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PART 1I:
DIFFERENTIABLE STRUCTURE
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Topology vs. Geometry
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@j Q: Which of these shapes is not like the others?



Topology vs. Geometry
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@j Q: Which of these shapes is not like the others?



Topological vs. Geometric Structures

SET
U
TOPOLOGICAL SPACE
U “topology”
TOPOLOGICAL MANIFOLD
U
SMOOTH MANIFOLD “differential topology”
U
COMPLEX M ANIFOLD
g “geometry”

RIEMANNIAN MANIFOLD



Smooth Structure — Visualized

“different”




Differentiable Maps — Visualized

Which one is differentiable?
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“Discrete” Differentiable Maps?

[s one “discretely” ditterentiable?
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Derivative as Slope

Definition. Consider amap f : R — RR.
At each point xg € R, let

f+(x()) — lim f(x() T 8) _f(x()),

e—0 €

and likewise

F(x0) 1= lim L) = f(F0 =€)

e—( €

It f© = f~ then f is differentiable and
f':= ft = f~ isits derivative.




Derrvative as Linear Approximation




Derivative as Stretching

f(x)

...same function, ditferent picture...
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Visual Calculus — Derivative as Stretching

Derivative is no longer the slope; it is now the amount by
which the function locally gets squashed / stretched:
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Visual Calculus—The Chain Rule

d df d
Q: Why does di = d§ £7
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Differential

Definition. Consider a map f : R” — R". At any point p € R" and in any
direction X € IR", define the directional derivative

for € > 0. Suppose that at each point p € R” there exists a
linear map df, : R” — R" such that df,(X) = Dx f(p)

for all X. Then f is a differentiable function, and ﬁﬂ I"
df is its differential. )/




Linear Maps

e We said linear algebra is about “vector spaces and maps between them.”
e Now that we know what a vector space is, what is a linear map?

e Formally: f : V; — V, isa linear map if

flax+by) =af(x)+bf(y)Vx,y e V1, a,b € R

e (Notice that definition makes sense only when we know how to add,
scale, etc., vectors, i.e.,, when we have a vector space structure on our set.)

e Q: What does it mean geometrically?

e A: Vectors get mapped to vectors; lines (through origin) mapped to lines



Derrvative as Linear Map

Key idea: derivative can always be visualized as a map from vectors to

vectors (it's a linear map!).
M .
— \ \ derivative ‘!' .
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Differential in Coordinates (Jacobian)

Definition. Consider amap f : R" — R™, and let x¢, ..., x;; be coordinates on IR".
Then the Jacobian of f is the matrix

" aft/oxt oo aft/ox" T
JF = T /
Cafm/oxt --. af™/ox"

where f1,..., f™ are the components of f w.r.t. some coordinate system on R".
This matrix represents the differential in the sense that df (X) = JX.

Note: does not generalize to infinite dimensions! (E.g., maps between functions.)



Differential of a Graph




Differential — Example

Example. Consider the map

f > ‘A: ‘t‘: \e L % ‘:‘v: YY‘YYY
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(Could also write out Jacobian... but why? What will we learn by doing this?)



Differentiable Maps Between Manifolds?

Ok, so we know how to talk about ditferentiation on R”. What
about more general spaces, i.e., manifolds?

Key idea in differential geometry: leverage R" to talk about derivatives on mani-
tfolds. (“Calculus on manifolds.”)



Reminder —Compatibility of Charts

Key idea: if some object or quantity (open
sets, lengths, angles, etc.) are consistent
across overlaps “below,” then it provides
a unique and meaningful definition
“above.”
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Differentiable Manifold

Definition. Let M be a topological manifold with an atlas of charts ¢; : M D U; —

R™. It the overlap maps ¢;; := ¢; © (pi_l are k-times differentiable, then M is a C*

differentiable manifold; if they are infinitely many times differentiable, then M is a
C* or smooth manifold.

Key idea: M now has (tangent) vectors



langent Vectors

Definition. Let M be a ditferentiable mani-
fold; a curve through p € Misamap v : R —
M such that (0) = p. For any chart ¢ : U —
R" on M, let 4 denote the Euclidean realiza-
tion of a curve v, i.e., ¥ 1= @ o ¥|, -1, (R)"U)-
Let two curves 71, 72 be equivalent at p if and
only if their Euclidean velocity is the same,
i.e., if 41(0) = 45(0) = u for some fixed vector
u. A tangent vector at p is then an equivalence
class of curves. The tangent space at p, denoted 2
I'yM is the collection of all curves, together
with the usual vector space operations in R".

The tangent bundle is the collection of all tan-  Q: Why did we demand a differentiable
gent spaces [, M, p € M. manifold for this definition?




Differentiable Maps and Diffeomorphisms

Definition. Let f : M — N be a
continuous map between ditter-
entiable manifolds M and N, let
{p; : U; — R} be an atlas on
M, and let {y; : V; — IR"} be an
atlas on N where V; := f(U;). If
the compositions ¢; o f o (pi_l are
differentiable (smooth), then f is
a differentiable (smooth) map. If f :
M — N is a ditferentiable bijec-
tion with differentiable inverse,
then it is a diffeomorphism, and we
say that M and N have the same
differentiable (smooth) structure. R” j R"




Topological vs. Smooth Structure

Fact. In dimension n < 3, there is only a single unique smooth structure that
can be put on a given topological n-manifold, i.e., if two smooth manifolds are
homeomorphic, then they are automatically ditfeomorphic. (Hence, one does not
typically bother to specity the smooth structure.)

Fun Fact. There is a unique differentiable structure compatible with the Euclidean
topology on R", except in the case n = 4 where there are infinitely many “exotic”
differentiable structures.

Fun Fact. The 7-dimensional sphere admits 28 distinct differentiable structures,
which form an abelian monoid with respect to the connected sum. M N

\ /



Homeomorphism vs. Diffeomorphism

diffeomorphic
diffeomorphism @m

homeomorphism homeomorphzc

/\

homeomorphtc




Immersion vs. Embedding — Visualized

immersion




Immersion vs. Embedding

Definition. A differentiable map f : M — N between differentiable manifolds is
an immersion if its differential df, : T,M — T, N is nondegenerate at each point
peM,ie,ifdf,(X) = 0if and only if X = 0. In other words, if the differential is
an injective linear map between tangent spaces. An immersion is an embedding if it
is also a homeomorphism onto its image.

1mmersion V /a/j ?\
N :
T,M
X W \




Discrete Tangent Vectors?

How do we define tangent vectors for a discrete manitold?

For one thing, we don’t have well-defined normals:

...In fact, we don’t know anything about how the manifold sits in space!

(So far, our “discrete manifold” is just a gluing together of abstract simplices.)



Atlas on a Discrete Manifold...?

Natural idea: use simplices as charts (w/ mapping to standard simplex):

1.

&

Open simplices? Closed simplices?

Problem: overlap is empty! Problem: overlap is trivial!
No way to compare quantities. ...otill no way to compare quantities.
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Key idea: use vertex stars to define charts.



Parameterization of Stmplicial Charts

- T :

(reZQ)Zﬂ/ﬁ

(1dentified)

Bijective? Continuous? Homeomorphism? Diffeomorphism?



Coordinates on Discrete Tangent Spaces

(Generalization to 3D?)



Tangent Vector Field Processing— Preview




langent Vector Field Processing — Preview
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Homotopy and Isotopy

Definition. Let X, Y be topological spaces. Two maps f,¢ : X — Y are homotopic
if there exists a continuous map & : X x |0,1] — Y such that h(x,0) = f(x) and
h(x,1) = g(x) for all x € X. If each map h(.,t) is a homeomorphism onto its image,
then / is an isotopy.

f(X)




Regular Homotopy and Isotopy

Definition. Let M, N be differentiable manifolds. A reqular homotopy between two
immersions f,¢ : M — N is a continuous family of immersions h(t), t € [0,1
such that #(0) = f and h(1) = g. A reqular isotopy is a homotopy by differentiable
embeddings.

Crane et al, “Robust Fairing via Conformal Curvature Flow”



Winding Number

Definition. For any integer k € Z we can define
a k-told covering of the circle

e 2 [0,271) — St s — (cos(ks),sin(ks)).

Let v : S — IR? be a continuous map, and let
p € IR? be any point not on y(S!). Then

Y
A v

defines a map from the circle to itself. If ¢ is ho-
motopic to 7;, then we say that k is the winding
number of 7.




Figure 4: Winding number is the signed length of the projection of
a curve onto a circle at a given a point divided by 2m. QOutside the
curve, the projection cancels itself out. Inside, it measures one.

-4

Figure 6: Left to right: winding number field with respect to an
open, partial circle converging to a closed circle. Note the £=1 jump
discontinuity across the curve. Otherwise the function is harmonic:
smooth with minimal oscillation.

Jacobson et al, “Robust Inside-Outside Segmentation using Generalized Winding Numbers”



Turning Number

Definition. Let v : S' — R? be an immersion, and let
T:=9"/]7

be its unit tangent field; note that T is a map from S! to S*. If T is homotopic to 7,
then k is the turning number of .



Whitney-Graustein

Theorem (Whitney-Graustein). Two regularly homotopic curves have the same
turning number.

Corollary. In the plane, you can’t turn the circle inside-out, i.e., there is no eversion
of the circle.

8 &5 OO O




Regular Homotopies in the Plane

REGULAR HOMOTOPIES

IN THE PLANE
Part |

® Copyrg 977 . ALL TISNTS PEIEFVED
(DUCATION OEVYOLOPEENT CENTIR ™C

https:/ /youtu.be/ m7k8fxaAC40
https:/ /youtu.be/ mY-VOTSMVCY

https:/ /youtu.

be / fKFH3c7b57s

https:/ /youtu.

be/olVOt gx-bw



https://youtu.be/m7k8fxaAC40
https://youtu.be/m7k8fxaAC40
https://youtu.be/mY-V0TSMVCY
https://youtu.be/mY-V0TSMVCY
https://youtu.be/fKFH3c7b57s
https://youtu.be/fKFH3c7b57s
https://youtu.be/olVQt_qx-bw
https://youtu.be/olVQt_qx-bw

Sphere Eversion




Discrete Immersion

Definition. A simplicial map f is a discrete immersion if it is locally injective, i.e., if
around every point p there exists a small neighborhood U such that f|;; is injective.
Equivalently, f is a discrete immersion if every vertex star St(v) is mapped bijec-
tively onto its image. A discrete immersion is a globally injective discrete immersion
that is homeomorphic onto its image.

Note: “no degenerate simplices” is NOT the same as “locally injective!”



What do you think?



Discrete Reqular Homotopy | Isotopy

Definition. A family of simplicial maps f; is a discrete reqular homotopy if each map
in the family is a discrete immersion; it is a discrete reqular isotopy it each map is a
discrete embedding.

N [ <

Cantarella et al, “An Energy-Driven Approach to Linkage Unfolding”




Discrete Sphere Eversion

A discrete reqular homotopy is a homotopy by discrete immersions.
Can you always turn a simplicial sphere inside-out?
Can you turn a simplicial sphere inside-out?

Denner, “Polyhedral Eversions of the Sphere”



Regqular Homotopy Classes of Surfaces

Theorem (Pinkall). For a surface of genus g, there are 228 regular homotopy classes

of immersions into IR?.

~\
______

—————

(Discrete theorem...?)



Geometric Topology
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Mustafa Hajij / SeifertView



Computational Geometric Topology

What we know: the complexity ot EMBED,_,4

und und NPh NPh P P
und und NPh NPh NPh P P
und und NPh NPh NPh P P P

k| 2 3 4 5 0 7 8 9 10 11 12 13 14
1| P

21 P D NPh

3 D NPh NPh P

4 NPh und NPh NPh P

5

0

7

und = algorithmically undecidable [Matousek, Tancer, W}

NPh = NP-hard [Matousek, Tancer, W]

D = algorithmically decidable [Matousek, Sedgwick, Tancer, W]
P = polynomial-time solvable; new results based on algorithmic
homotopy classification of (equivariant) maps [Cadek, Kré&al,
Matousek, Sergeraert, Vokrinek, W]

|Courtesy Uli Wagner]



Computational Topology in Geometry Processing

Garland et al, “Spectral Surface Quadrangulation”

lllllll

Pascucci et al, “Robust On-line Computation of Reeb Graphs”



Summary — Differentiable Manifolds

CONTINUOUS DISCRETE
derivative difference
differentiable manifold simplicial manifold
differentiable map simplicial map
tangent space rescaled angles
immersion locally injective simplicial map

Fact. For n < 3, smooth structure is uniquely determined by topology.

Fact. There are often more regular homotopy classes in the discrete case than
in the continuous setting.

Hence, not everything is captured by discretization!



Topological vs. Geometric Structures

SET
U
TOPOLOGICAL SPACE
U “topology”
TOPOLOGICAL MANIFOLD
U
SMOOTH MANIFOLD “differential topology”
U
COMPLEX M ANIFOLD
g “geometry”

RIEMANNIAN MANIFOLD

“floppier”

“more rigid”



Thanks!
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