $N = (-\sin(u), \cos(u), 0) \times (0, 0, 1)$ $= (\cos(u), \sin(u), 0)$ $dN = (-\sin(u), \cos(u), 0)du$ $\kappa_N(\frac{\partial}{\partial u}) = \frac{\langle df(\frac{\partial}{\partial u}), dN(\frac{\partial}{\partial u}) \rangle}{|df(\frac{\partial}{\partial u})|^2} = \frac{(-1)}{|df(\frac{\partial}{\partial u})|^2}$ $|\mathcal{U}| \setminus \partial u |$ $\kappa_N(\frac{\partial}{\partial n}) = \cdots = 0$



$$\frac{\sin(u),\cos(u),0)\cdot(-\sin(u),\cos(u),0)}{|(-\sin(u),\cos(u),0)|^2} = 1$$

Q: Does this result make sense geometrically?

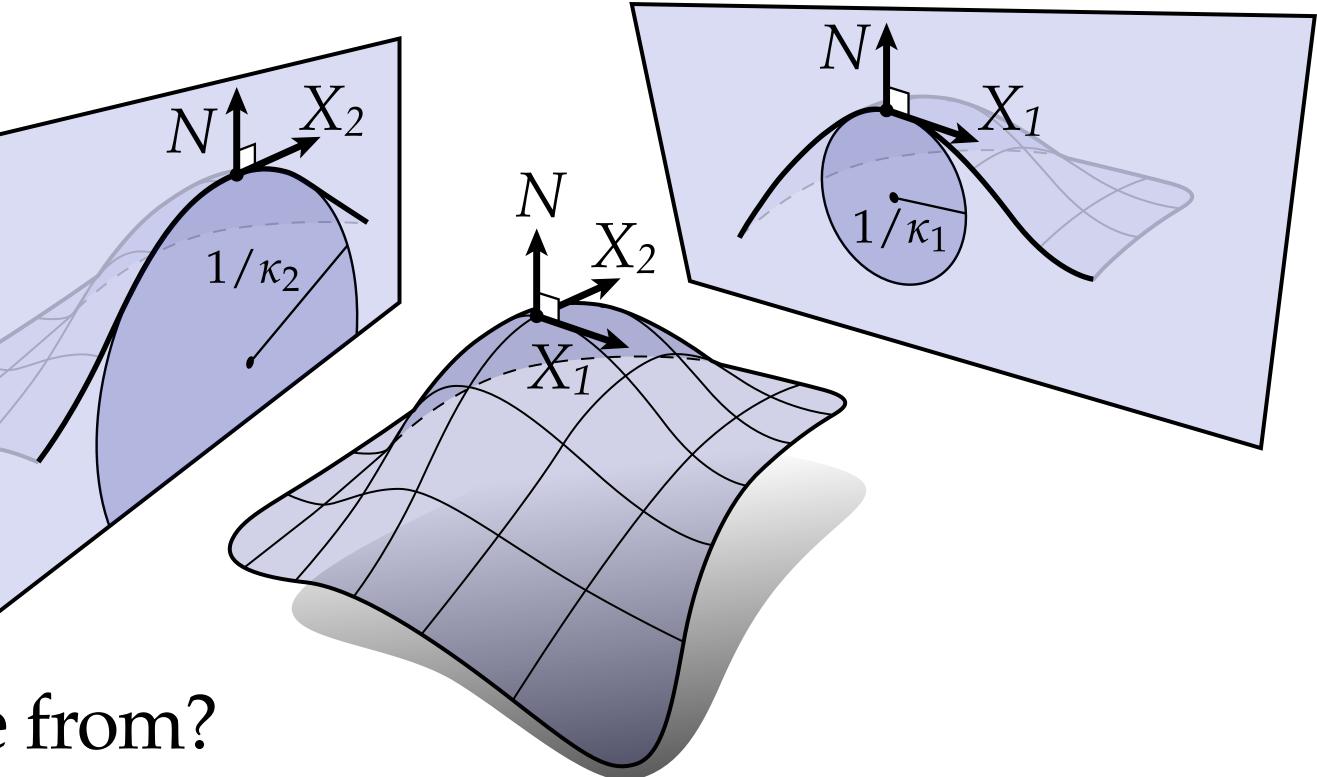


Principal Curvature

- normal curvature has minimum/maximum value (respectively)
- Corresponding normal curvatures are the principal curvatures
- Two critical facts*:
 - 1. $g(X_1, X_2) = 0$
 - 2. $dN(X_i) = \kappa_i df(X_i)$

Where do these relationships come from?

• Among all directions X, there are two **principal directions** X₁, X₂ where



Shape Operator

- The change in the normal N is always *tangent* to the surface
- Must therefore be some linear map *S* from tangent vectors to tangent vectors, called the **shape operator**, such that

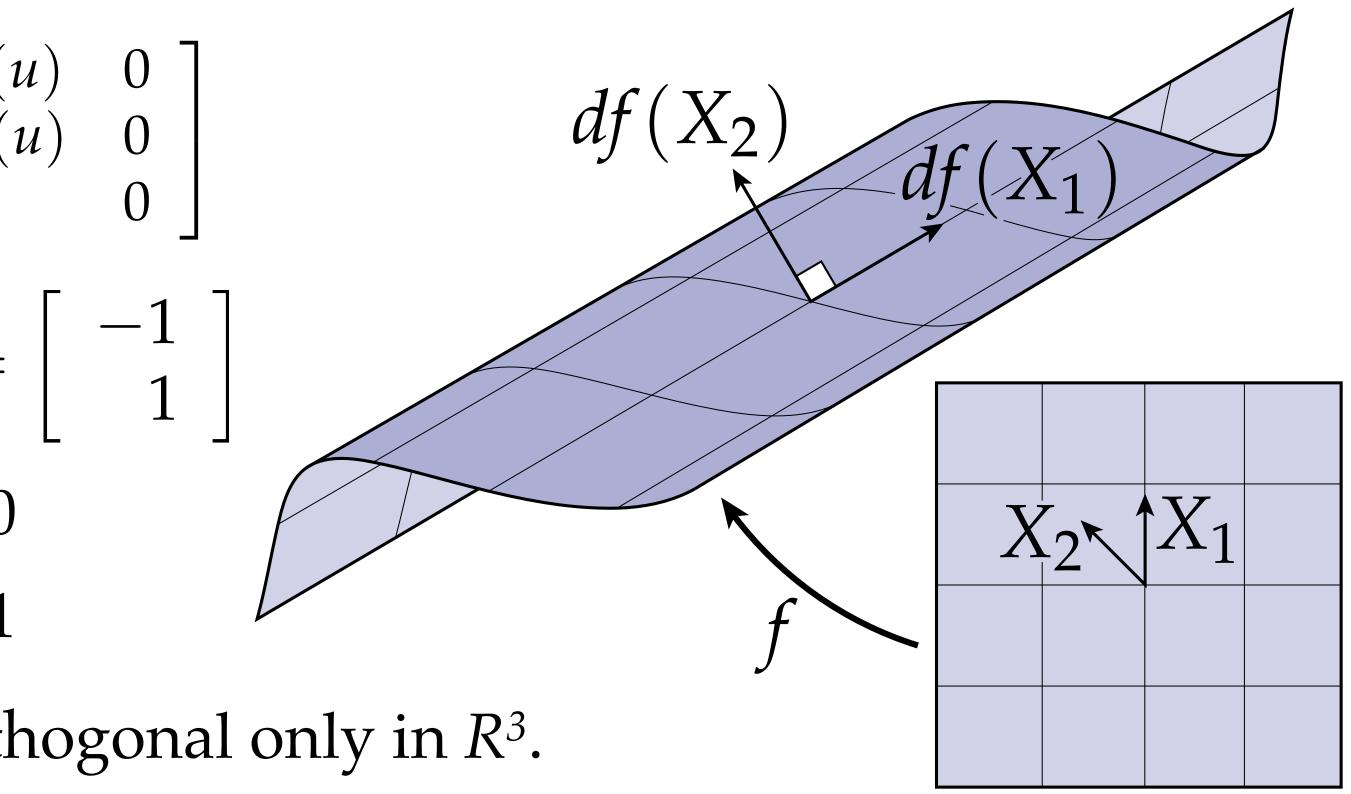
- Principal directions are the *eigenvectors* of S
- Principal curvatures are *eigenvalues* of S
- Note: *S* is not a symmetric matrix! Hence, eigenvectors are not orthogonal in R²; only orthogonal with respect to induced metric g.

df(SX) = dN(X)

Shape Operator — Example

Consider a nonstandard parameterization of the cylinder (*sheared* along z): $N = (\cos(u), \sin(u), 0)$ $df \circ S = dN$ $\begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 0 & 0 \end{bmatrix}$ $\Rightarrow S = \begin{vmatrix} 1 & 0 \\ -1 & 0 \end{vmatrix} \quad \begin{array}{c} X_1 = \begin{bmatrix} 0 \\ 1 \end{vmatrix} \quad \begin{array}{c} X_2 = \begin{bmatrix} -1 \\ 1 \end{vmatrix} \\ \end{array}$ $df(X_1) = (0, 0, 1)$ $\kappa_1 = 0$ $df(X_2) = (\sin(u), -\cos(u), 0)$ $\kappa_2 = 1$ **Key observation:** principal directions orthogonal only in *R*³.

$f(u,v) := (\cos(u), \sin(u), u + v) \qquad df = (-\sin(u), \cos(u), 1)du + (0, 0, 1)dv$ $dN = (-\sin(u), \cos(u), 0)du$



Umbilic Points

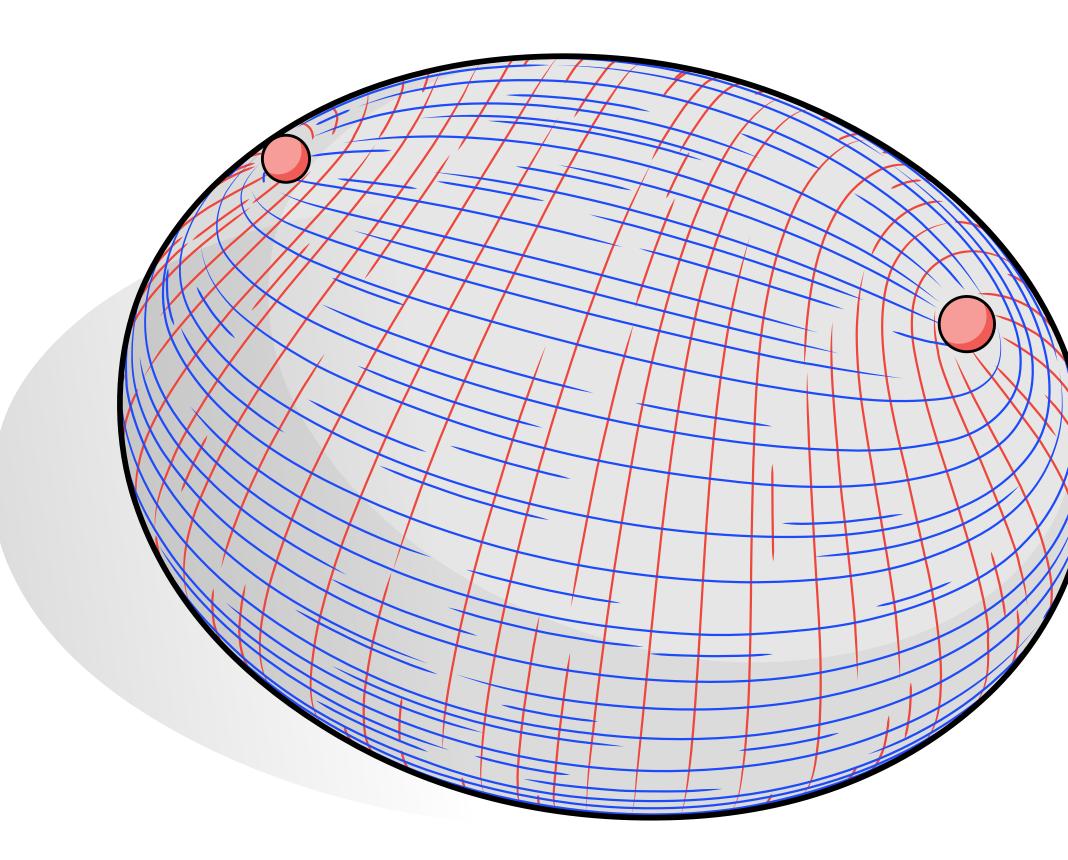
- Points where principal curvatures are equal are called **umbilic points**
- Principal *directions* are not uniquely determined here
- What happens to the shape operator *S*?
 - May still have full rank!
 - Just have repeated eigenvalues, 2-dim. eigenspace

Could still of course choose (arbitrarily) an orthonormal pair X_1 , X_2 ...

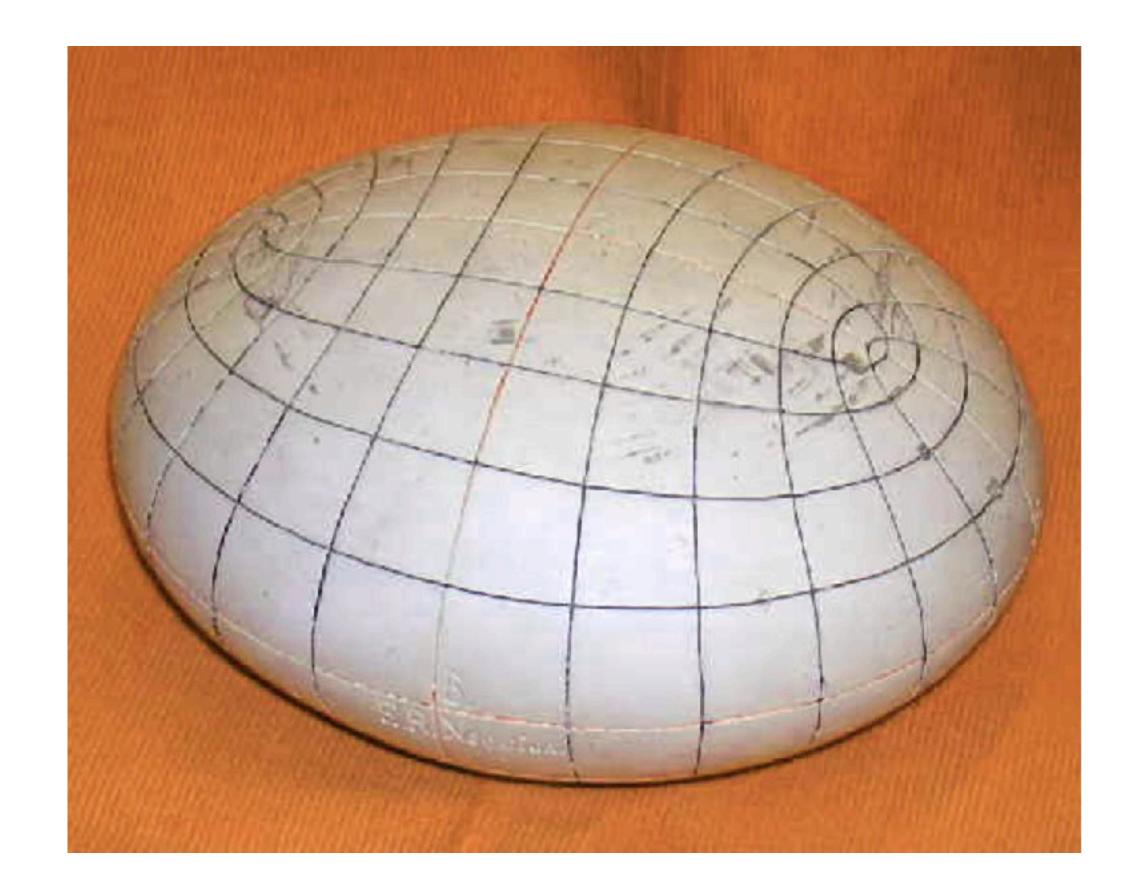
- $=\kappa_2=\frac{1}{4}$ $\forall X, SX = \frac{1}{r}X$

Principal Curvature Nets

- Collection of all such lines is called the **principal curvature network**

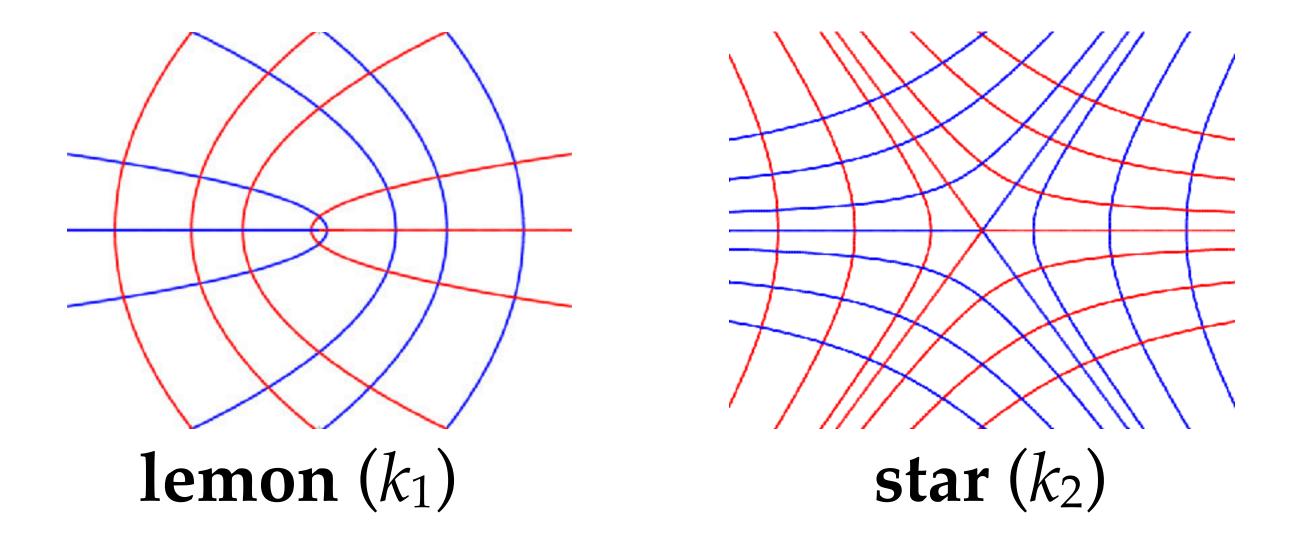


• Walking along principal direction field yields principal curvature lines



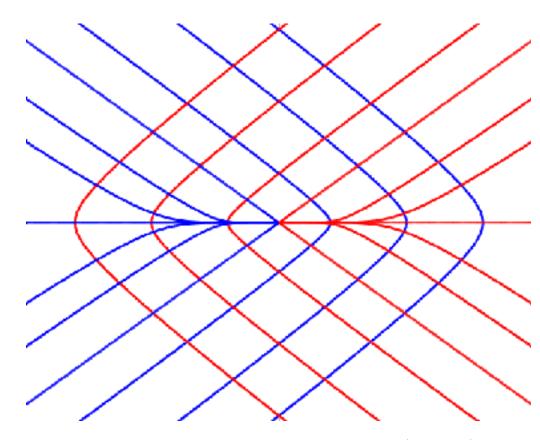
Topological Invariance of Umbilic Count

Can classify regions around umbilics into three types based on behavior of principal network: *lemon, star,* and *monstar*

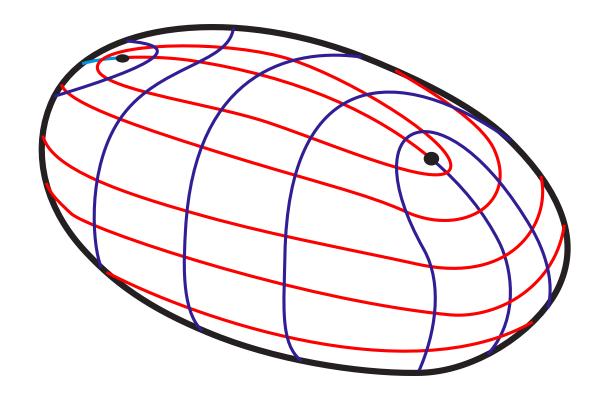


Fact. If *k*₁, *k*₂, *k*₃ are number of umbilics of each type, then

$$\kappa_1 - \kappa_2 + \kappa_3 =$$

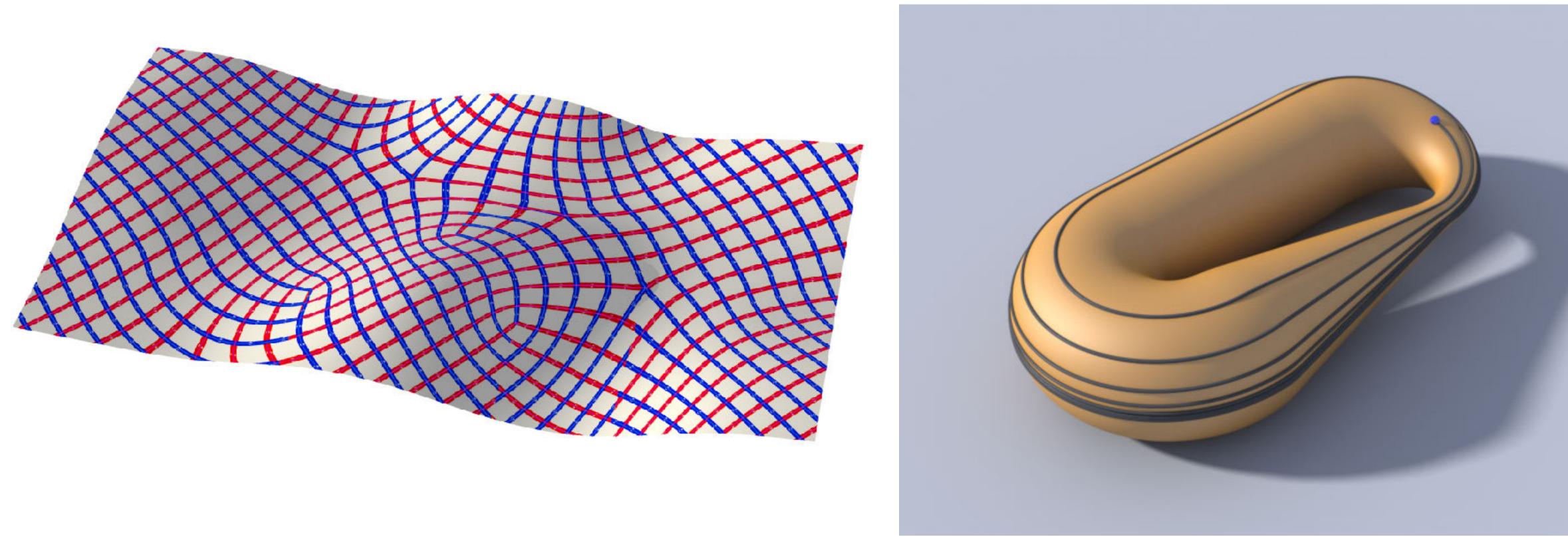


monstar (k_3)



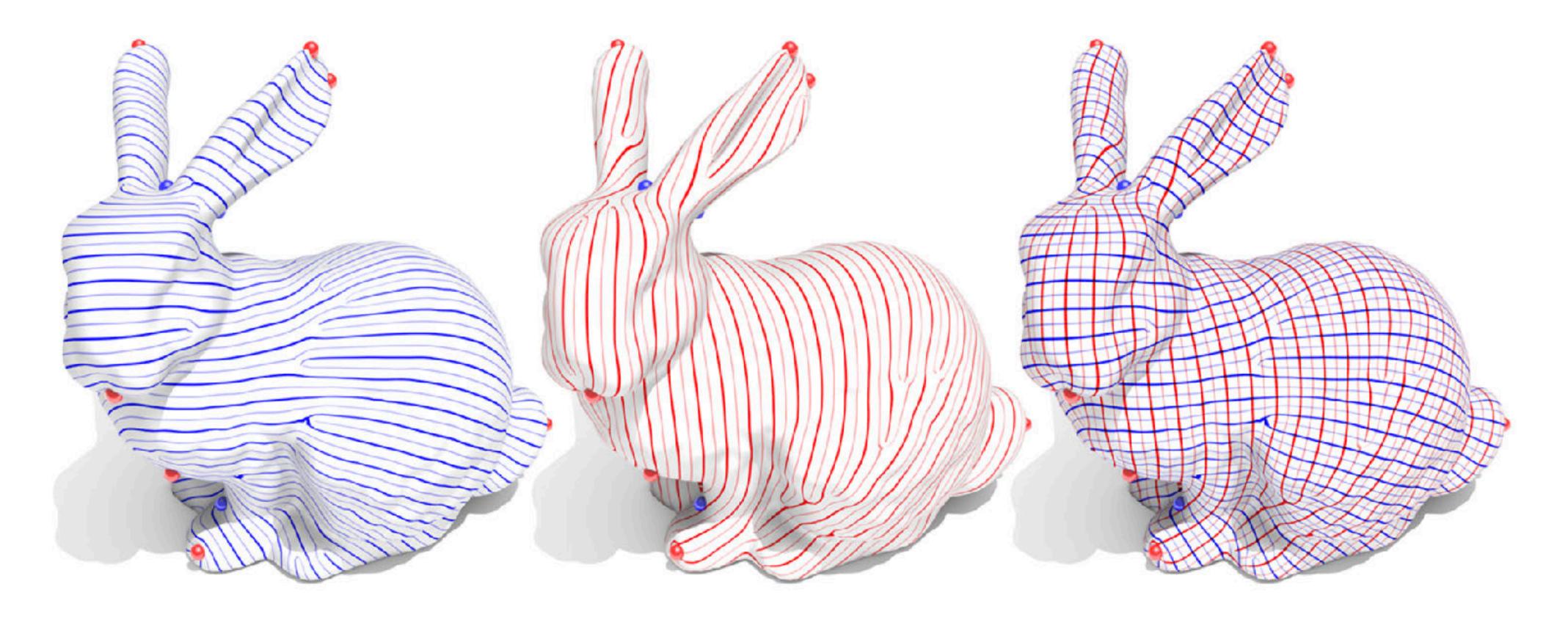
Separatrices and Spirals

- If we walk along a principal curvature line, where do we end up?
- Sometimes, a curvature line terminates at an umbilic point in both directions; these socalled **separatrices** (can) split network into regular patches.
- Other times, we make a closed loop. More often, however, behavior is *not* so nice!



Application – Quad Remeshing

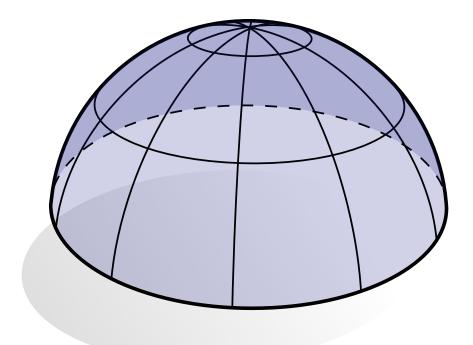
• Recent approach to meshing: construct net roughly aligned with principal curvature—but with separatrices & loops, not spirals.

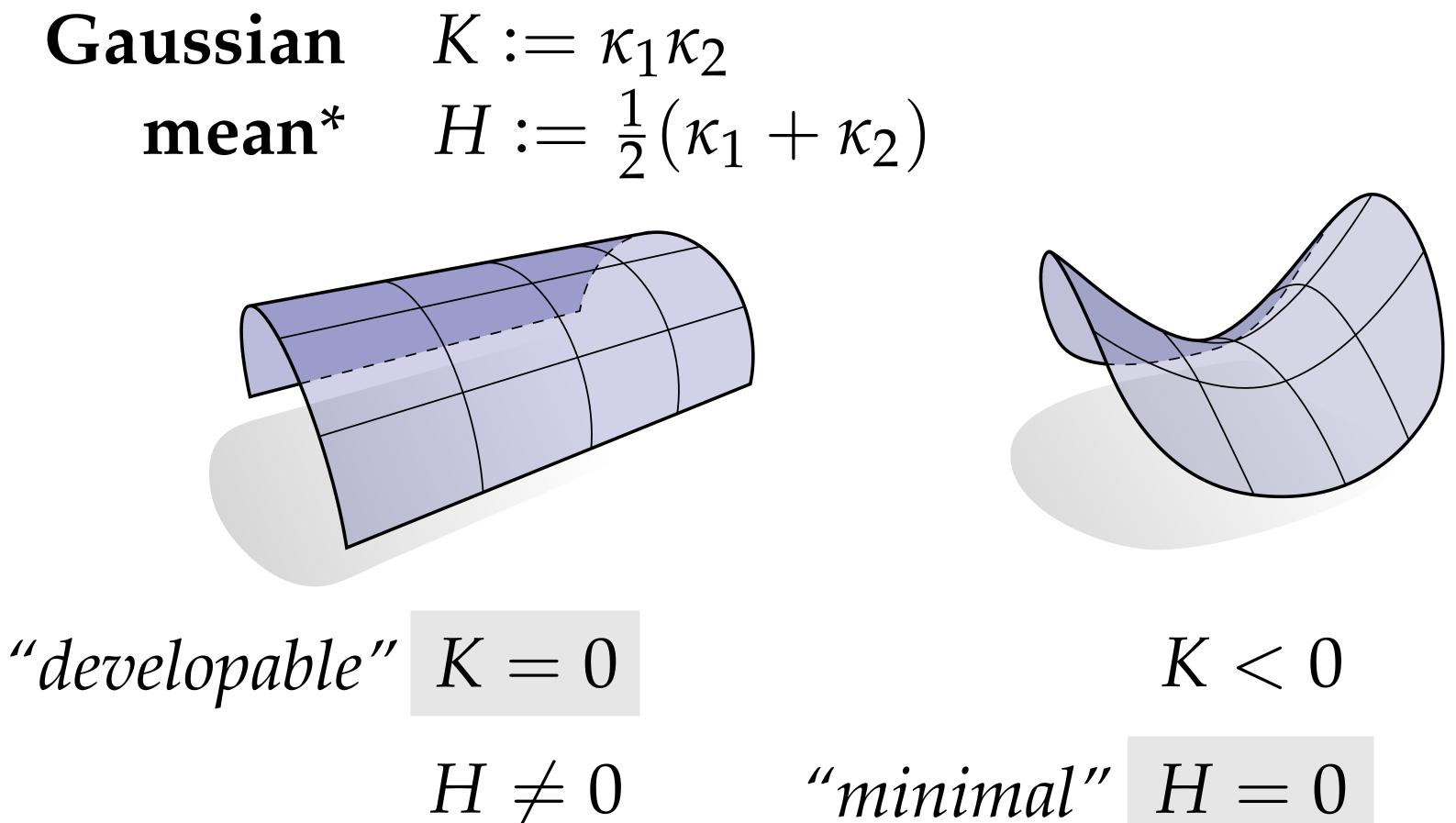


from Knöppel, Crane, Pinkall, Schröder, "Stripe Patterns on Surfaces"

Gaussian and Mean Curvature

Gaussian and mean curvature also fully describe local bending:





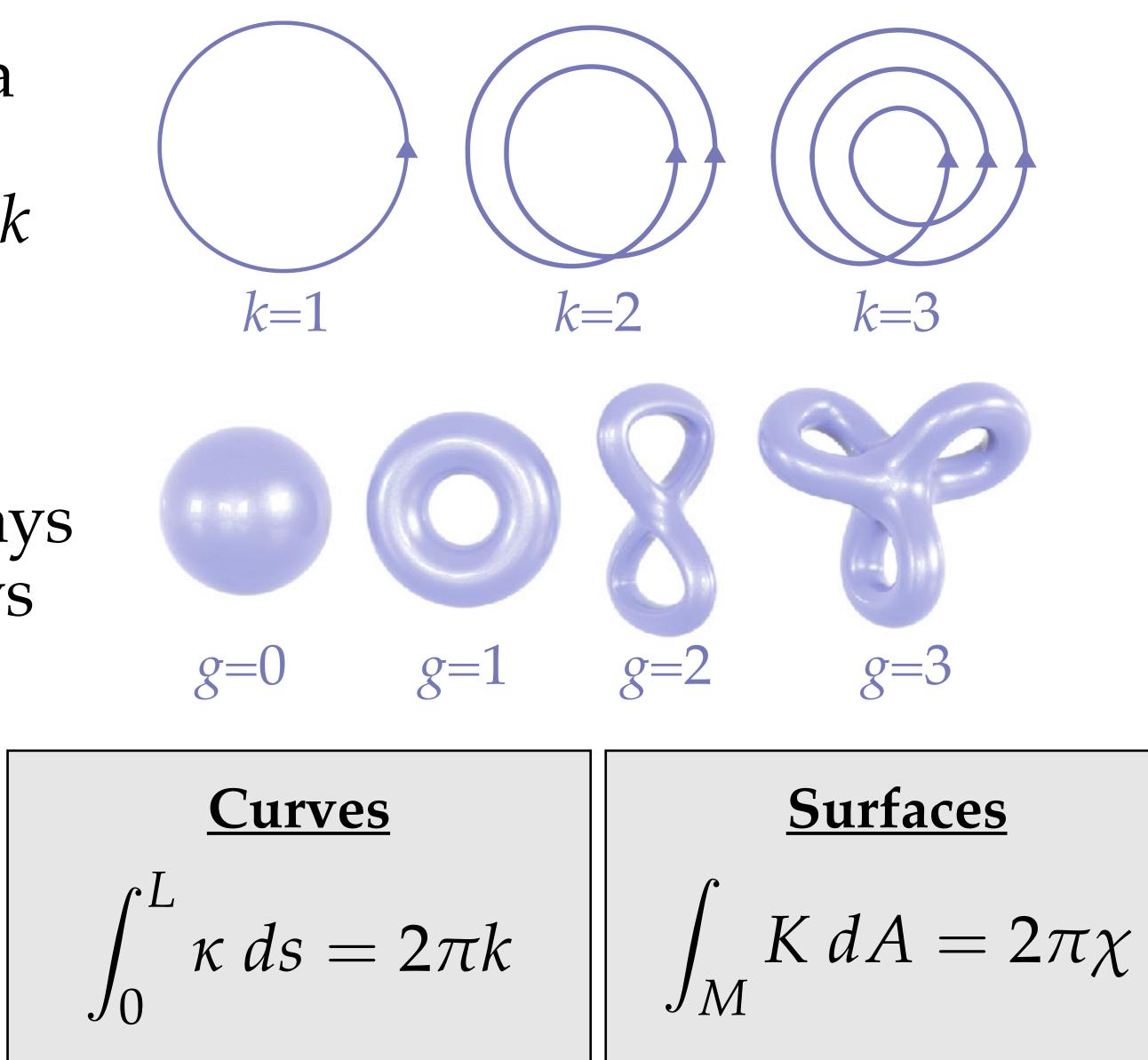
 $H \neq 0$

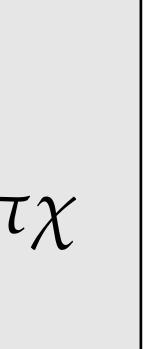
K > 0

*Warning: another common convention is to omit the factor of 1/2

Gauss-Bonnet Theorem

- Recall that the total curvature of a closed plane curve was always equal to 2π times turning number k
- Q: Can we make an analogous statement about surfaces?
- A: Yes! Gauss-Bonnet theorem says total Gaussian curvature is always 2π times *Euler* characteristic χ
- Euler characteristic can be expressed in terms of the genus (number of "handles")



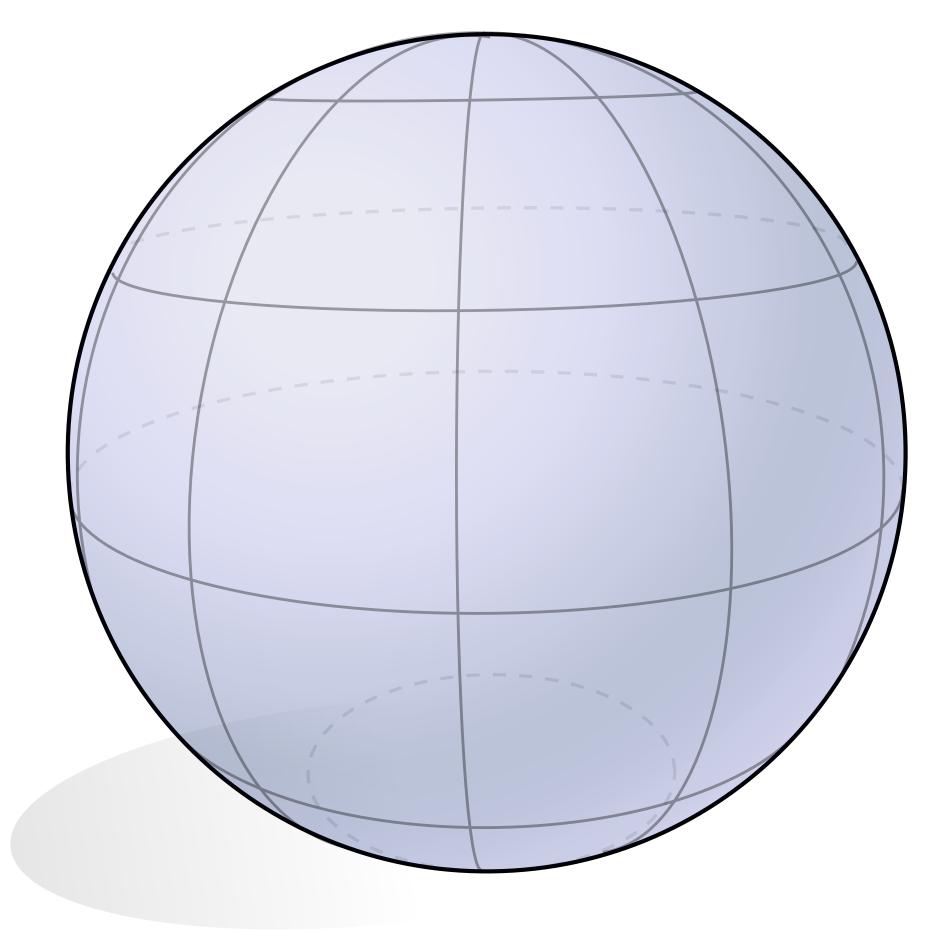


Total Mean Curvature?

Theorem (Minkowski): for a regular closed embedded surface,

 $\int_{M} H \, dA \ge \sqrt{4\pi A}$

Q: When do we get equality? A: For a sphere.

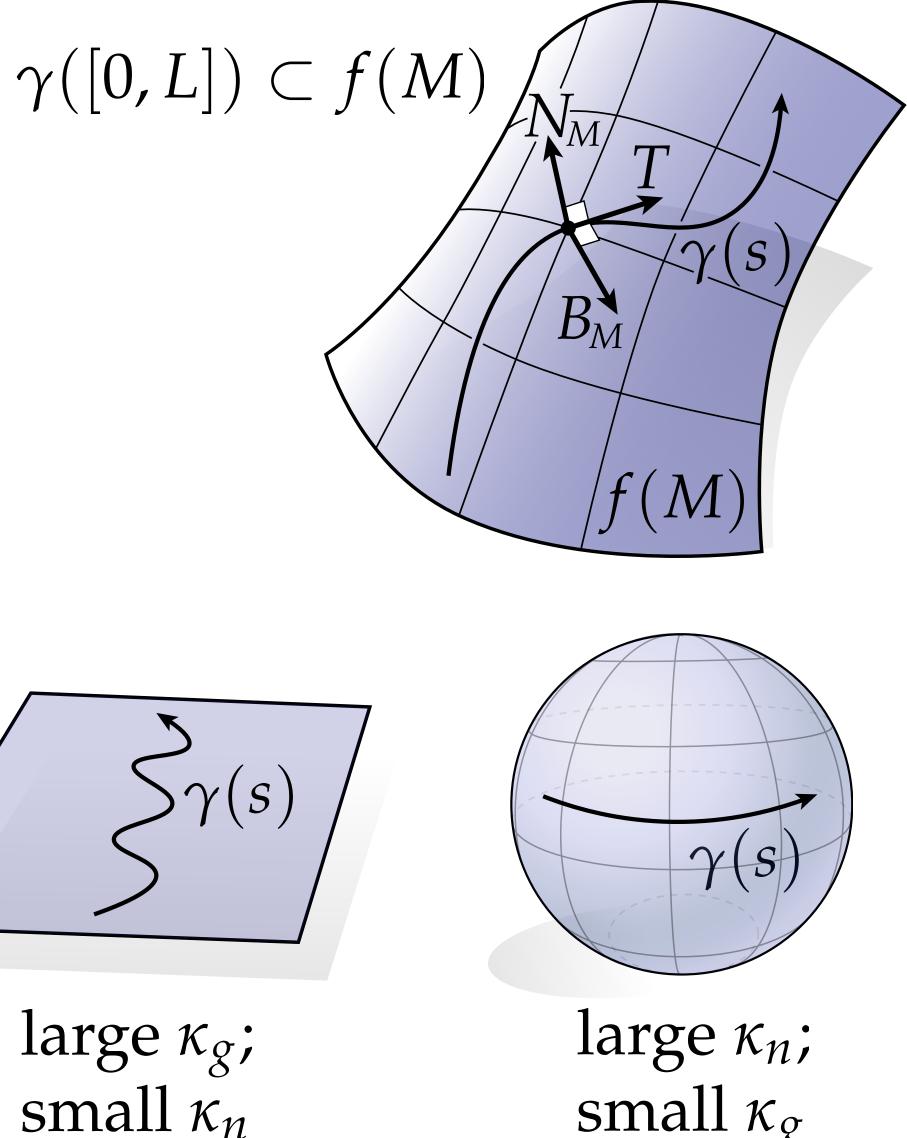


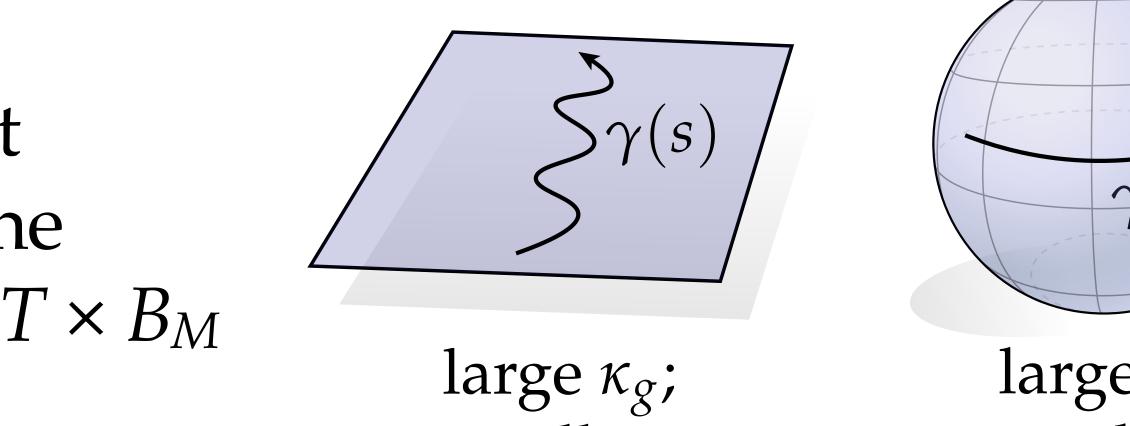
Curvature of a Curve in a Surface

- Earlier, broke the "bending" of a space curve into curvature (κ) and torsion (τ)
- For a curve *in a surface*, can instead break into *normal* and *geodesic* curvature:

$$\kappa_n := \langle N_M, \frac{d}{ds}T \rangle$$
$$\kappa_g := \langle B_M, \frac{d}{ds}T \rangle$$

- *T* is still tangent of the curve; but unlike the Frenet frame, N_M is the normal of the surface and $B_M := T \times B_M$
- **Q**: Why no third curvature $\langle T_M, \frac{d}{ds}T \rangle$?

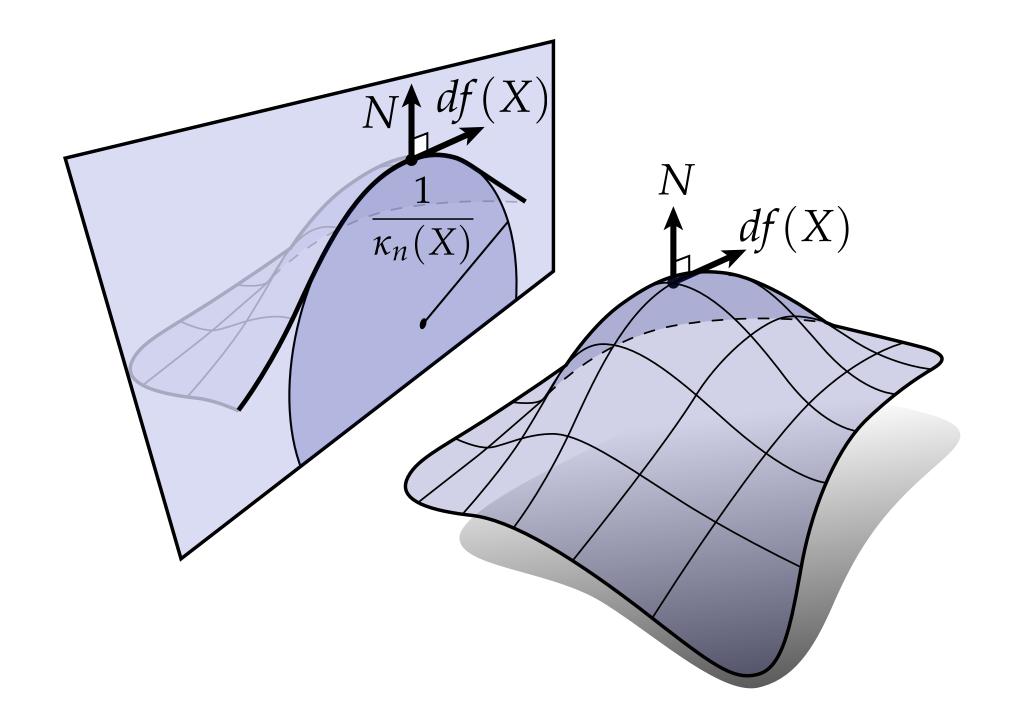




small κ_g

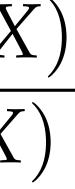
Second Fundamental Form

- Second fundamental form is closely related to principal curvature
- Can also be viewed as change in first fundamental form under motion in normal direction
- Why "fundamental?" First & second fundamental forms play role in important theorem...



$\mathbf{II}(X,Y) := \langle dN(X), df(Y) \rangle$

 $\kappa_N(X) := \frac{df(X), dN(X)}{|df(X)|^2} = \frac{\mathbf{II}(X, X)}{\mathbf{I}(X, X)}$



Fundamental Theorem of Surfaces

- Fact. Two surfaces in R³ are congruent if and only if they have the same first and second fundamental forms
 - ...However, not every pair of bilinear forms I, II on a domain U describes a valid surface—must satisfy the Gauss Codazzi equations
- Analogous to fundamental theorem of plane curves: determined up to rigid motion by curvature
 - ...However, for *closed* curves not every curvature function is valid (*e.g.*, must integrate to $2k\pi$)

Other Descriptions of Surfaces?

• Classic question in differential geometry:

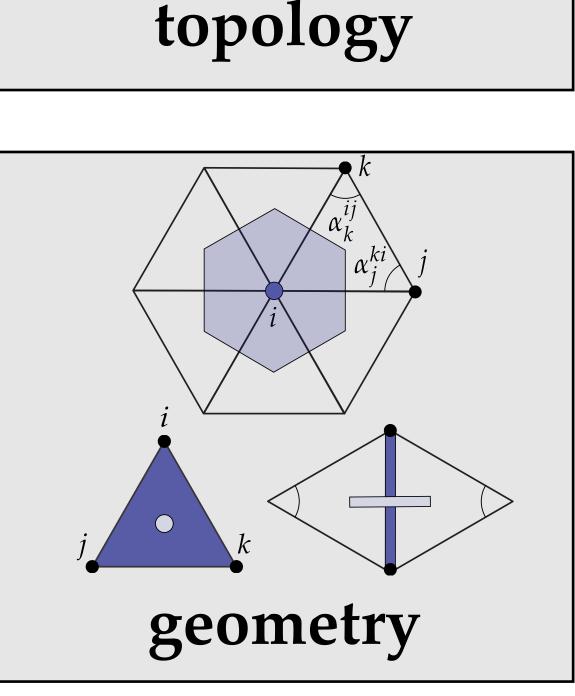
"What data is sufficient to completely determine a surface in space?"

- Many possibilities...
 - First & second fundamental form (Gauss-Codazzi)
 - Mean curvature and metric (up to "Bonnet pairs")
 - Convex surfaces: metric alone is enough (Alexandrov / Pogorolev)
 - Gauss curvature essentially determines metric (Kazdan-Warner)
- ...in general, still a surprisingly murky question!

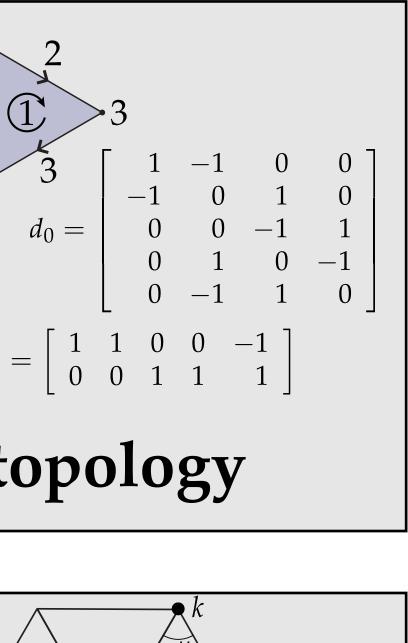
Exterior Calculus on Immersed Surfaces

Exterior Calculus on Curved Domains

- Initial study of differential forms was in **flat** Euclidean Rⁿ • How do we do exterior calculus on **curved** spaces? • Recall that operators nicely "split up" topology & geometry: • (topology) wedge product (^), exterior derivative (*d*)
- - (geometry) Hodge star (★)
- For instance, discrete *d* uses only mesh connectivity (topology); discrete **★** involves only ratios of volumes (geometry)
- Therefore, to get exterior calculus to work with curved spaces, we just need to figure out what the Hodge star looks like!
- Traditionally taught from abstract **intrinsic** point of view; we'll start with the concrete extrinsic picture (which fewer people know... but is more directly relevant for real applications!)

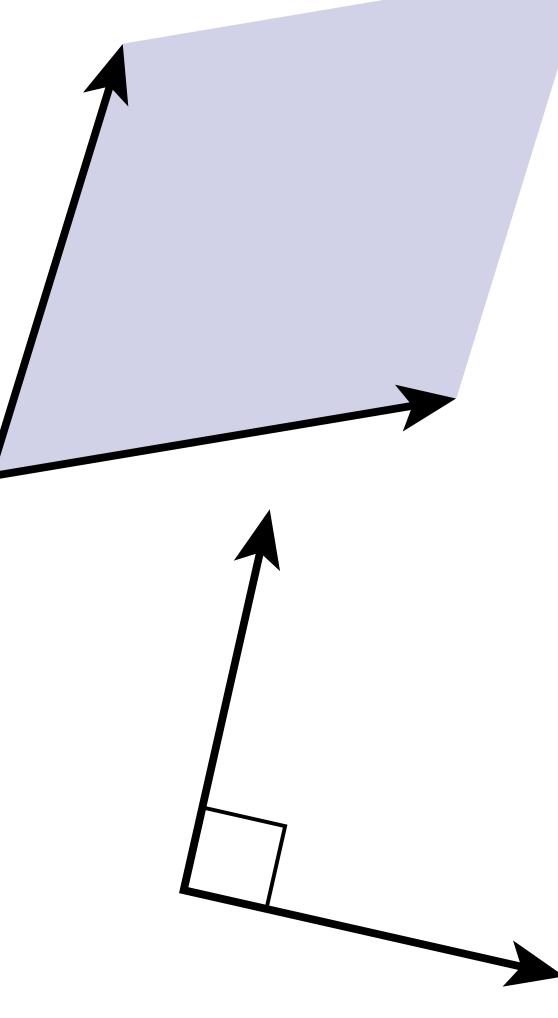


 $d_1 = \left[\begin{array}{rrrr} 1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{array} \right]$



Exterior Calculus on Immersed Surfaces

- For surface immersed in 3D, just need two pieces of data:
 - Area form—"how big is a given region?"
 - lets us define Hodge star on 0/2-forms
 - can express via cross product in R^3
 - **Complex structure**—*"how do we rotate by* 90°?"
 - lets us define Hodge star on 1-forms
 - can express via cross product w/ surface normal
- All of this data also determined by induced metric



Induced Area 2-Form

- What signed area should we associate with a pair of vectors X, Y on the domain?
- Not just their cross product! Need to account for "stretching" caused by immersion f • What's the signed area of the stretched vector? Let's start here:

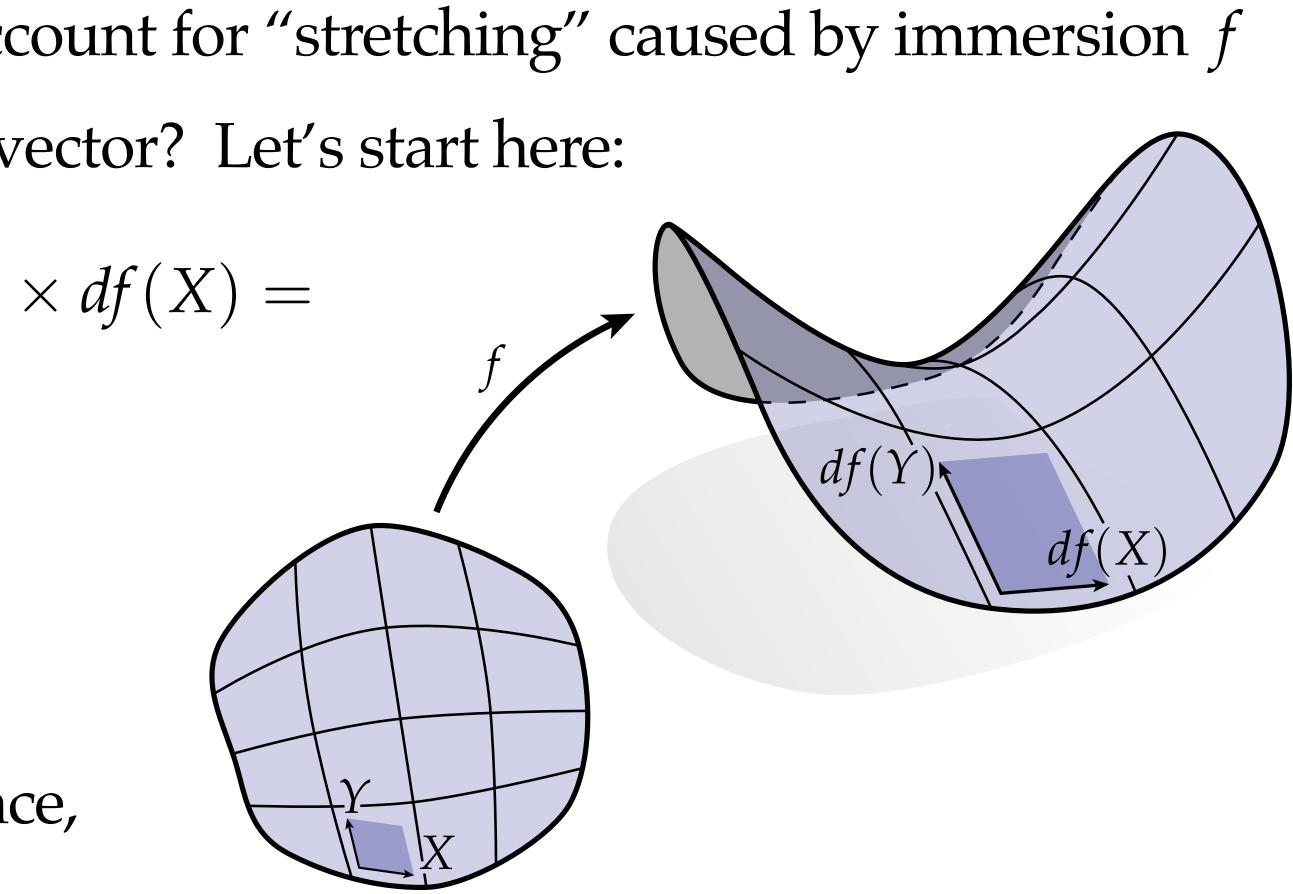
$$df \wedge df(X, Y) = df(X) \times df(Y) - df(Y)$$
$$2df(X) \times df(Y)$$

Since df(X) and df(Y) are tangent, we get

 $df \wedge df(X,Y) = 2NdA(X,Y)$

where dA is the area 2-form on f(M). Hence,

$$dA = \frac{1}{2} \langle N, df \wedge df \rangle$$



Induced Hodge Star on O-Forms

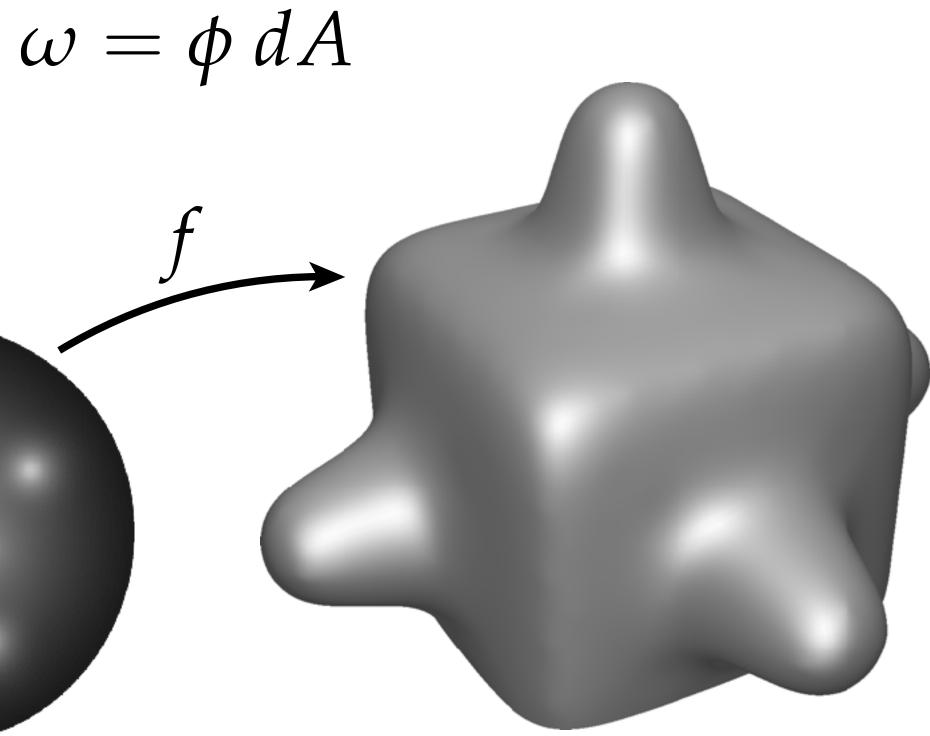
- Given the area 2-form dA, can easily define Hodge star on 0-forms: $\phi \stackrel{\star}{\longmapsto} \phi \, dA$
- Meaning? Applying this new 2-form to a unit area on the surface yields the original function value at that point.

$$dA\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right)$$

Induced Hodge Star on 2-Forms

- To get the 2-form Hodge star, we just go the other way
- Suppose ω is a 2-form on f(M). Then its Hodge dual is the unique 0-form ϕ such that

 $dA\left(\frac{\partial}{\partial u},\frac{\partial}{\partial v}\right)$ \mathcal{U} \mathcal{U}



Complex Structure

- The *complex structure** tells us how to rotate by 90°
- In R^2 , we just replace (x,y) with (-y,x):

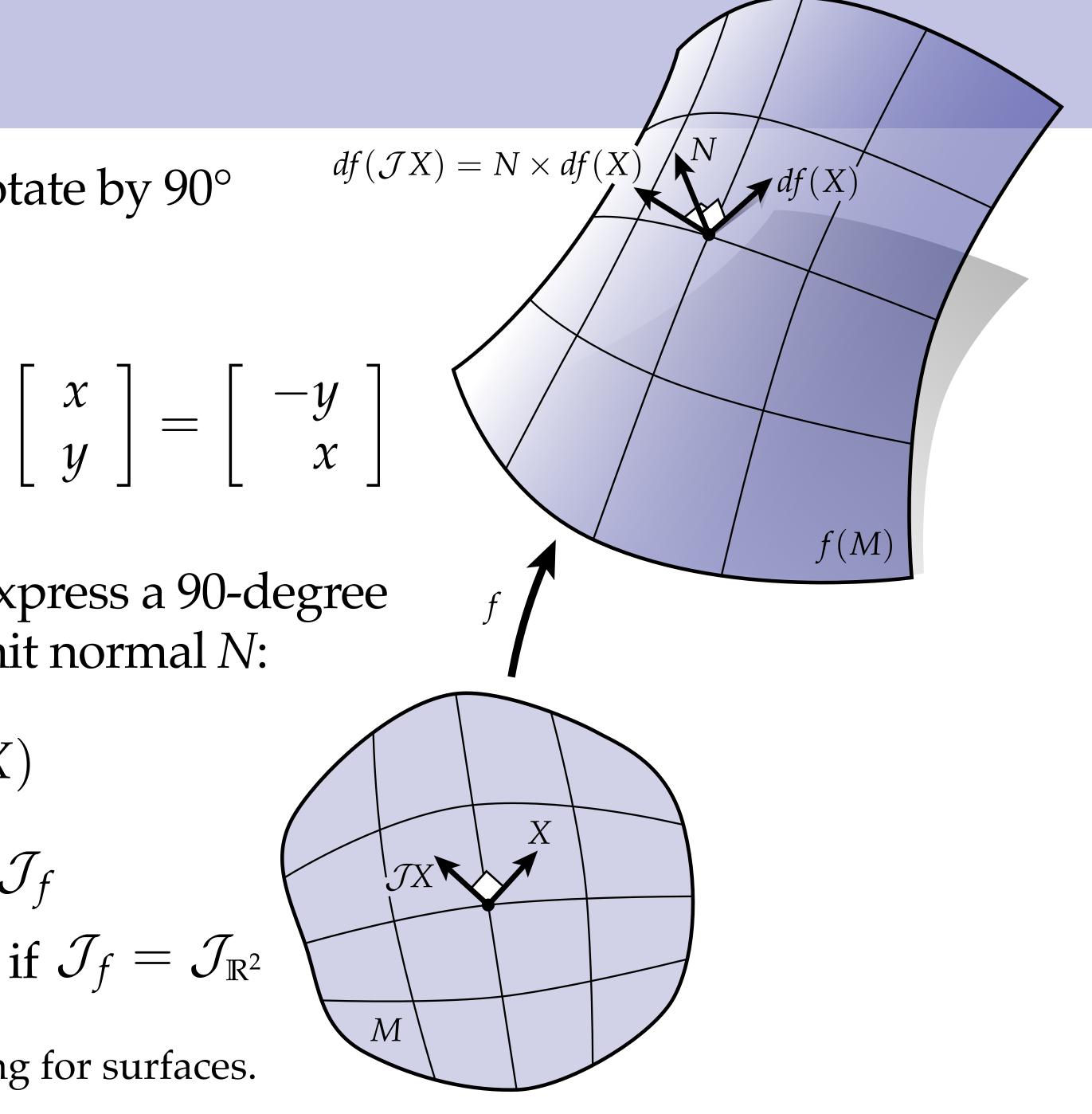
$$\mathcal{J}_{\mathbb{R}^2} := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \qquad \mathcal{J}_{\mathbb{R}^2}$$

• For a surface immersed in *R*³, we can express a 90-degree rotation via a cross product with the unit normal *N*:

$$df(\mathcal{J}_f X) := N \times df(X)$$

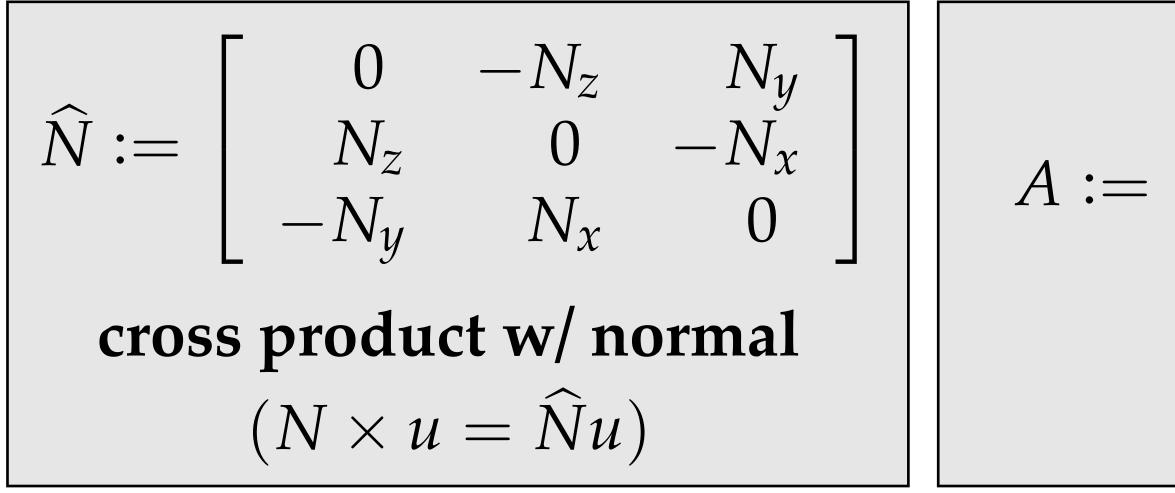
- This relationship uniquely determines \mathcal{J}_f
- An immersion is conformal if and only if $\mathcal{J}_f = \mathcal{J}_{\mathbb{R}^2}$

*Sometimes called *linear complex structure*; same thing for surfaces.



Complex Structure in Coordinates

- Similar strategy to shape operator: solve a matrix equation for \mathcal{J}



$$df(\mathcal{J}X) = N \times df($$

*Note: not something you do much in practice, but may help make definition feel more concrete...

• Suppose we want to explicitly compute the linear complex structure*

$$\begin{bmatrix} \partial f_x / \partial u & \partial f_x / \partial v \\ \partial f_y / \partial u & \partial f_y / \partial v \\ \partial f_z / \partial u & \partial f_z / \partial v \end{bmatrix}$$

$$J := \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix}$$
complex structed

 $\Rightarrow |J = A^{+}NA|$

Induced Hodge Star on 1-Forms

• Recall that for a 1-form α in the plane, applying $\star \alpha$ to a vector X is the same as applying α to a 90-degree rotation of X:

$$\star_{\mathbb{R}^2} \alpha(X) = \alpha(\mathcal{J}_{\mathbb{R}^2}X)$$

• For 1-forms on an immersed surface *f*, we instead want to apply a 90degree rotation with respect to the surface itself:

 $\star_f \alpha(X)$

• At this point we have everything we need to do calculus on curved surfaces: 0-, 1-, and 2-form Hodge star. (Will see more general/abstract/ intrinsic definitions for *n*-manifolds later on.)

$$) = \alpha(\mathcal{J}_{f}X)$$

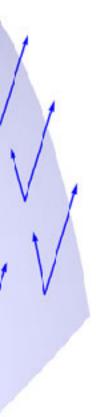
Sharp and Flat on a Surface

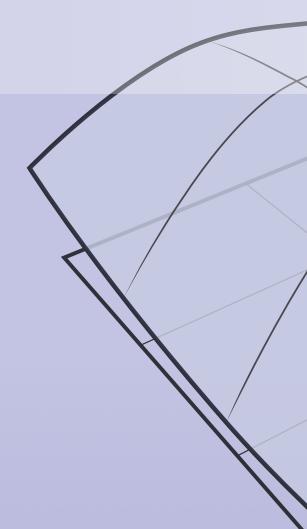
- Can use induced metric to translate between vector fields and 1-forms: $X^{\flat}(Y) := g(X, Y) \qquad \qquad g(\alpha^{\sharp}, Y) := \alpha(Y)$
- No longer just a trivial "transpose" (as in Euclidean R^n)
- E.g., flat correctly encodes inner product on surface

 $X \cdot Y \neq df(X) \cdot df(Y)$

 $X^{\flat}(Y) = df(X) \cdot df(Y)$

 $df(X) \cdot df(Y)$





DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858B • Fall 2017

