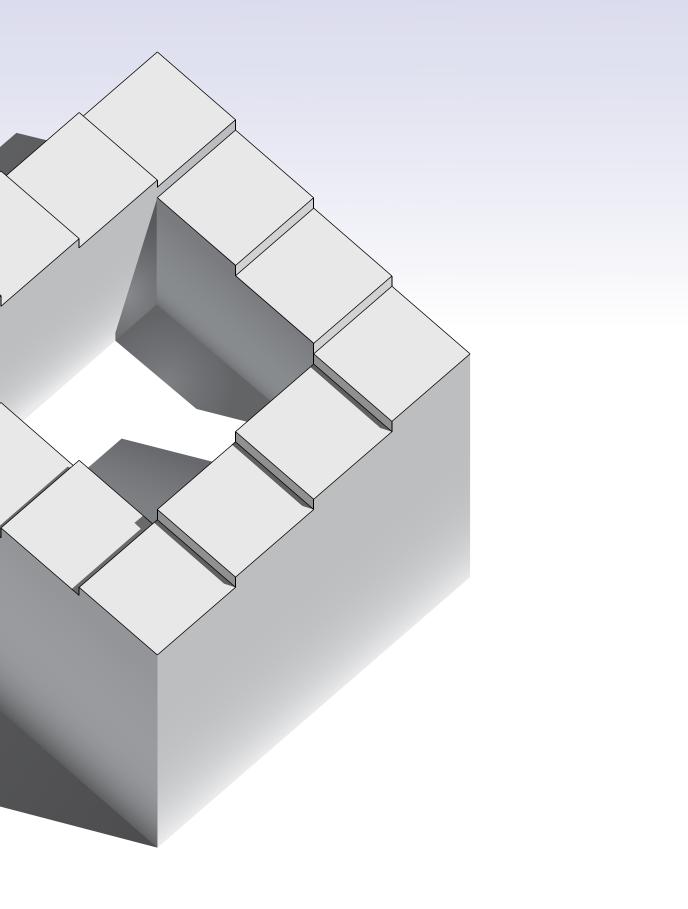
DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION

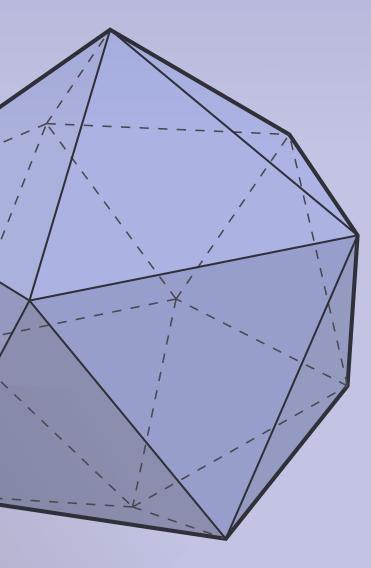
Keenan Crane • CMU 15-869(J) • Spring 2016



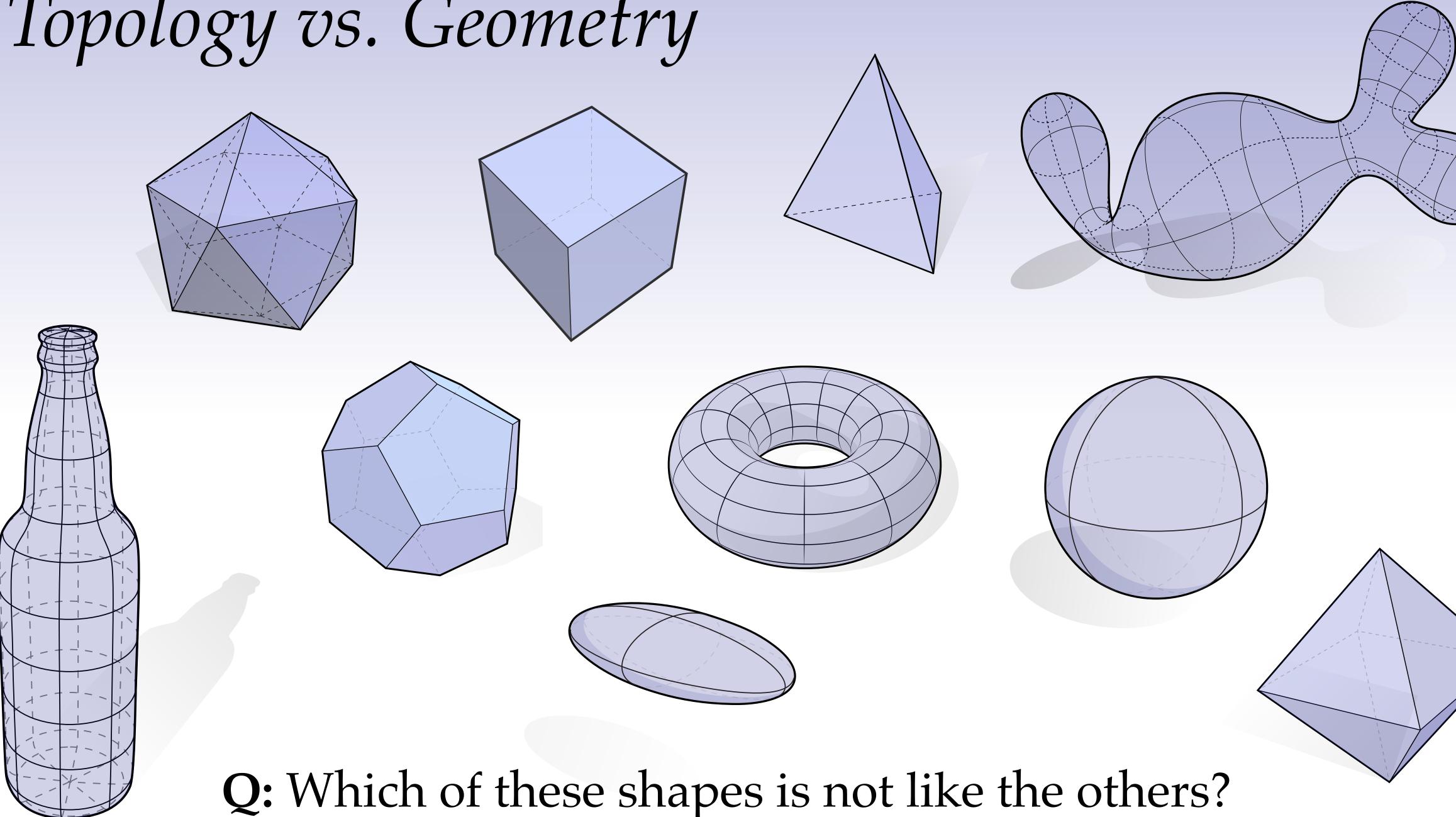
Part II: DIFFERENTIABLE STRUCTURE

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION

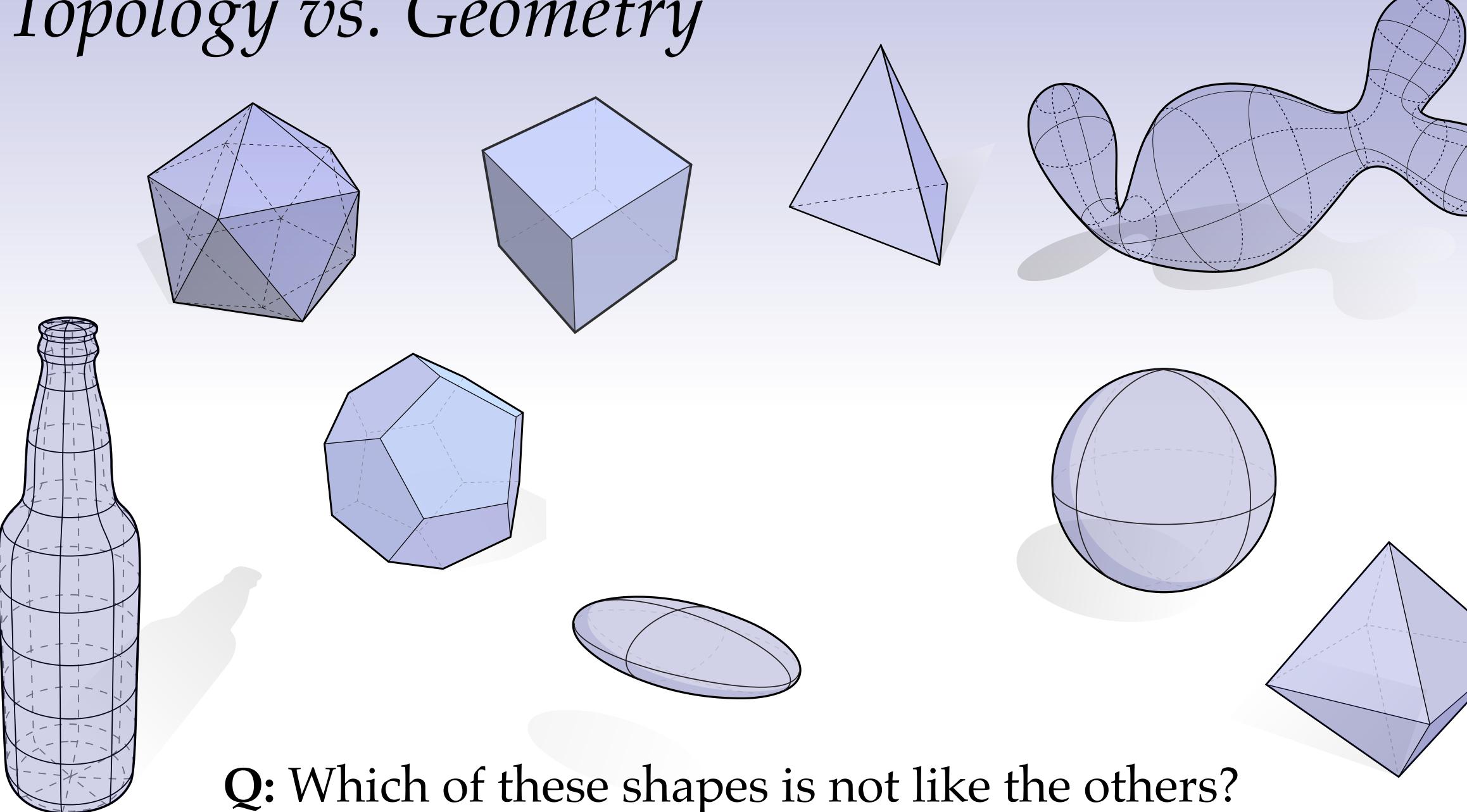
Keenan Crane • CMU 15-869(J) • Spring 2016



Topology vs. Geometry



Topology vs. Geometry



Topological vs. Geometric Structures

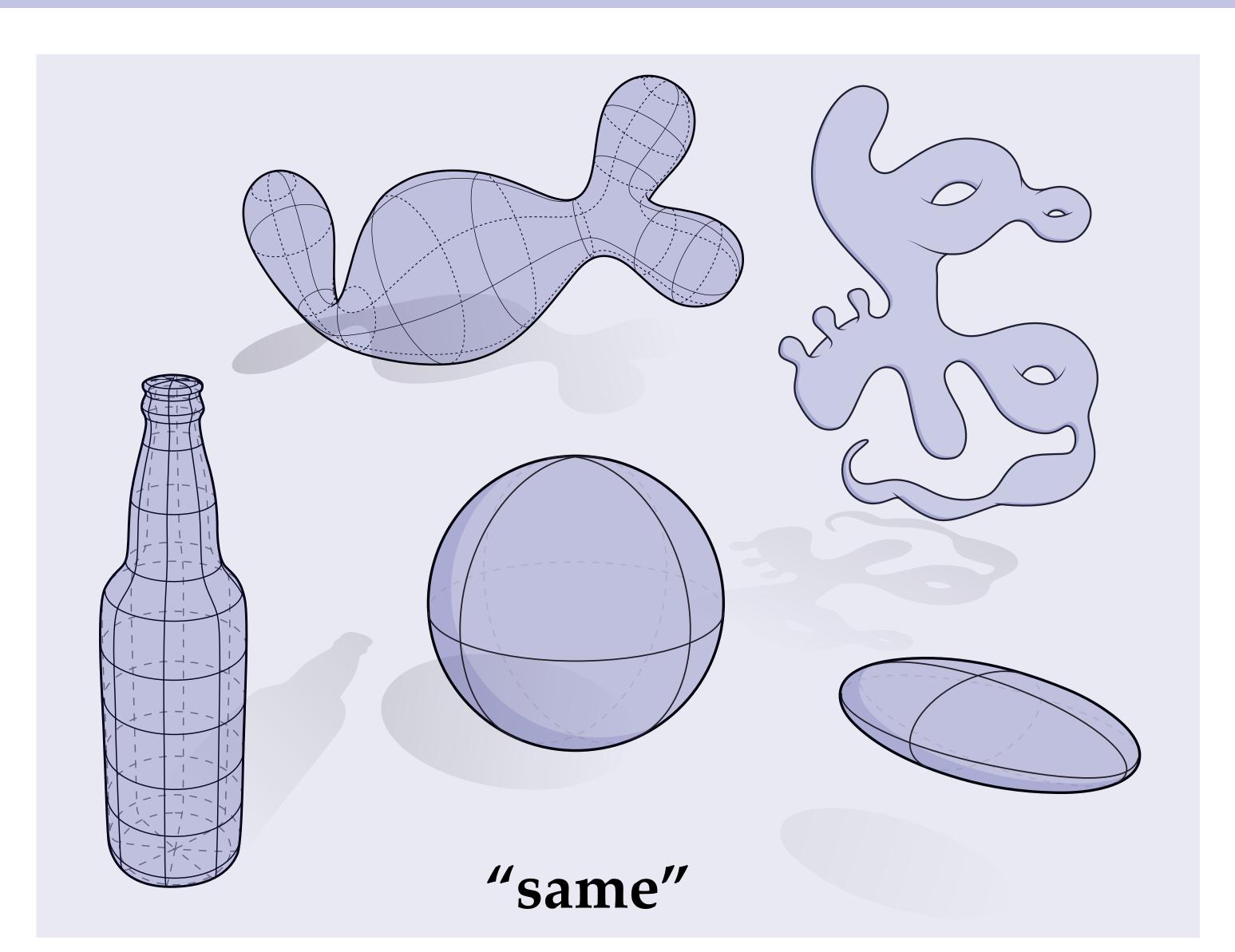
Set TOPOLOGICAL SPACE TOPOLOGICAL MANIFOLD SMOOTH MANIFOLD COMPLEX MANIFOLD **RIEMANNIAN MANIFOLD**

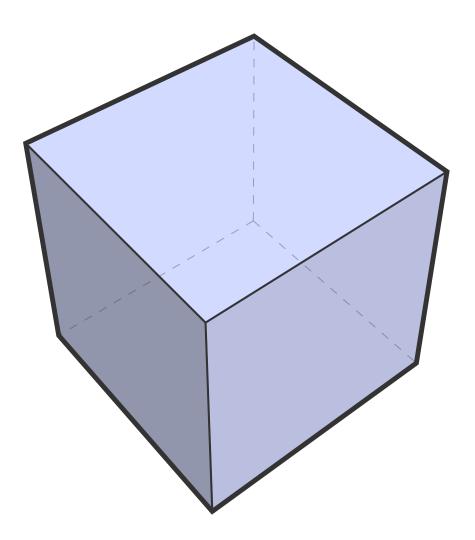
"topology"

"differential topology"

"geometry"

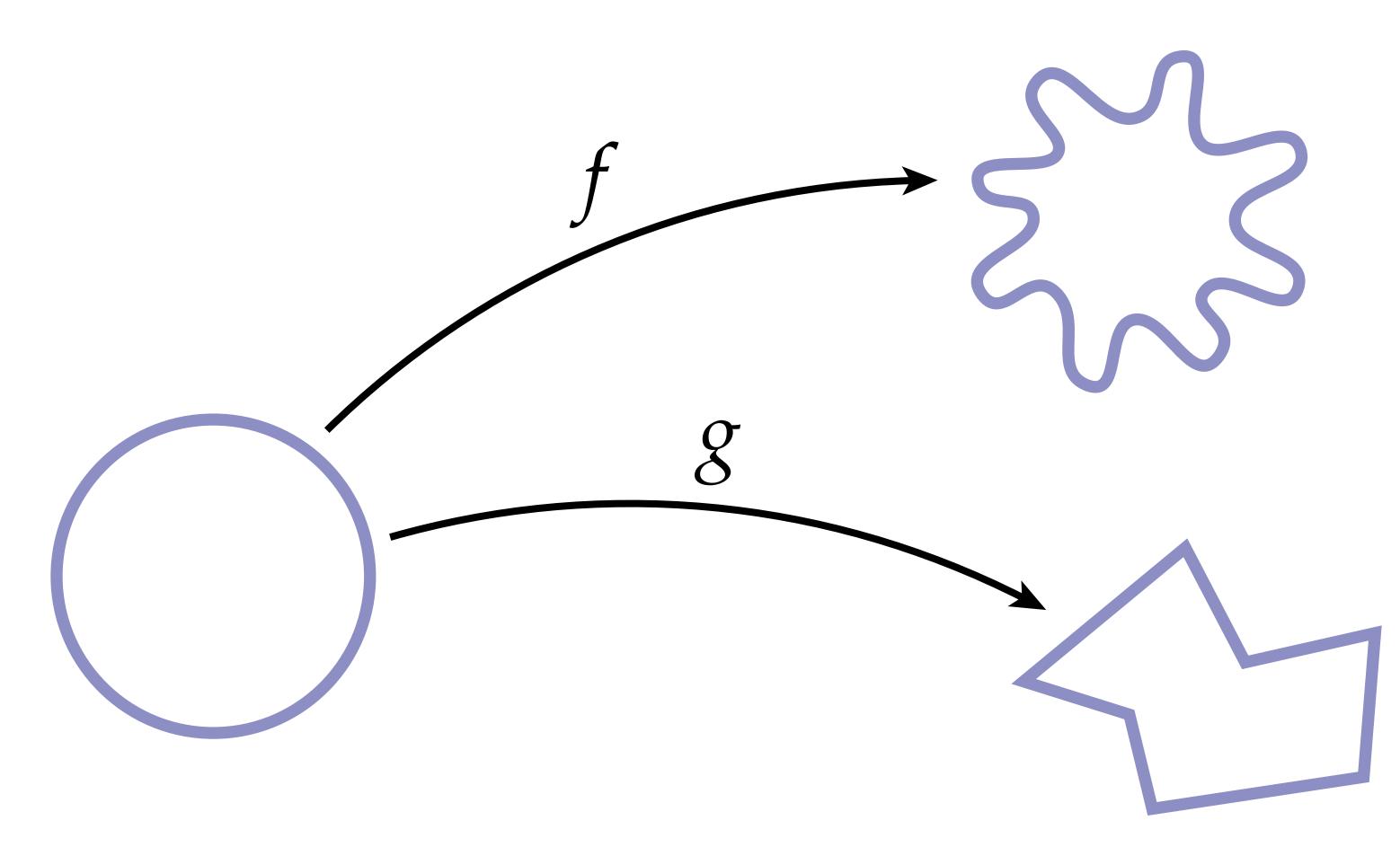
Smooth Structure – Visualized





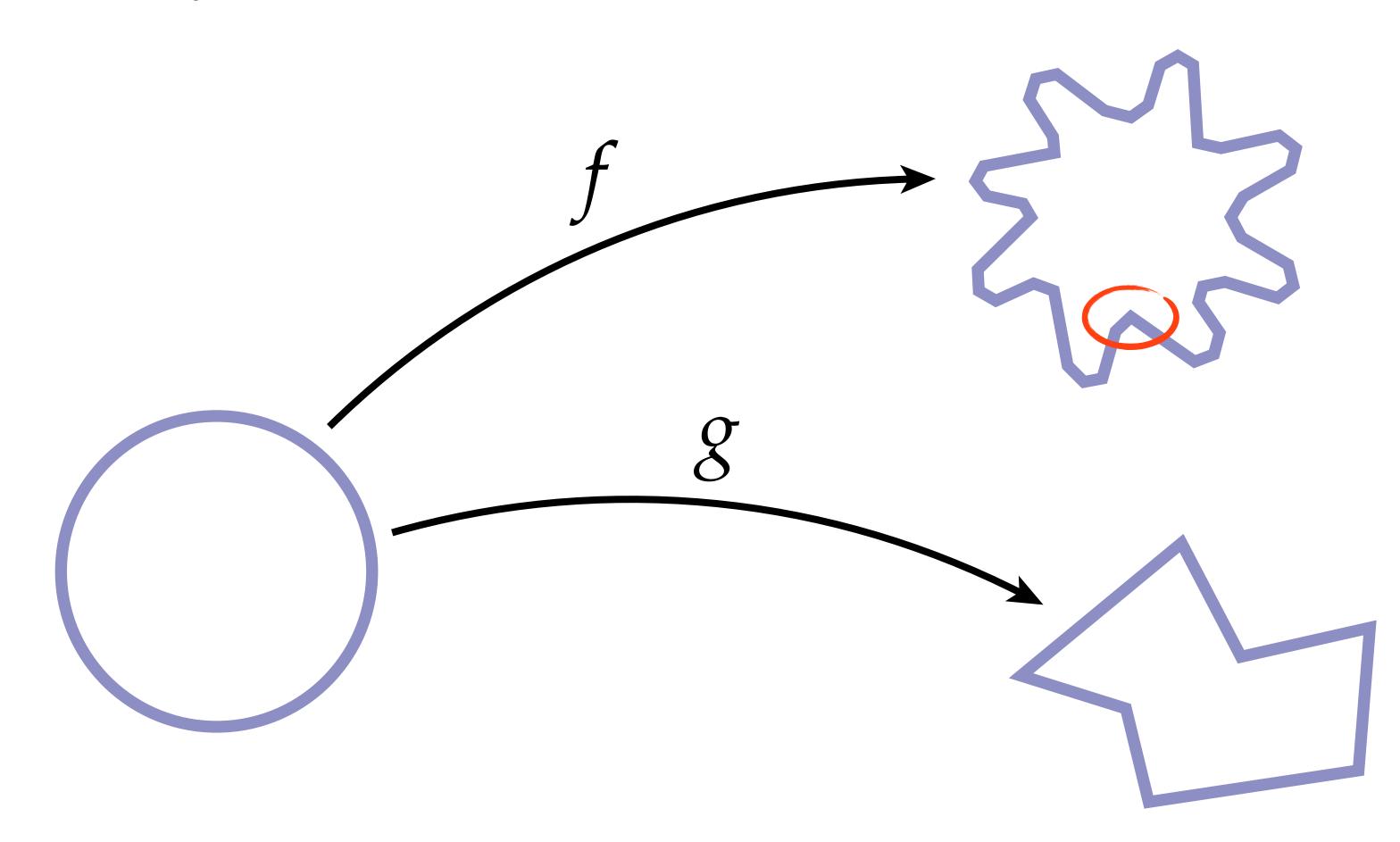
"different"

Which one is differentiable?



"Discrete" Differentiable Maps?

Is one "discretely" differentiable?



Derivative as Slope

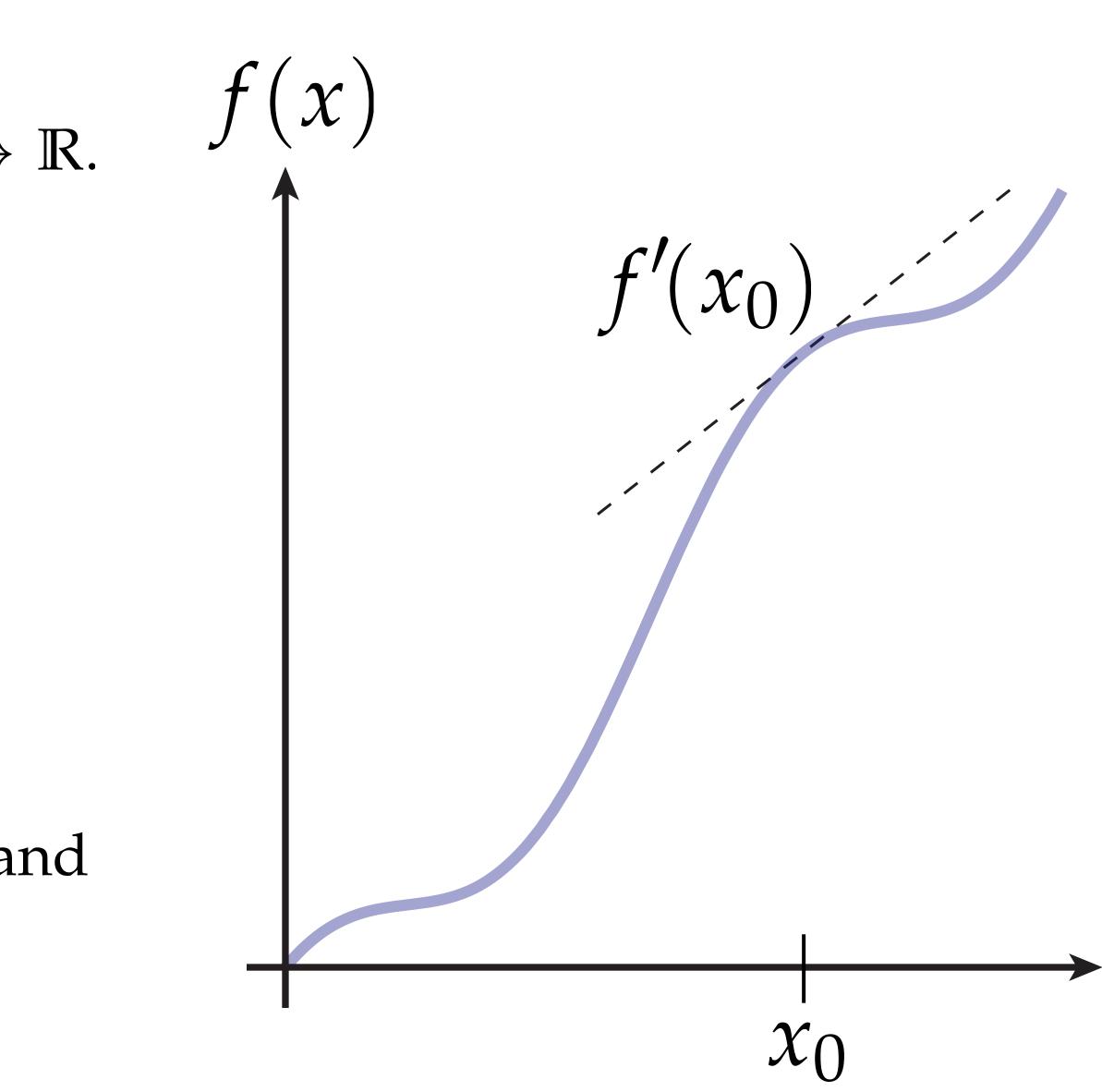
Definition. Consider a map $f : \mathbb{R} \to \mathbb{R}$. At each point $x_0 \in \mathbb{R}$, let

$$f^+(x_0) := \lim_{\varepsilon \to 0} \frac{f(x_0 + \varepsilon) - f(x_0)}{\varepsilon},$$

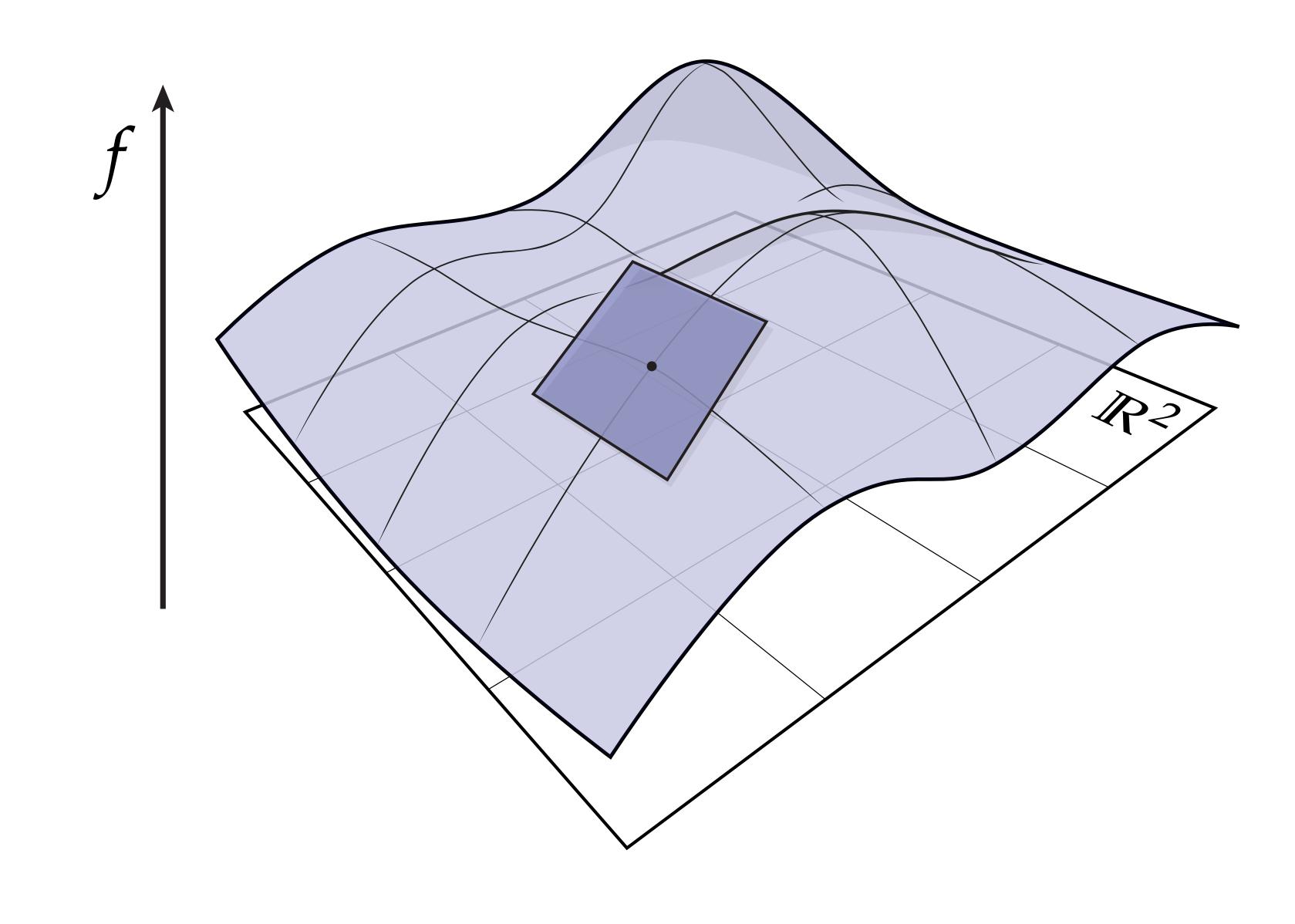
and likewise

$$f^{-}(x_0) := \lim_{\varepsilon \to 0} \frac{f(x_0) - f(x_0 - \varepsilon)}{\varepsilon}.$$

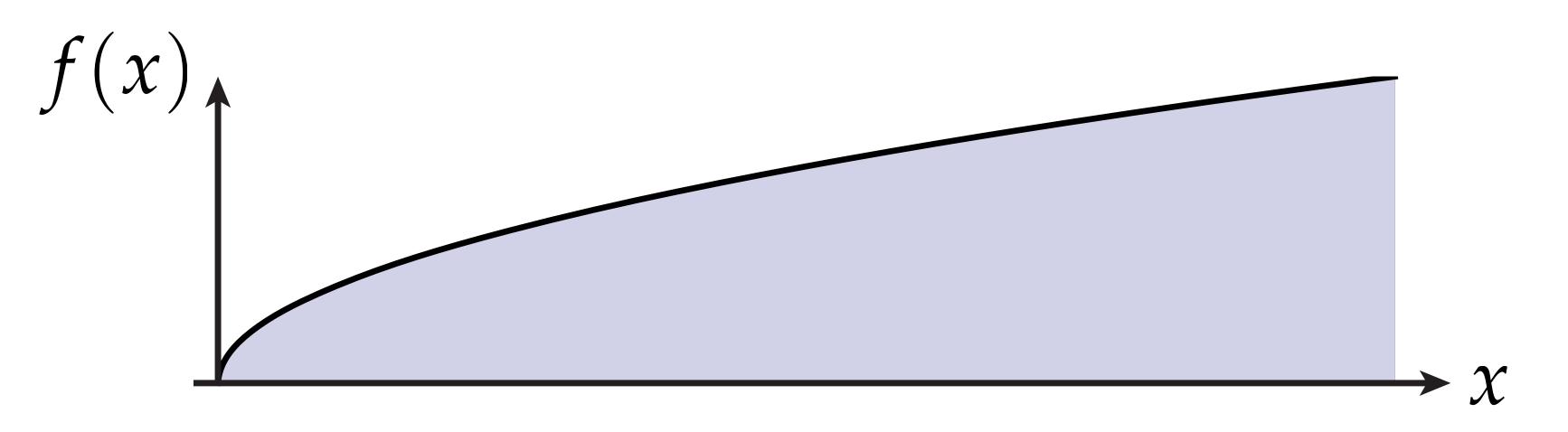
If $f^+ = f^-$ then f is differentiable and $f' := f^+ = f^-$ is its derivative.



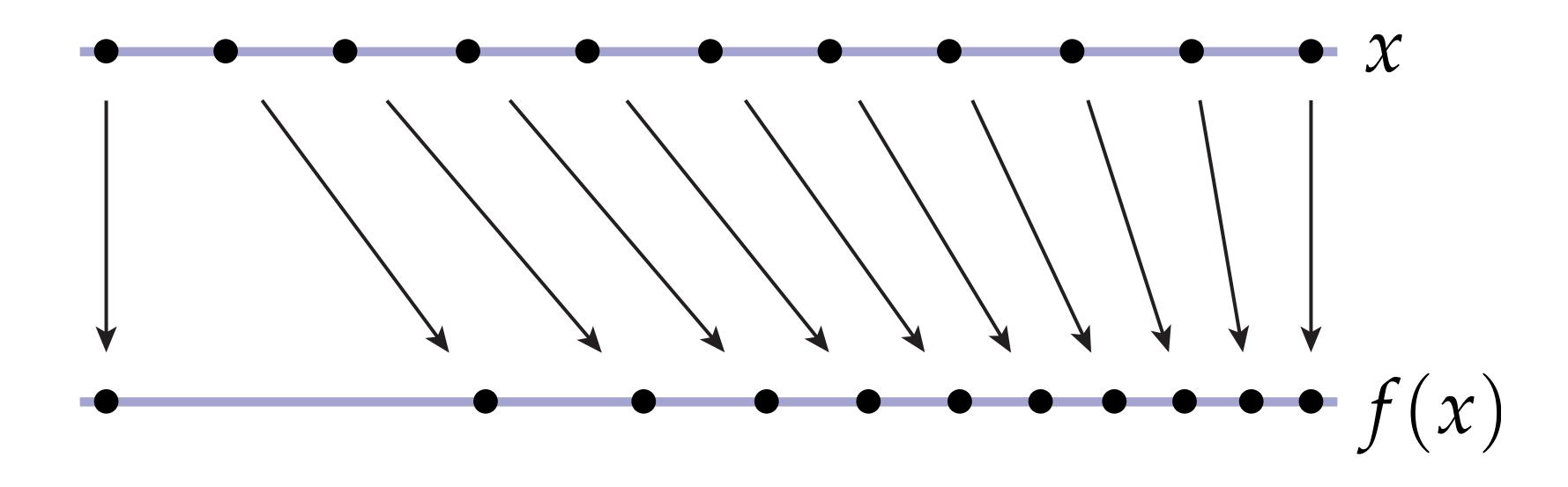
Derivative as Linear Approximation



Derivative as Stretching

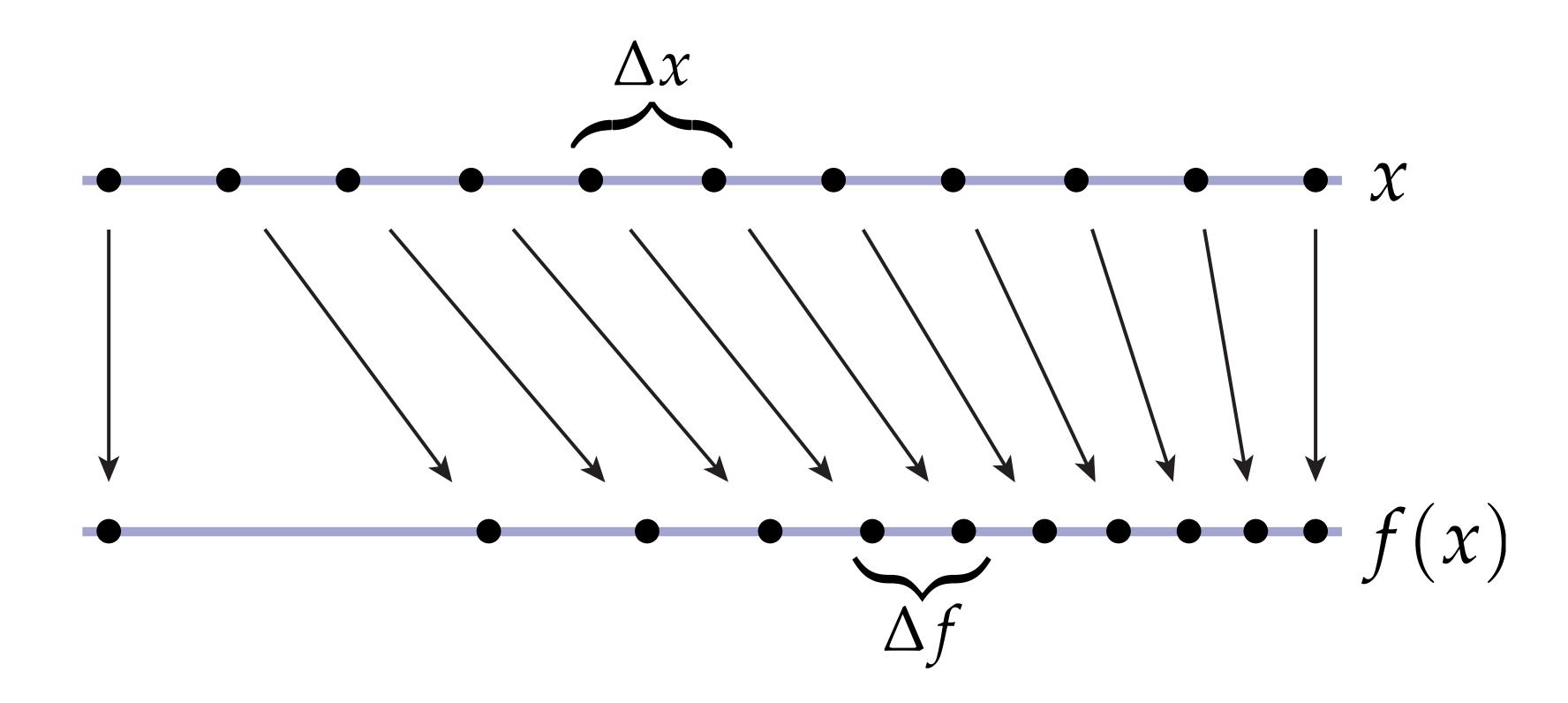


...same function, different picture...



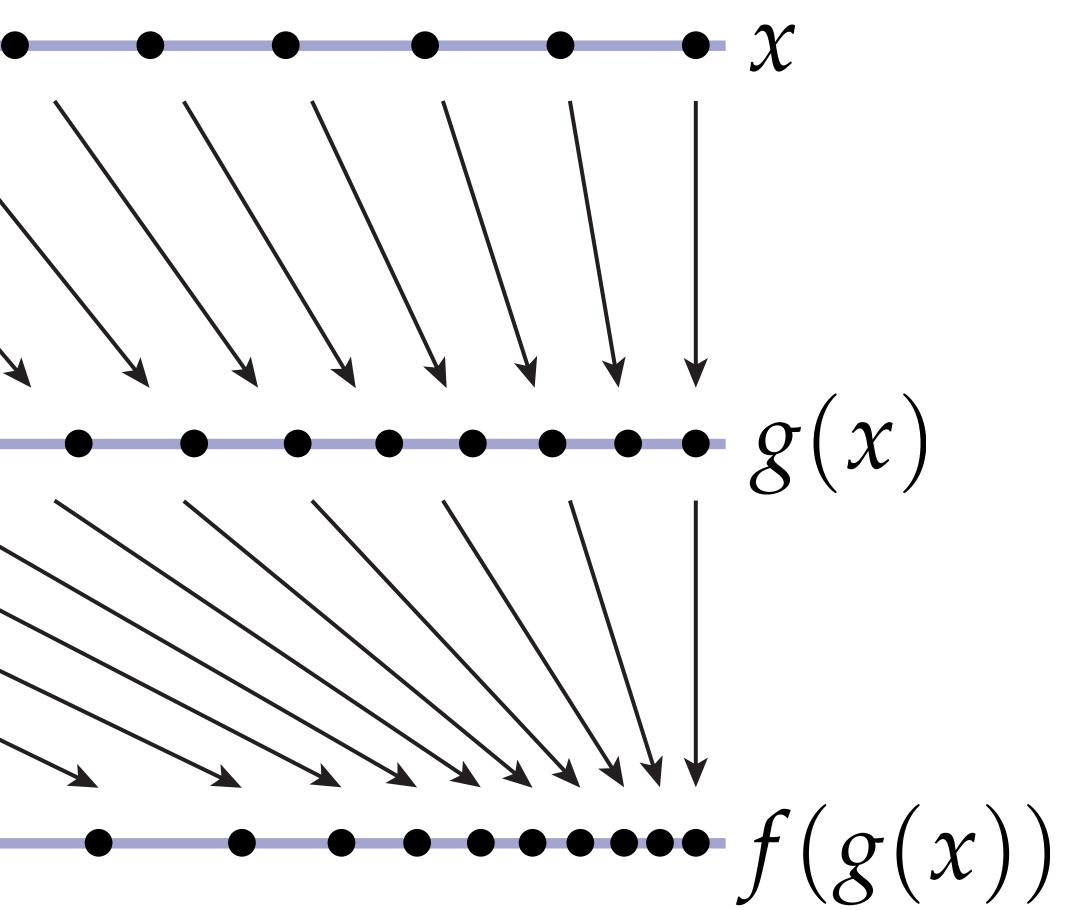
Visual Calculus—Derivative as Stretching

Derivative is no longer the slope; it is now the amount by which the function locally gets squashed/stretched:



 $\frac{uj}{4r}$

Visual Calculus — The Chain Rule **Q:** Why does $\frac{df}{dx} = \frac{df}{dg} \frac{dg}{dx}$? A:



Differential

direction $X \in \mathbb{R}^n$, define the *directional derivative*

$$D_X f(p) := \lim_{\varepsilon \to 0} \frac{f(p + \varepsilon X) - f(p)}{\varepsilon}$$

for $\epsilon > 0$. Suppose that at each point $p \in \mathbb{R}^n$ there exists a **linear** map $df_p : \mathbb{R}^n \to \mathbb{R}^m$ such that $df_p(X) = D_X f(p)$ for all *X*. Then *f* is a *differentiable function*, and *df* is its *differential*.

Definition. Consider a map $f : \mathbb{R}^n \to \mathbb{R}^m$. At any point $p \in \mathbb{R}^n$ and in any

f(p+hX) $p+hX_{-}$ \mathcal{D} \mathbf{X} \mathcal{D}

Linear Maps

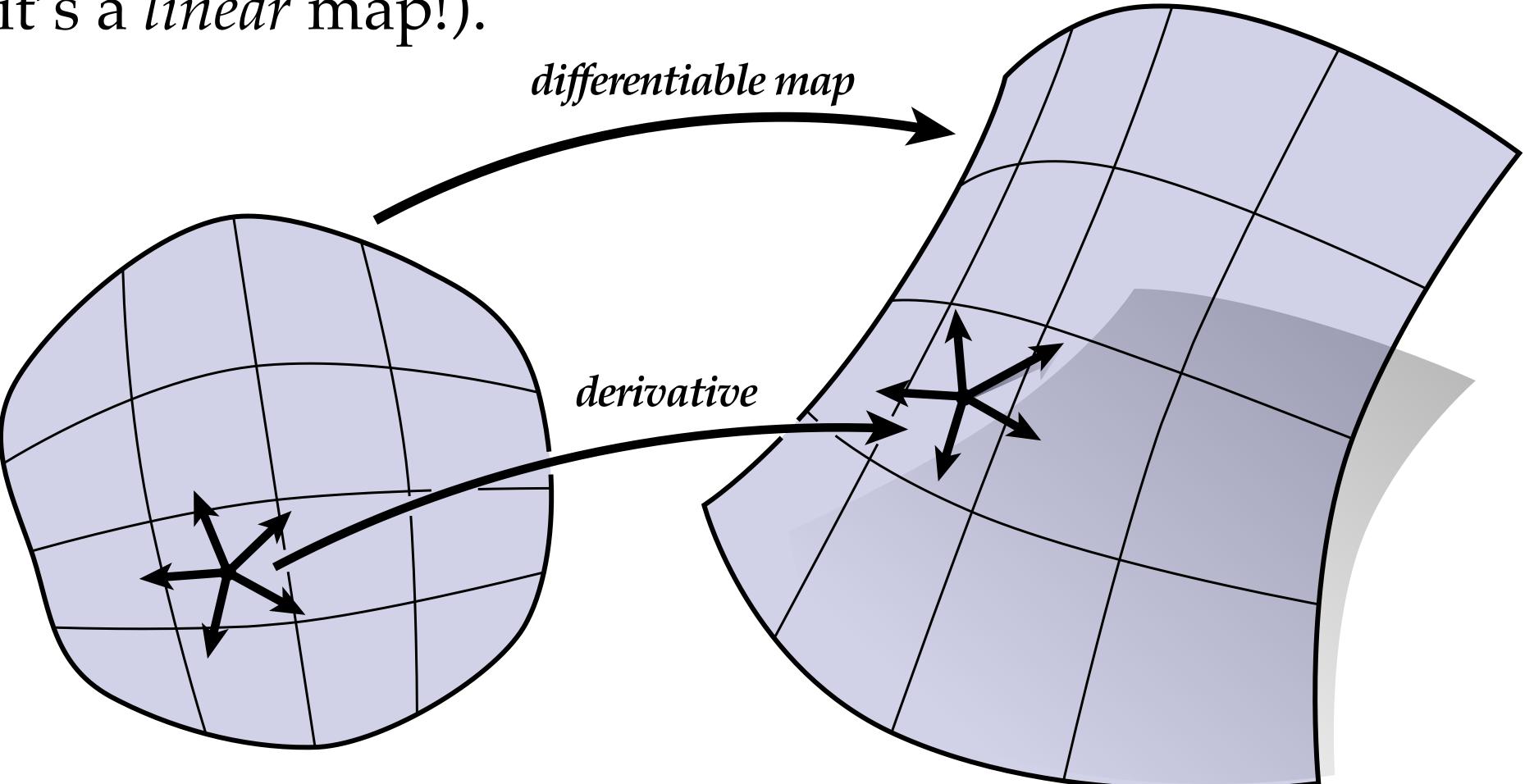
- We said linear algebra is about "vector spaces and maps between them." • Now that we know what a vector space is, what is a linear map? • Formally: $f: V_1 \rightarrow V_2$ is a linear map if

- (Notice that definition makes sense only when we know how to add, scale, etc., vectors, i.e., when we have a vector space structure on our set.)
- Q: What does it mean geometrically?
- A: Vectors get mapped to vectors; lines (through origin) mapped to lines

 $\vdash bf(y) \ \forall x, y \in V_1, a, b \in \mathbb{R}$

Derivative as Linear Map

vectors (it's a *linear* map!).



Key idea: derivative can always be visualized as a map from vectors to

Differential in Coordinates (Jacobian)

Definition. Consider a map $f : \mathbb{R}^n \to \mathbb{R}^m$, and let x_1, \ldots, x_n be coordinates on \mathbb{R}^n . Then the *Jacobian* of f is the matrix

 $J_{f} := \begin{bmatrix} \partial f^{1} / \partial x^{1} \\ \vdots \\ \partial f^{m} / \partial x^{1} \end{bmatrix}$

where f^1, \ldots, f^m are the components of f w.r.t. some coordinate system on \mathbb{R}^m . This matrix represents the differential in the sense that $df(X) = J_f X$.

Note: does not generalize to infinite dimensions! (E.g., maps between functions.)

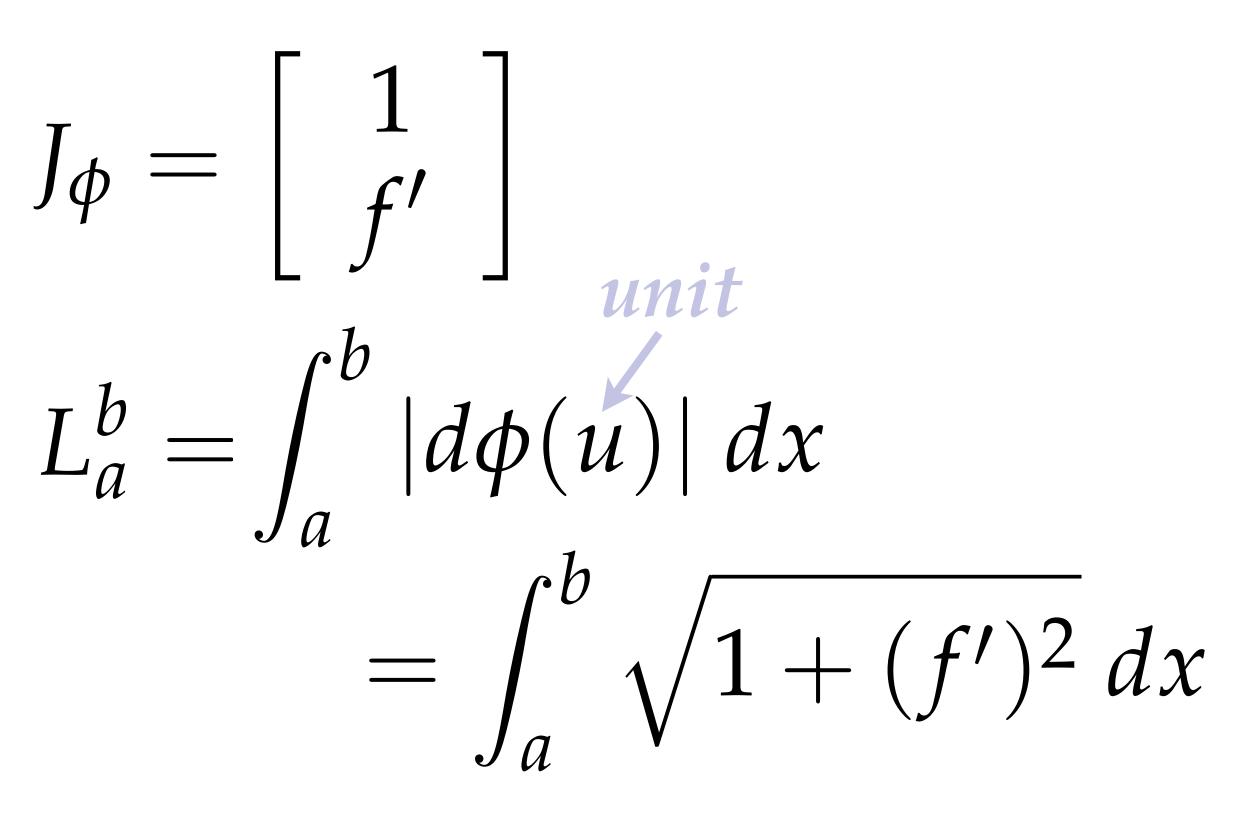
$$\cdots \partial f^{1}/\partial x^{n}]$$

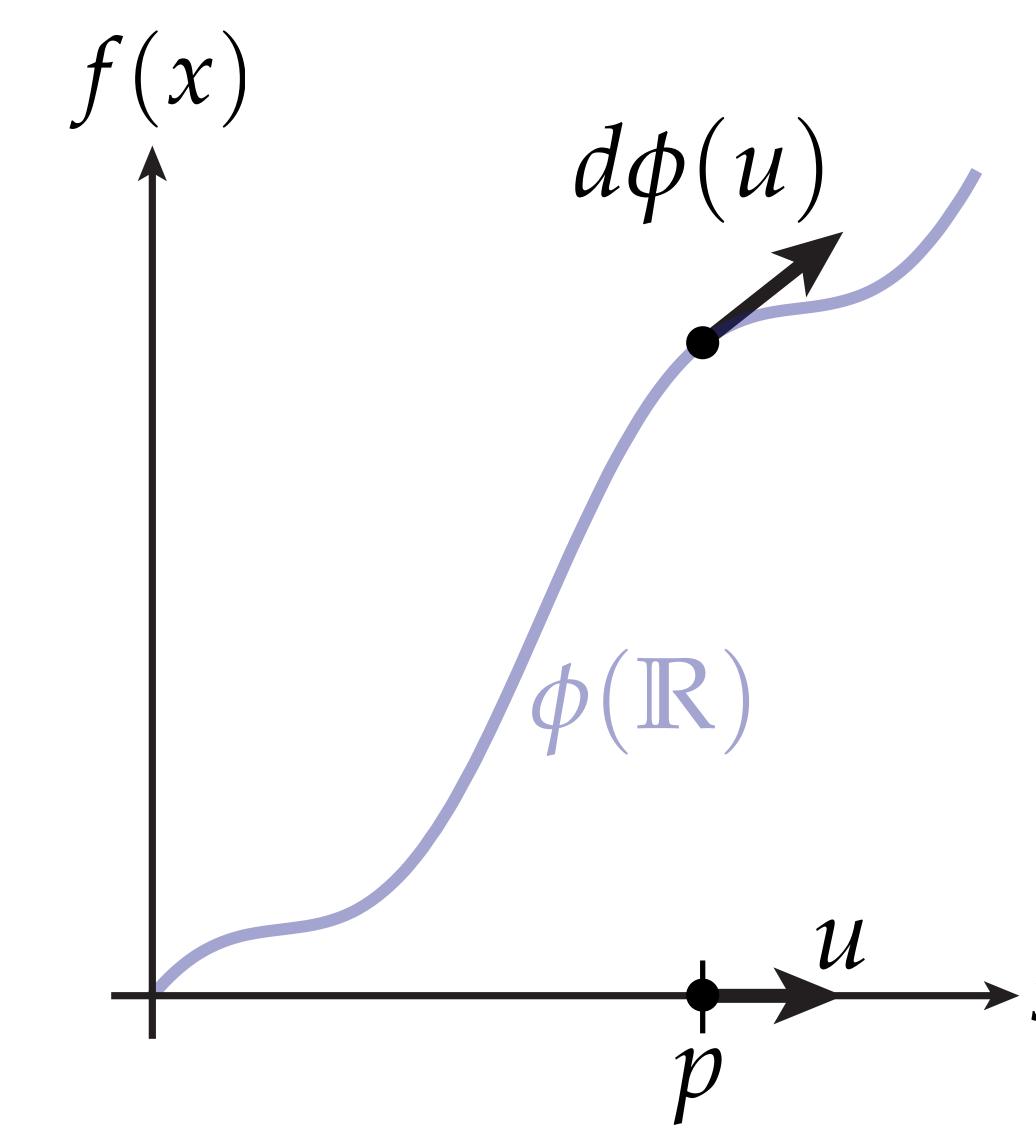
$$\cdots \partial f^{m}/\partial x^{n}]$$

Differential of a Graph

 $x \mapsto (x, f(x))$

 $d\phi(u) = (u, uf')$





Differential—Example

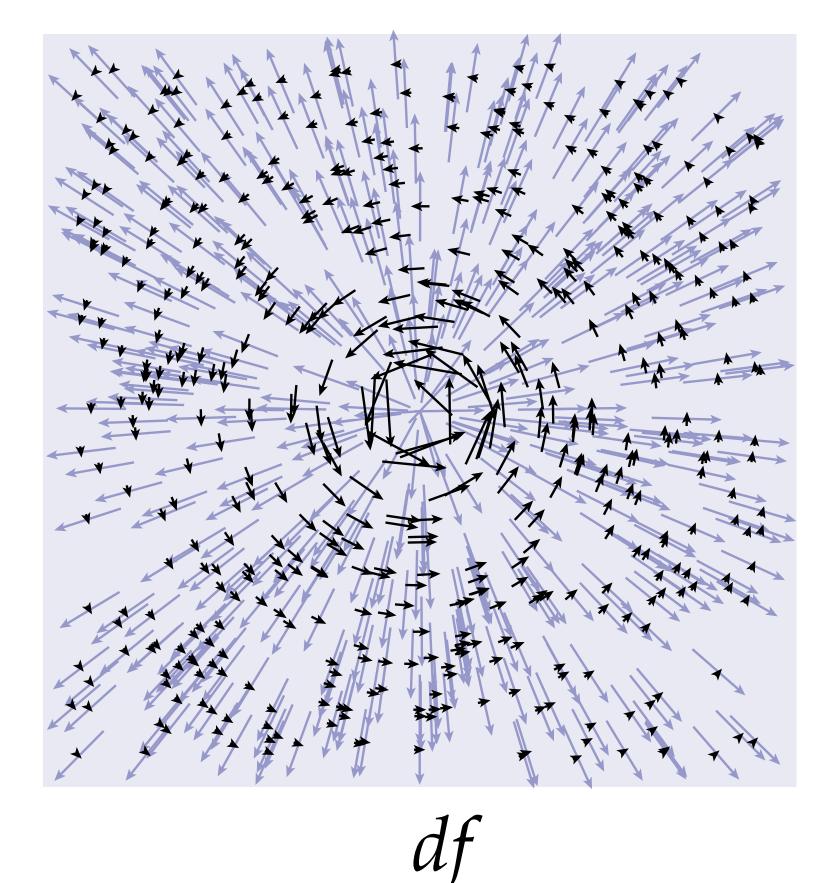
Example. Consider the map

 $\underbrace{(x,y)}_{=:X} \stackrel{f}{\mapsto} (r,\theta),$

taking rectangular coordinates to polar coordinates. The corresponding differential is

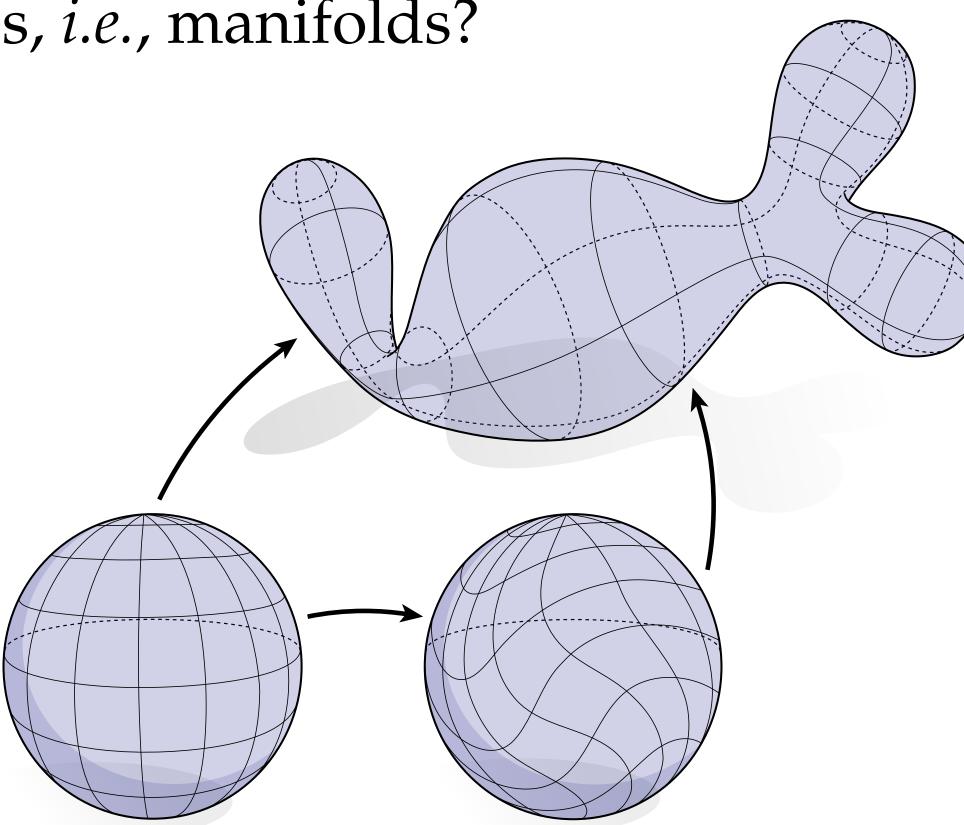
 $df(X) = (X/r, X^{\perp}/r^2).$

(Could also write out Jacobian... but why? What will we learn by doing this?)



Differentiable Maps Between Manifolds?

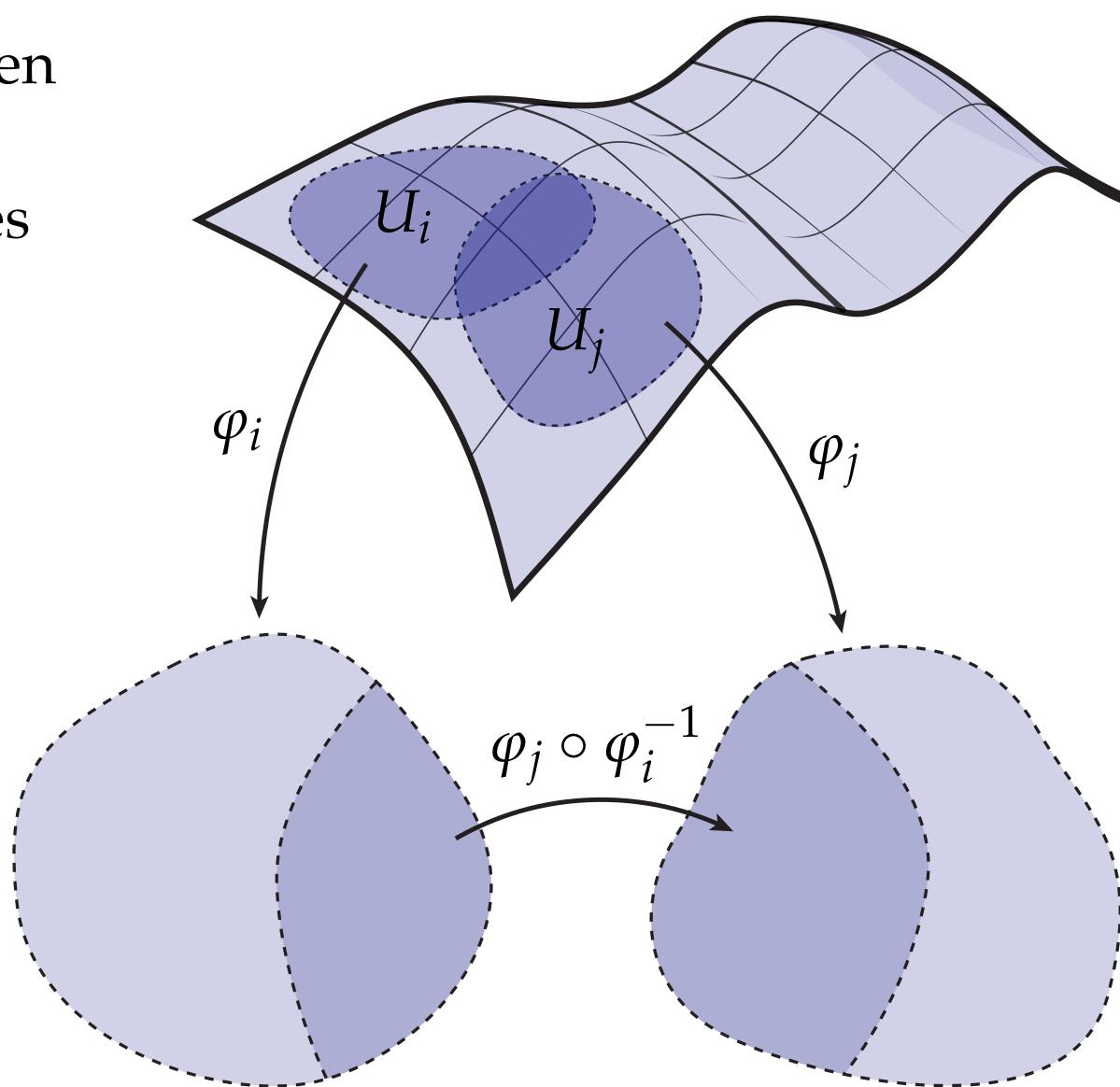
Ok, so we know how to talk about differentiation on \mathbb{R}^n . What about more general spaces, *i.e.*, manifolds?



Key idea in *differential* geometry: leverage \mathbb{R}^n to talk about derivatives on manifolds. ("Calculus on manifolds.")

Reminder—Compatibility of Charts

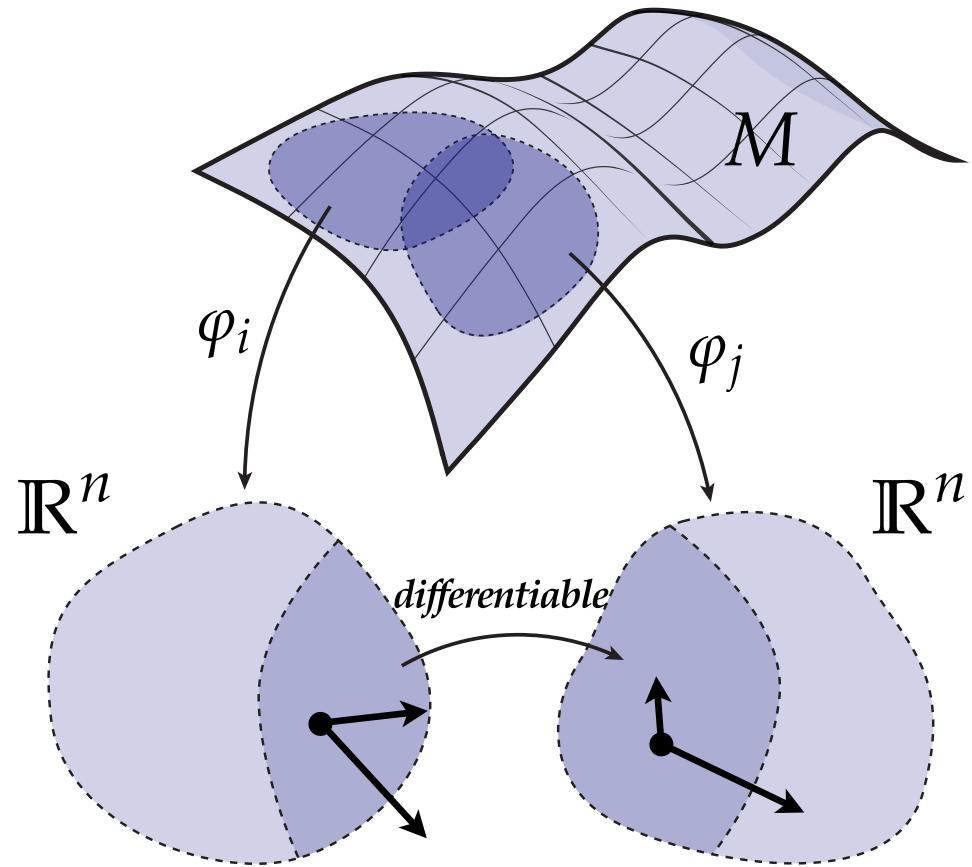
Key idea: if some object or quantity (open sets, lengths, angles, etc.) are consistent across overlaps "below," then it provides a unique and meaningful definition "above."



Differentiable Manifold

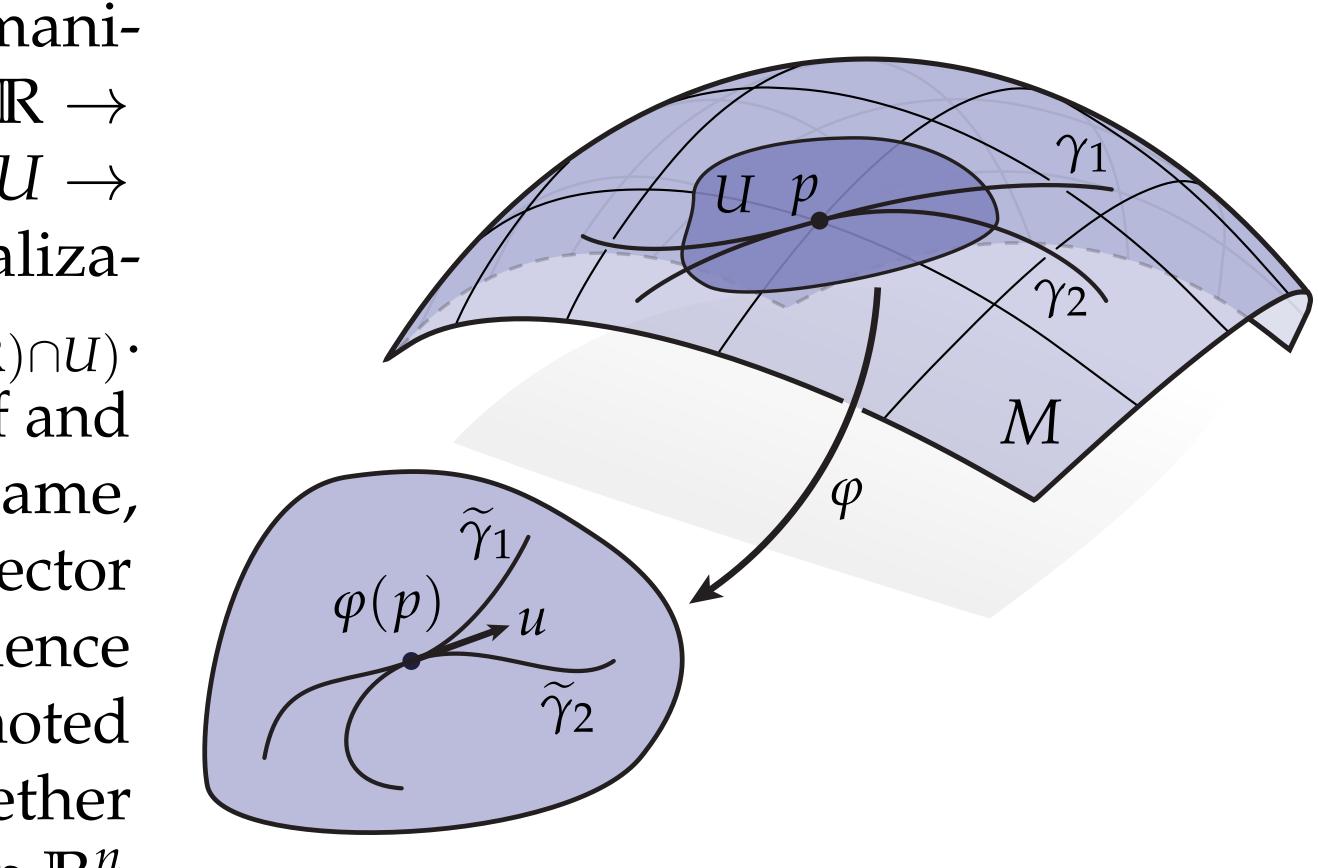
Definition. Let *M* be a topological manifold with an atlas of charts $\varphi_i : M \supset U_i \rightarrow U_i$ \mathbb{R}^n . If the overlap maps $\varphi_{ij} := \varphi_j \circ \varphi_j^{-1}$ are *k*-times differentiable, then *M* is a C^k differentiable manifold; if they are infinitely many times differentiable, then M is a C^{∞} or smooth manifold.

Key idea: *M* now has (tangent) vectors



Tangent Vectors

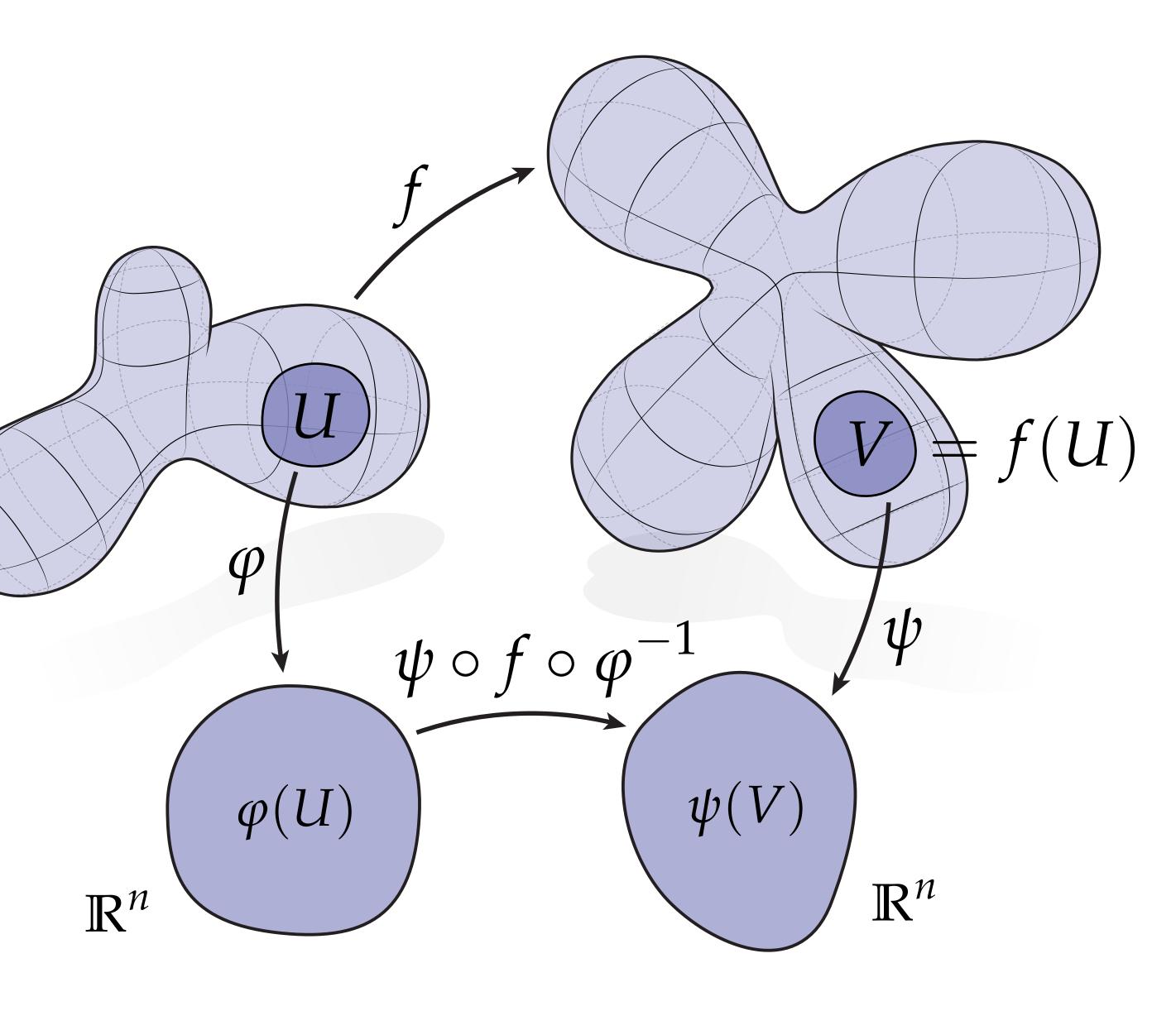
Definition. Let *M* be a differentiable manifold; a curve through $p \in M$ is a map $\gamma : \mathbb{R} \rightarrow$ M such that $\gamma(0) = p$. For any chart $\varphi : U \rightarrow$ \mathbb{R}^n on *M*, let $\tilde{\gamma}$ denote the Euclidean realization of a curve γ , *i.e.*, $\tilde{\gamma} := \phi \circ \gamma|_{\gamma^{-1}(\gamma(\mathbb{R}) \cap U)}$. Let two curves γ_1 , γ_2 be equivalent at *p* if and only if their Euclidean velocity is the same, *i.e.*, if $\tilde{\gamma}'_1(0) = \tilde{\gamma}'_2(0) = u$ for some fixed vector *u*. A *tangent vector* at *p* is then an equivalence class of curves. The *tangent space* at *p*, denoted T_pM is the collection of all curves, together with the usual vector space operations in \mathbb{R}^n . The *tangent bundle* is the collection of all tangent spaces T_pM , $p \in M$.



Q: Why did we demand a *differentiable* manifold for this definition?

Differentiable Maps and Diffeomorphisms

Definition. Let $f : M \to N$ be a continuous map between differentiable manifolds *M* and *N*, let $\{\varphi_i : U_i \to \mathbb{R}^n\}$ be an atlas on *M*, and let $\{\psi_i : V_i \to \mathbb{R}^n\}$ be an atlas on N where $V_i := f(U_i)$. If the compositions $\psi_i \circ f \circ \varphi_i^{-1}$ are differentiable (smooth), then *f* is a differentiable (smooth) map. If f: $M \rightarrow N$ is a differentiable bijection with differentiable inverse, then it is a *diffeomorphism*, and we say that *M* and *N* have the same differentiable (smooth) structure.



Topological vs. Smooth Structure

typically bother to specify the smooth structure.)

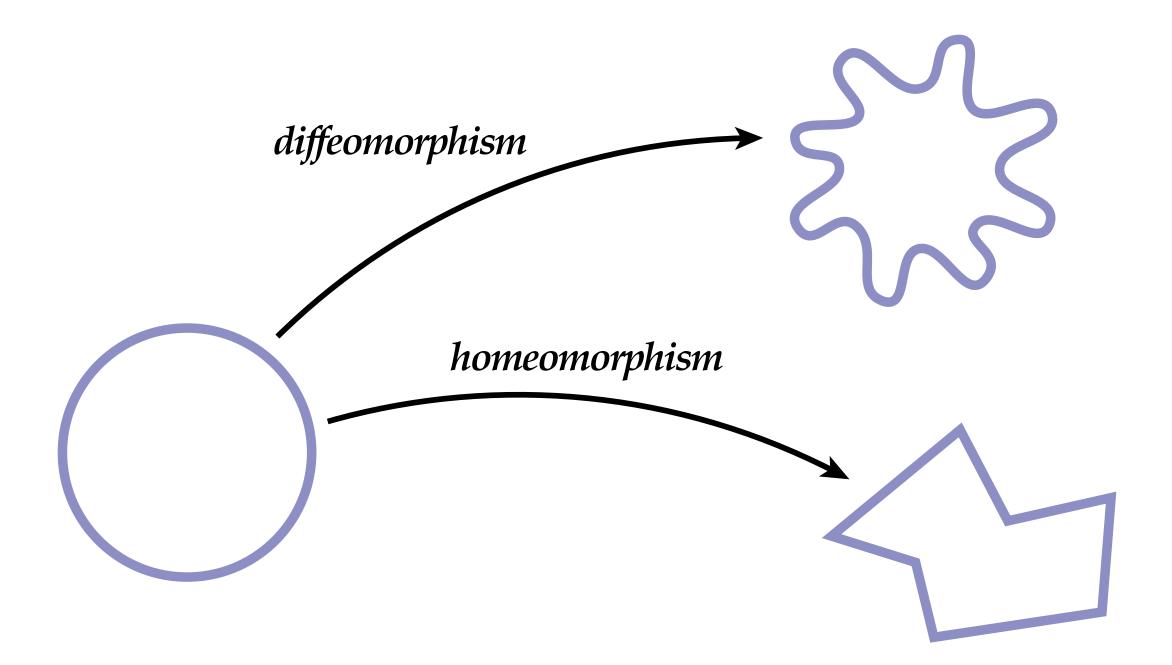
Fun Fact. There is a unique differentiable structure compatible with the Euclidean topology on \mathbb{R}^n , except in the case n = 4 where there are infinitely many "exotic" differentiable structures.

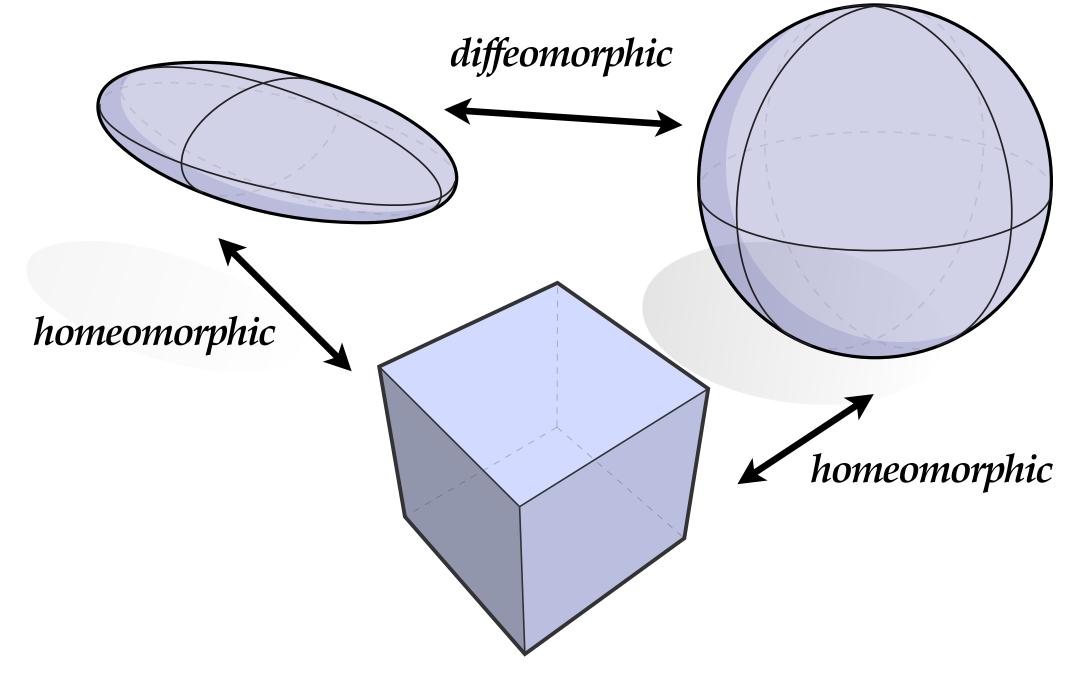
Fun Fact. The 7-dimensional sphere admits 28 distinct differentiable structures, which form an abelian monoid with respect to the *connected sum*.

Fact. In dimension $n \leq 3$, there is only a single unique smooth structure that can be put on a given topological *n*-manifold, *i.e.*, if two smooth manifolds are homeomorphic, then they are automatically diffeomorphic. (Hence, one does not

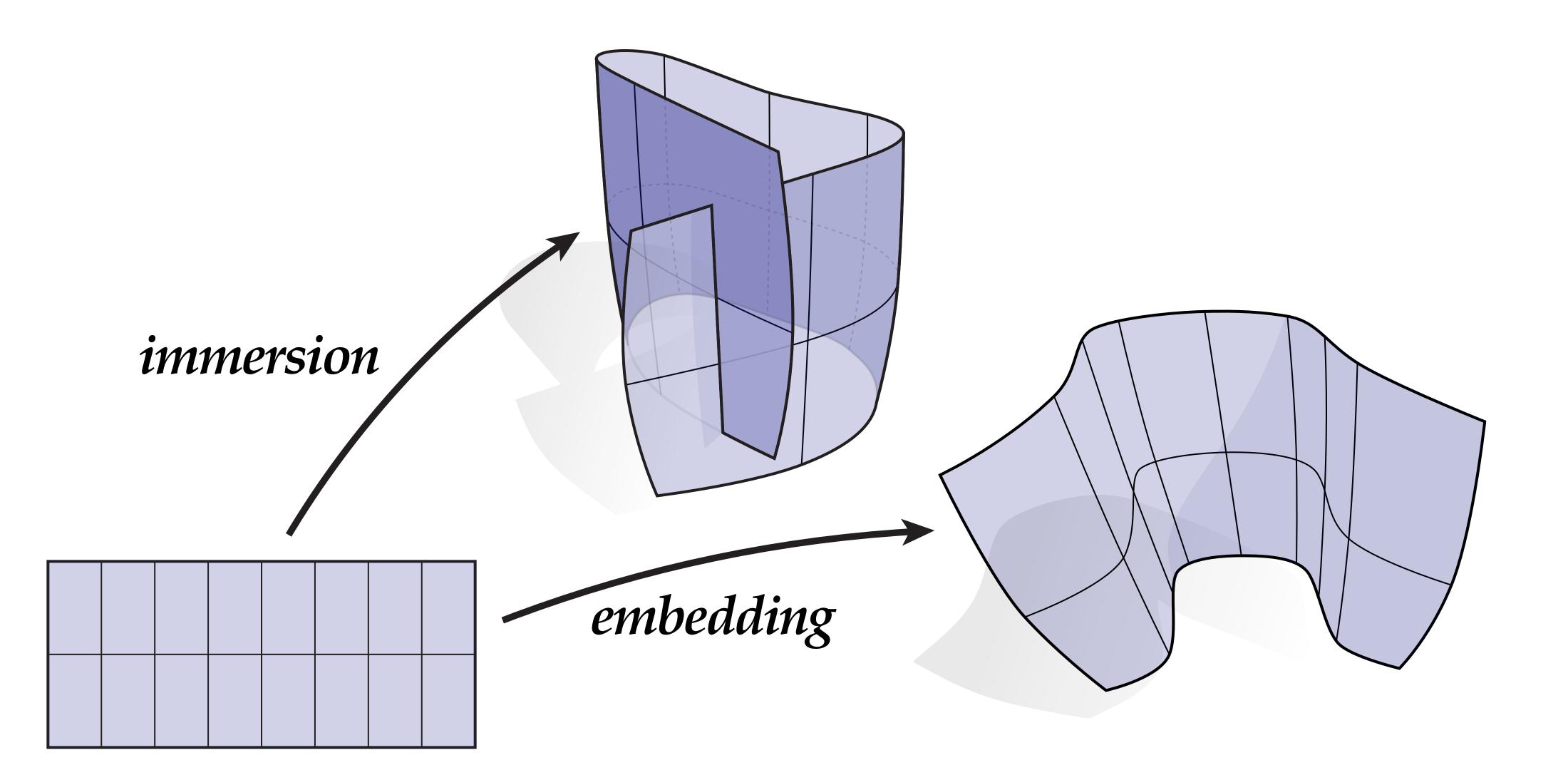
M # N

Homeomorphism vs. Diffeomorphism



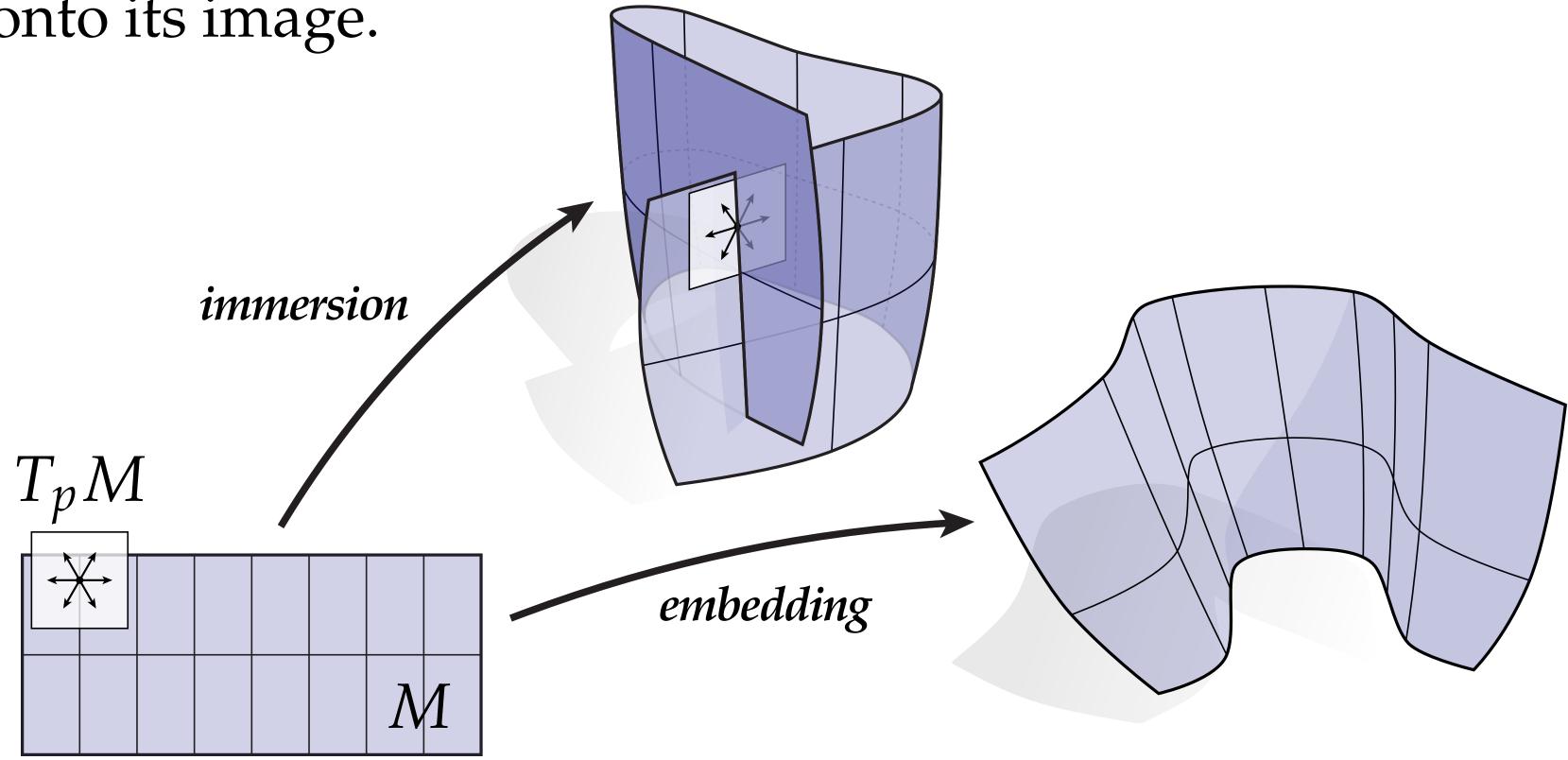


Immersion vs. Embedding—Visualized



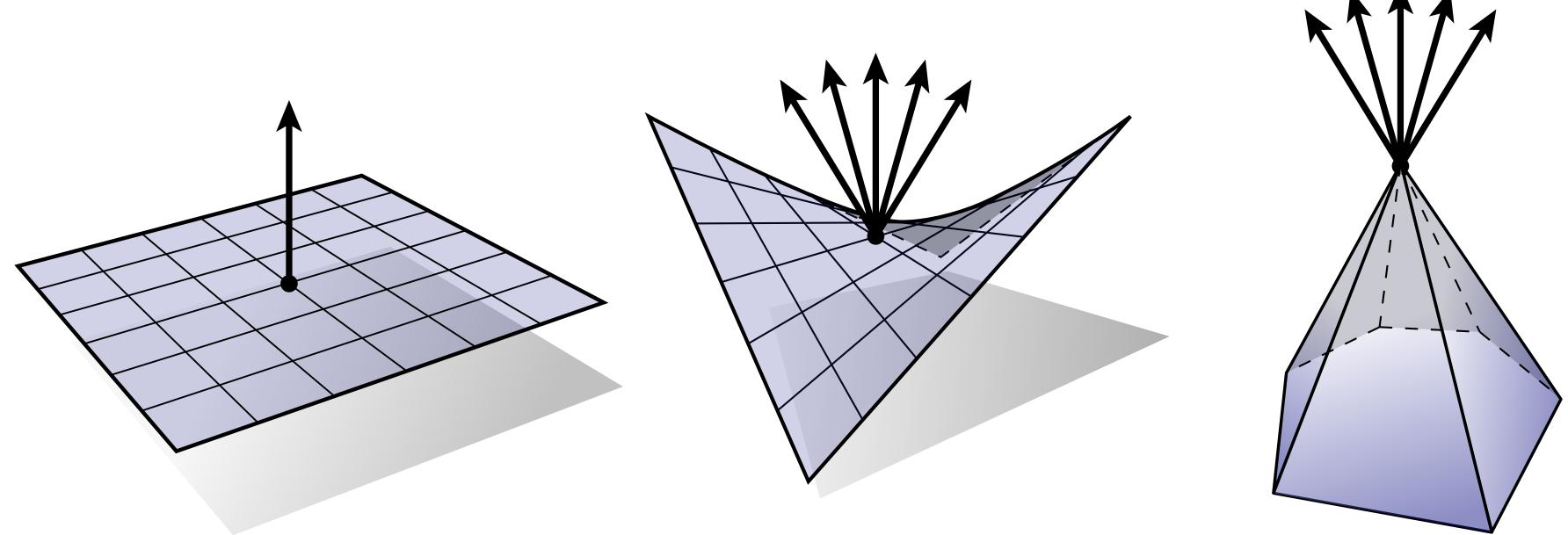
Immersion vs. Embedding

Definition. A differentiable map $f: M \to N$ between differentiable manifolds is an *immersion* if its differential $df_p : T_pM \to T_pN$ is nondegenerate at each point $p \in M$, *i.e.*, if $df_p(X) = 0$ if and only if X = 0. In other words, if the differential is an injective linear map between tangent spaces. An immersion is an *embedding* if it is also a homeomorphism onto its image.



Discrete Tangent Vectors?

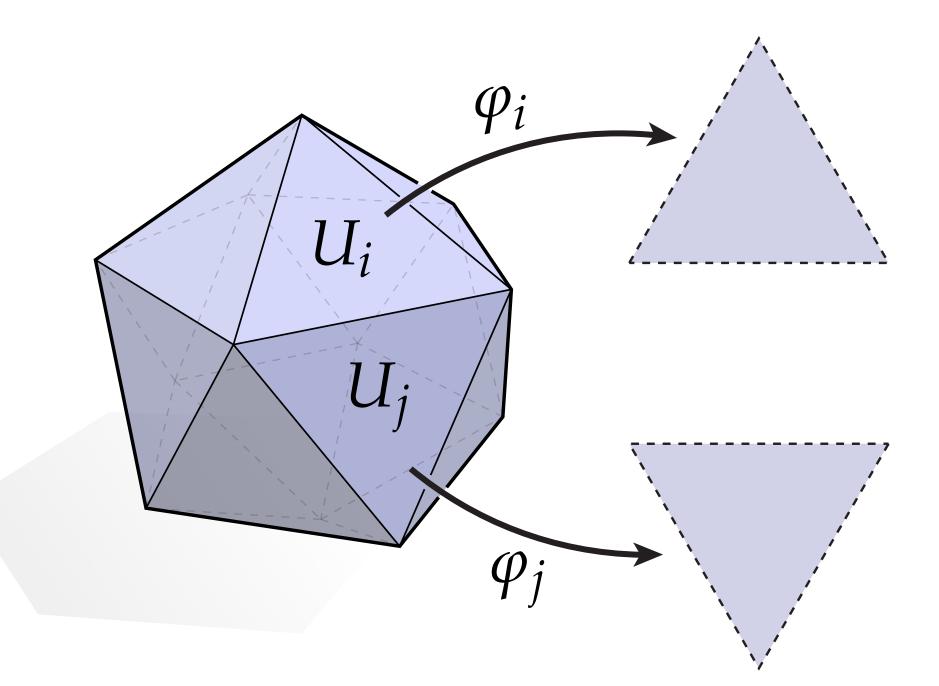
How do we define tangent vectors for a discrete manifold? For one thing, we don't have well-defined normals:



...In fact, we don't know *anything* about how the manifold sits in space! (So far, our "discrete manifold" is just a gluing together of abstract simplices.)

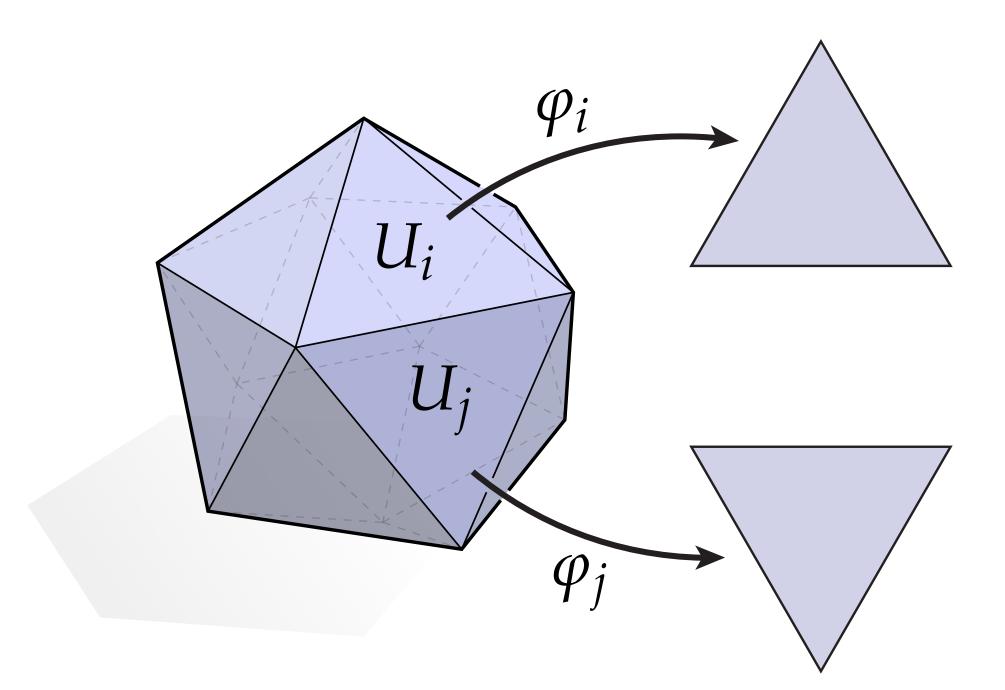
Atlas on a Discrete Manifold...?

Natural idea: use *simplices* as charts (w/ mapping to standard simplex):



Open simplices?

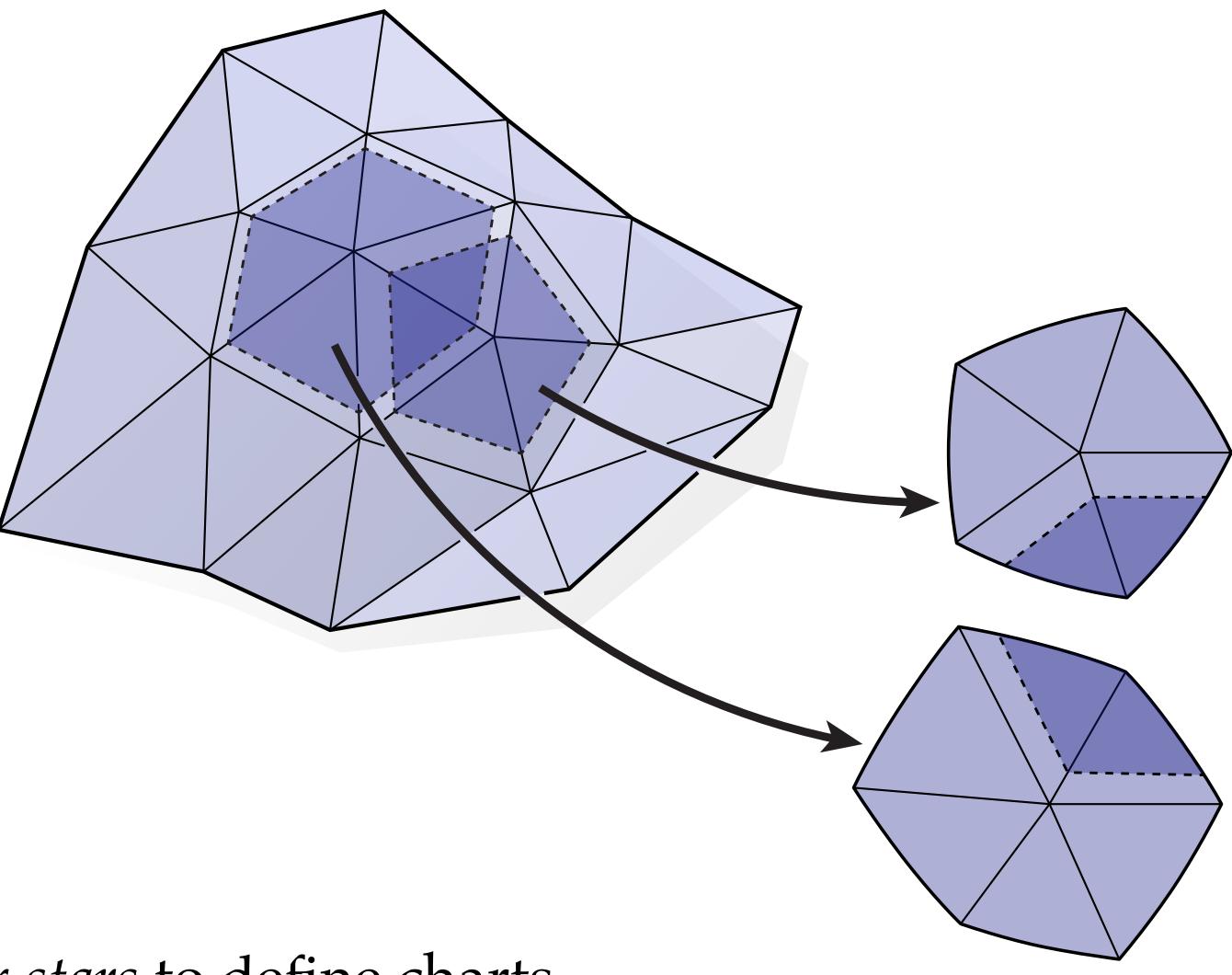
Problem: overlap is *empty!* No way to compare quantities.



Closed simplices?

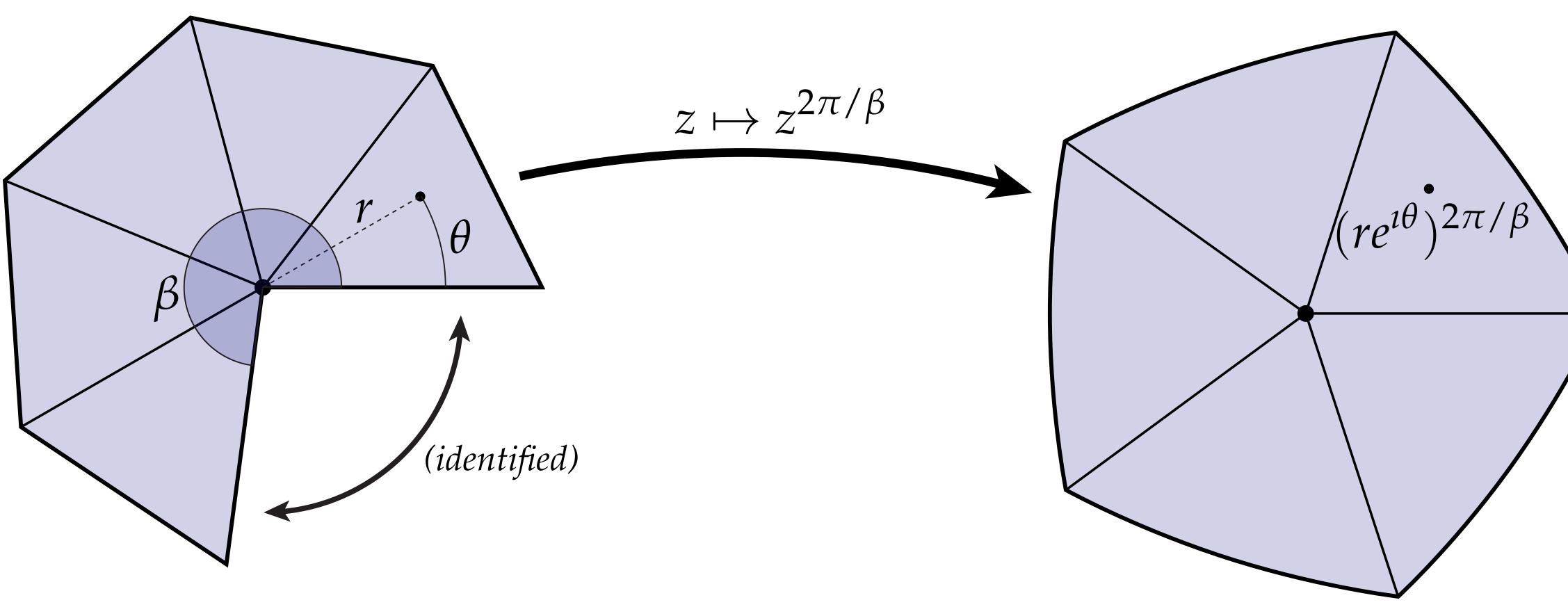
Problem: overlap is *trivial!*Still no way to compare quantities.

Simplicial Atlas

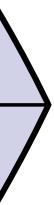


Key idea: use *vertex stars* to define charts.

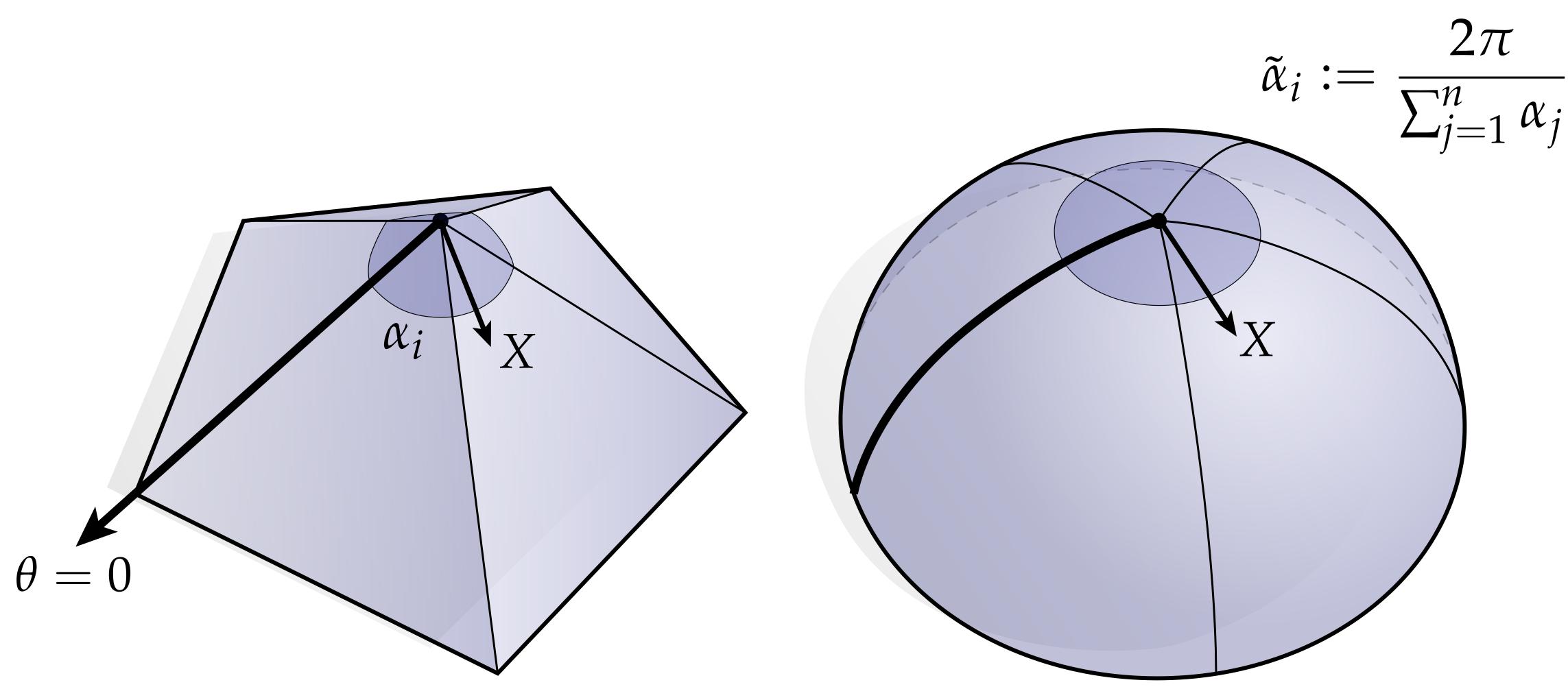
Parameterization of Simplicial Charts



Bijective? Continuous? Homeomorphism? Diffeomorphism?

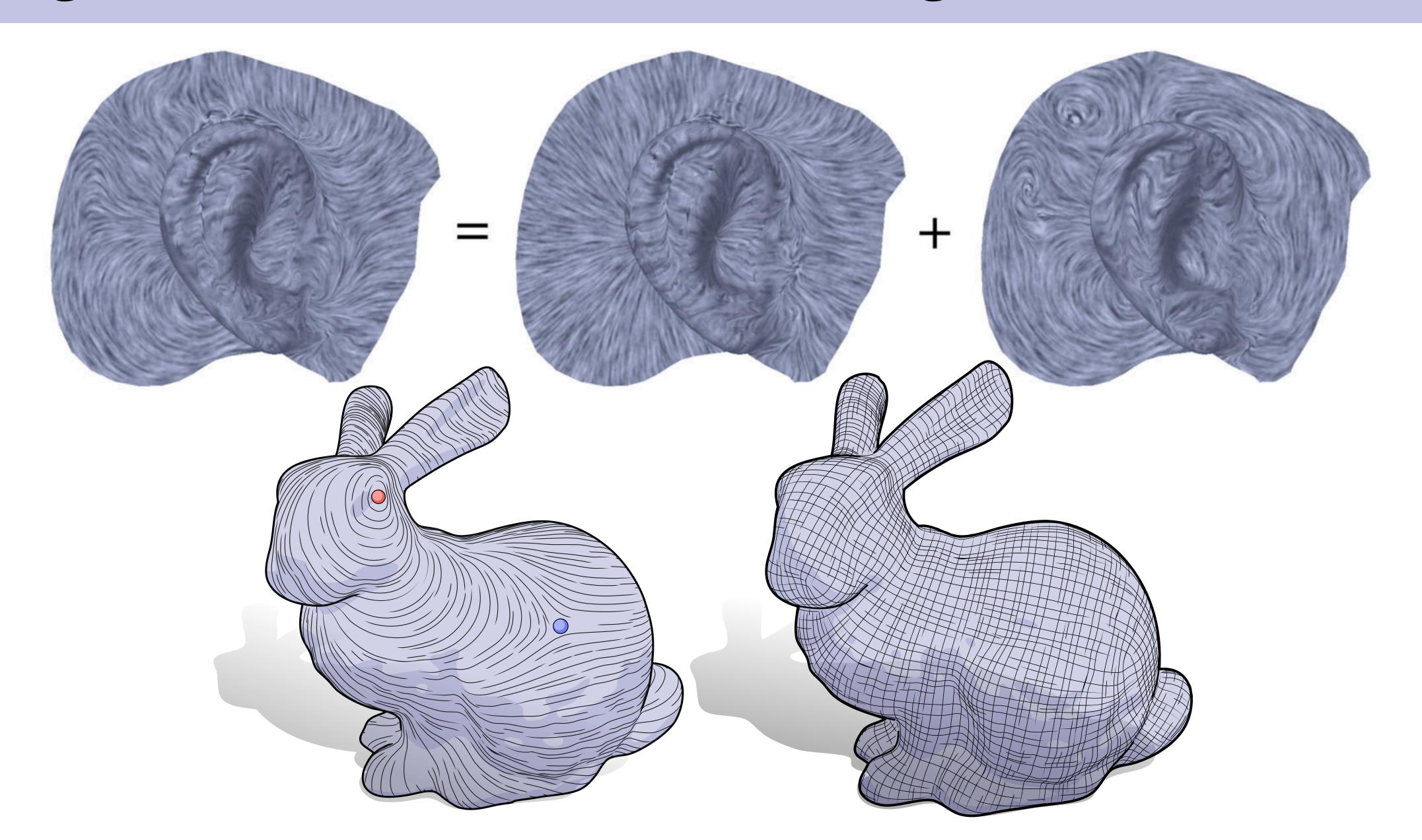


Coordinates on Discrete Tangent Spaces

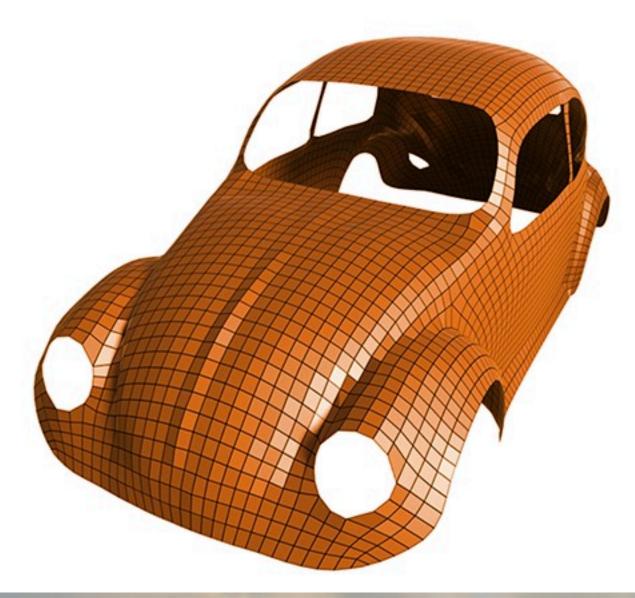


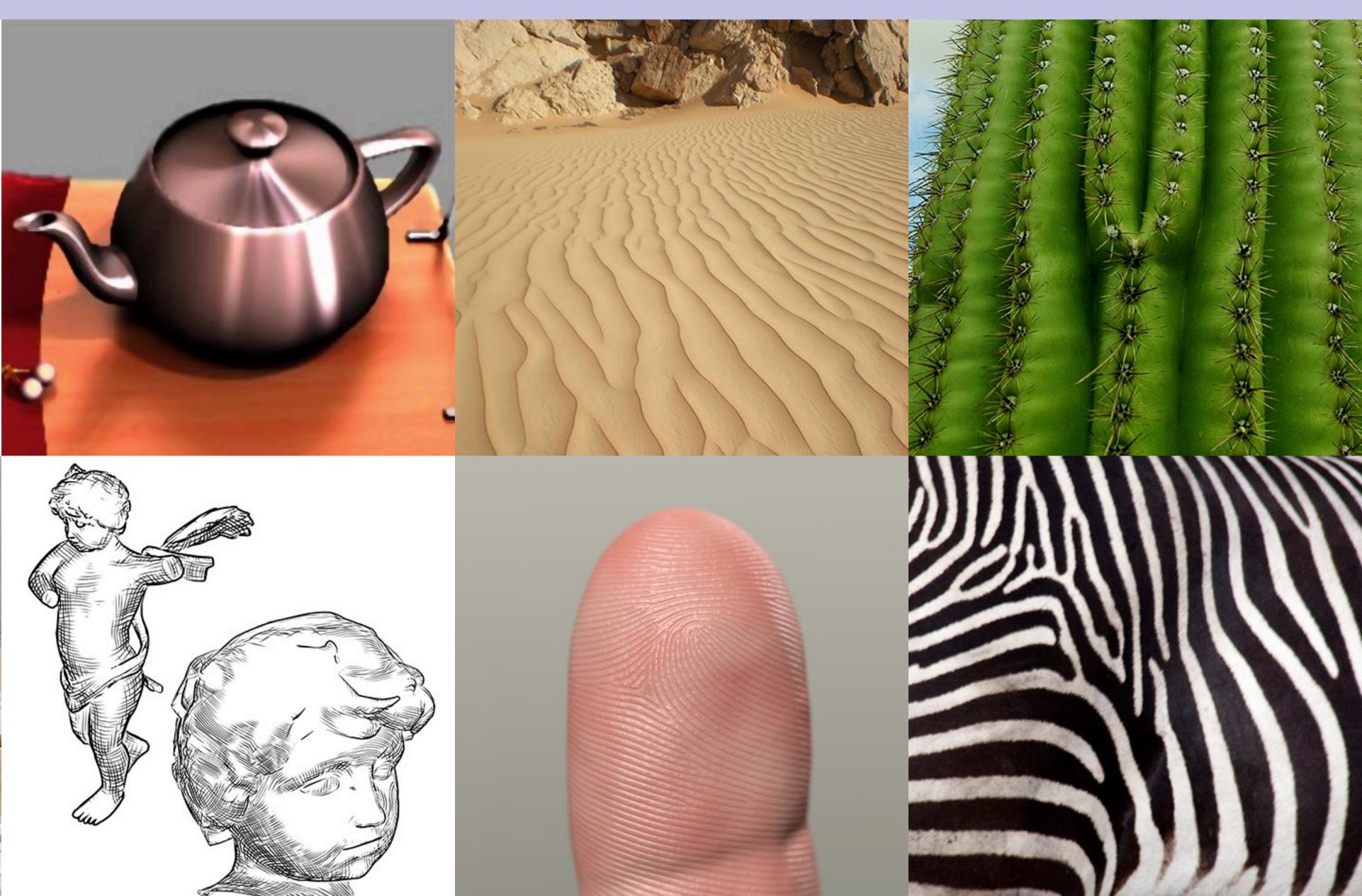
(Generalization to 3D?)

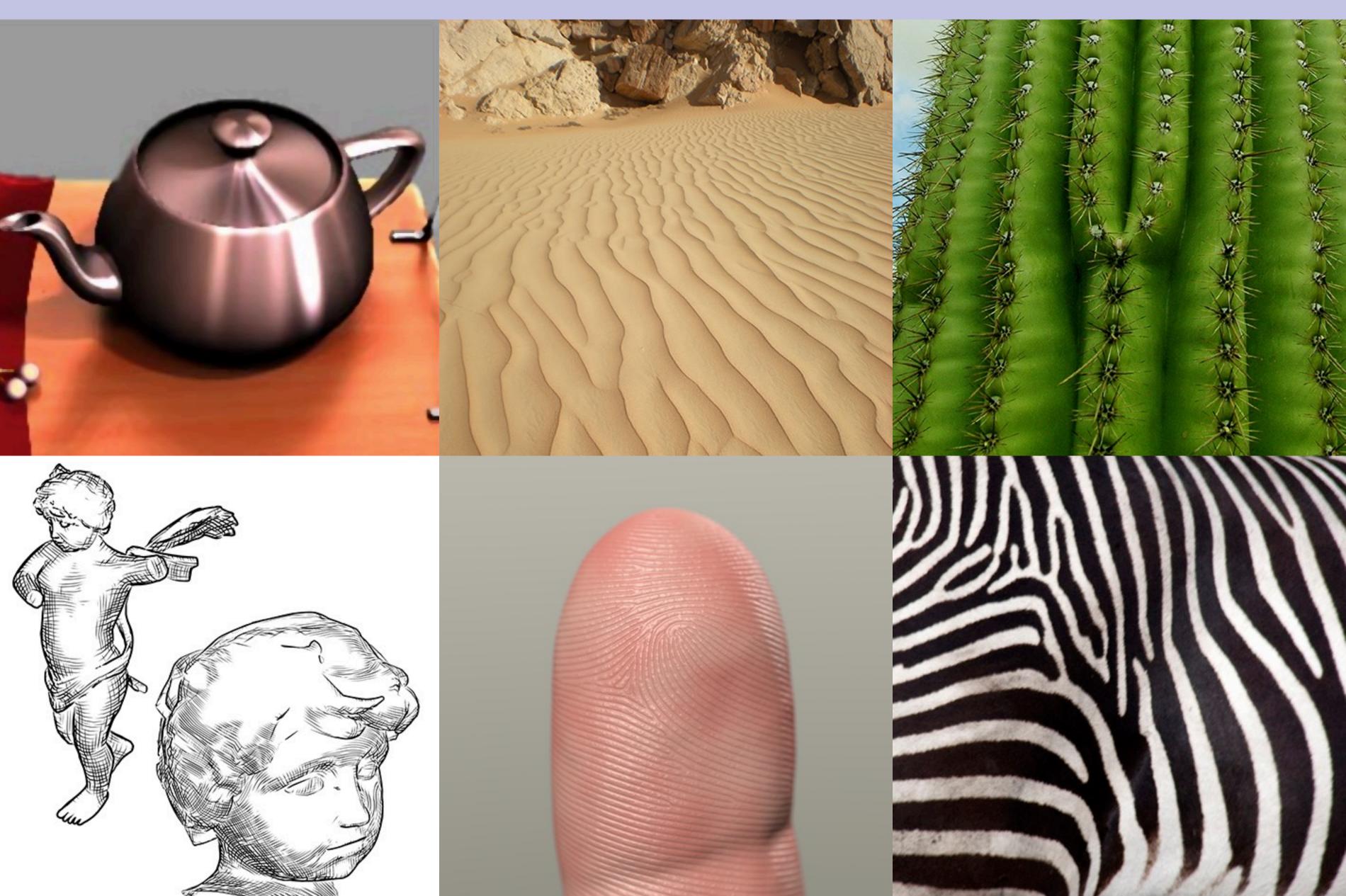
Tangent Vector Field Processing—Preview



Tangent Vector Field Processing—Preview

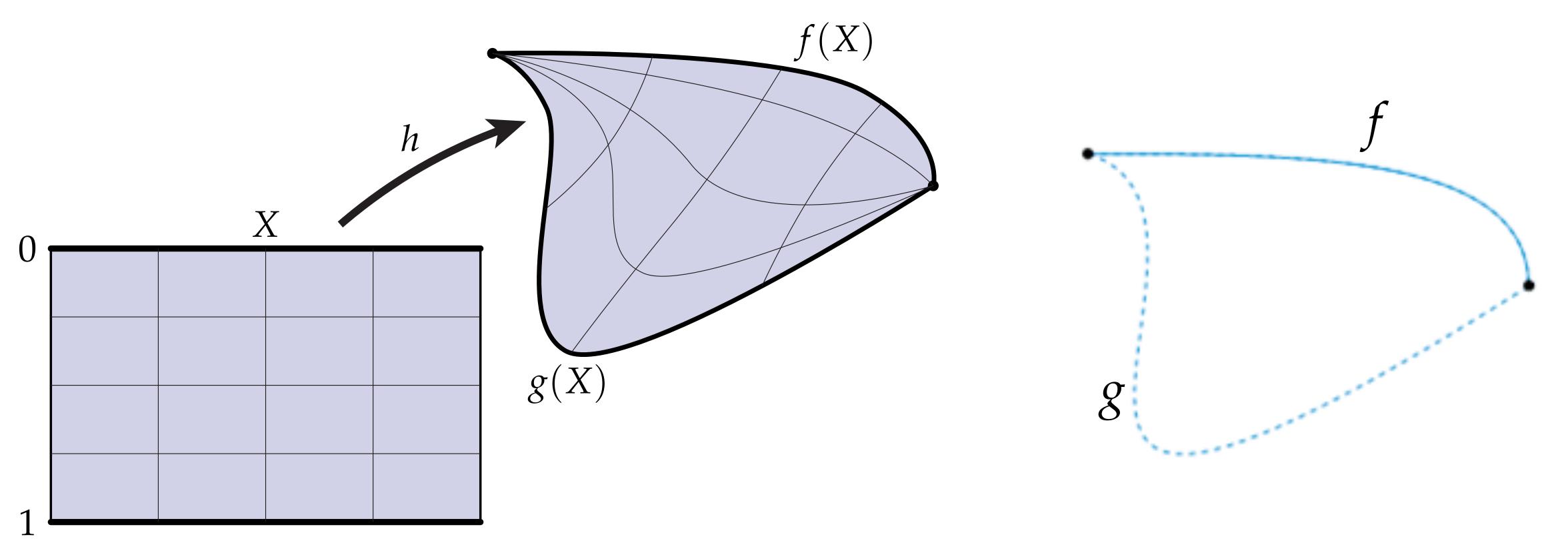






Homotopy and Isotopy

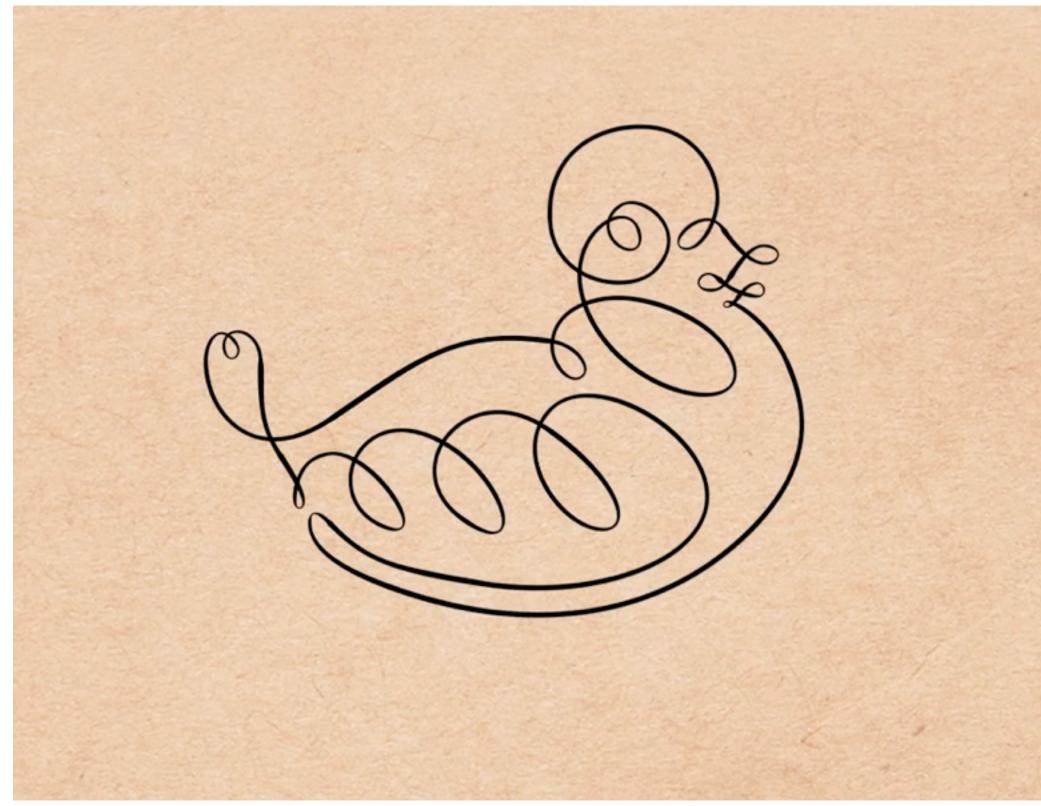
Definition. Let *X*, *Y* be topological spaces. Two maps $f, g : X \to Y$ are *homotopic* if there exists a continuous map $h : X \times [0,1] \to Y$ such that h(x,0) = f(x) and h(x,1) = g(x) for all $x \in X$. If each map h(.,t) is a homeomorphism onto its image, then *h* is an *isotopy*.



Regular Homotopy and Isotopy

embeddings.

Definition. Let M, N be differentiable manifolds. A regular homotopy between two immersions $f,g: M \to N$ is a continuous family of immersions $h(t), t \in [0,1]$ such that h(0) = f and h(1) = g. A *regular isotopy* is a homotopy by differentiable



Crane et al, "Robust Fairing via Conformal Curvature Flow"

Winding Number

Definition. For any integer $k \in \mathbb{Z}$ we can define a *k*-fold covering of the circle

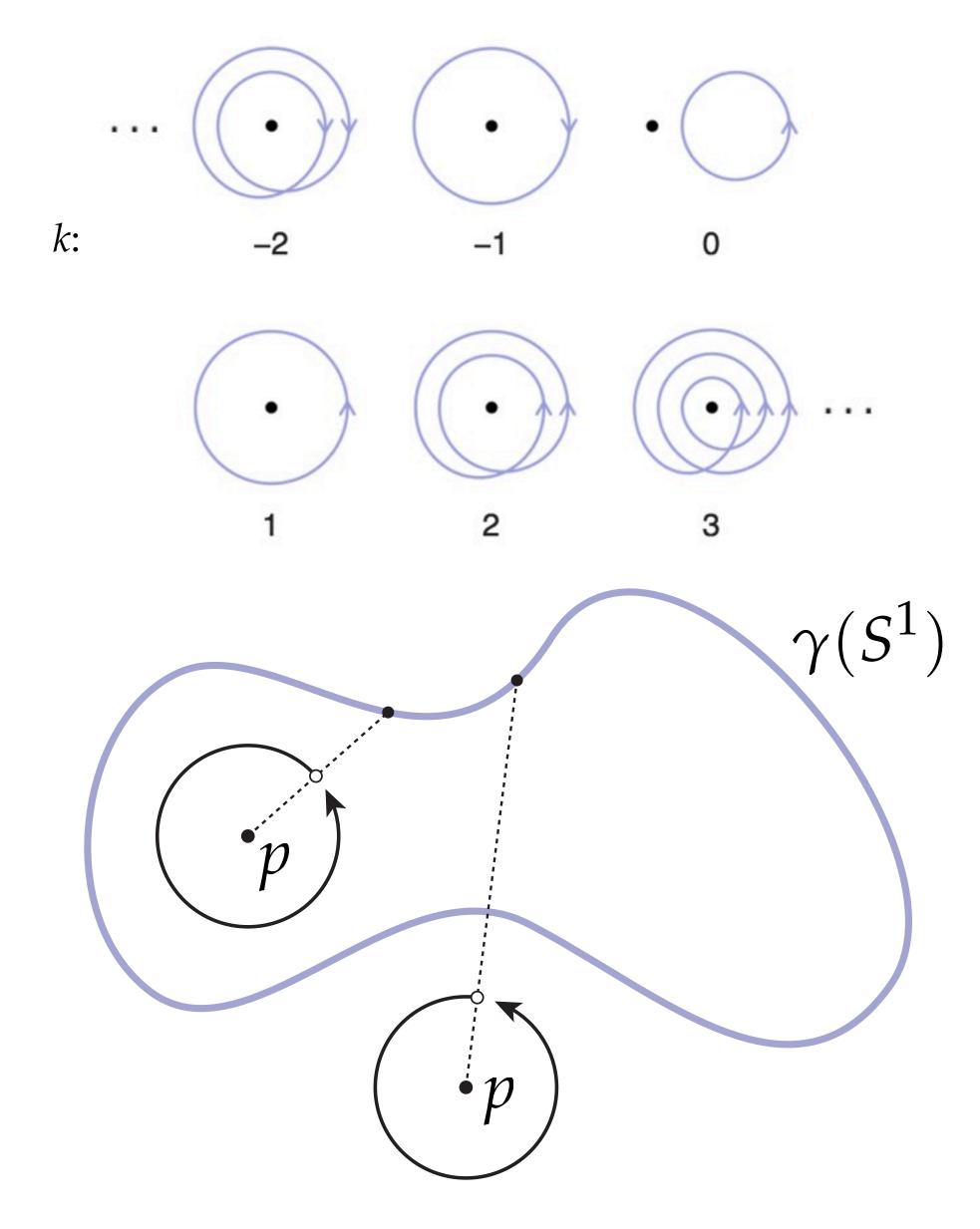
$$\eta_k: [0, 2\pi) \to S^1; \ s \mapsto (\cos(ks), \sin(ks))$$

Let $\gamma : S^1 \to \mathbb{R}^2$ be a continuous map, and let $p \in \mathbb{R}^2$ be any point not on $\gamma(S^1)$. Then

$$\phi := \frac{\gamma - p}{|\gamma - p|}$$

defines a map from the circle to itself. If ϕ is homotopic to η_k , then we say that k is the *winding number* of γ .

(ks)).



Generalized Winding Number

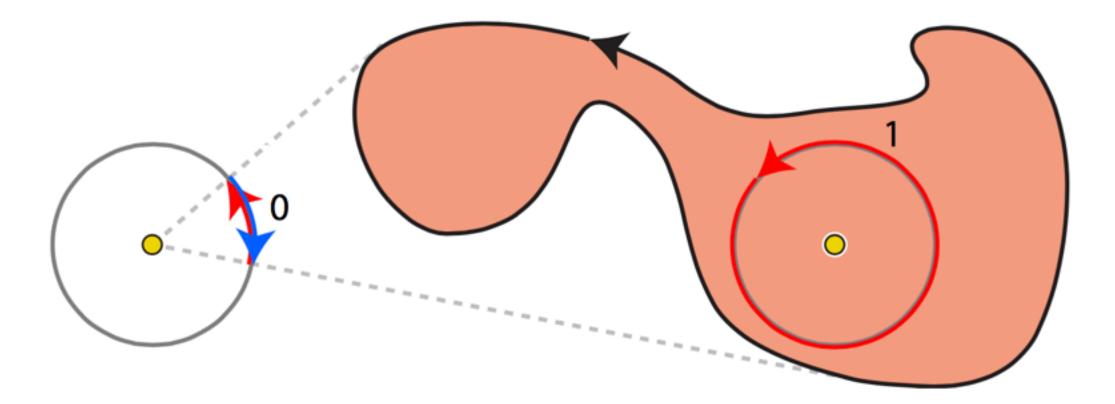
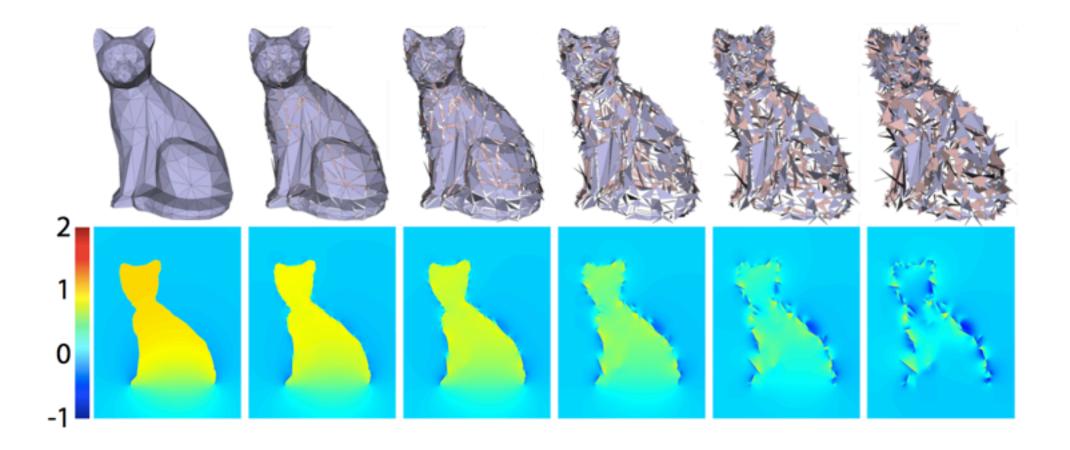


Figure 4: Winding number is the signed length of the projection of a curve onto a circle at a given a point divided by 2π . Outside the curve, the projection cancels itself out. Inside, it measures one.



Jacobson et al, "Robust Inside-Outside Segmentation using Generalized Winding Numbers"

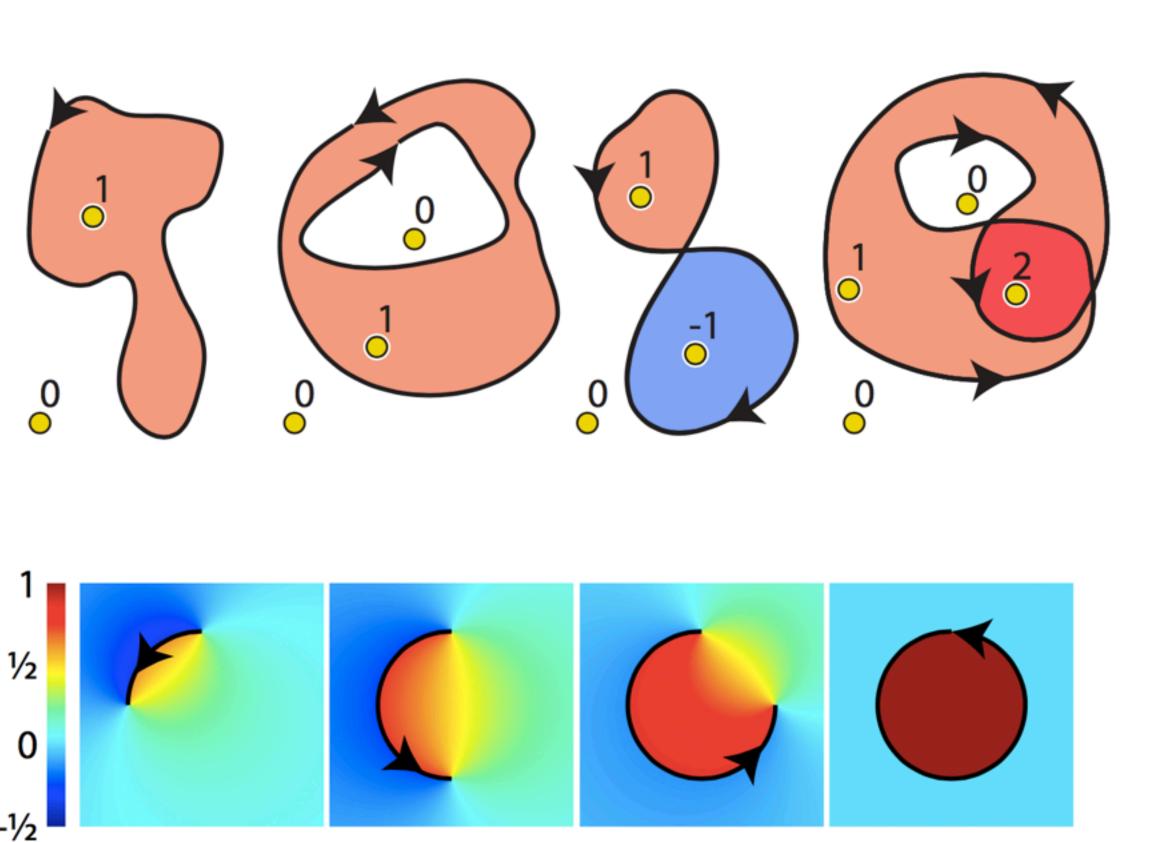
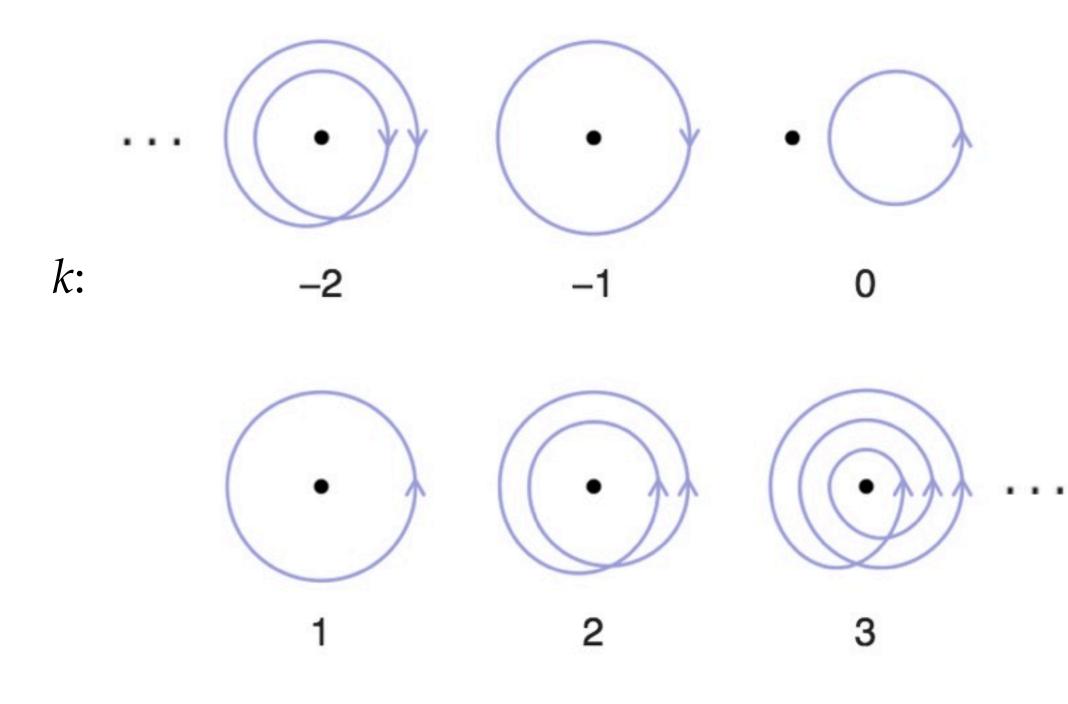


Figure 6: Left to right: winding number field with respect to an open, partial circle converging to a closed circle. Note the ± 1 jump discontinuity across the curve. Otherwise the function is harmonic: smooth with minimal oscillation.

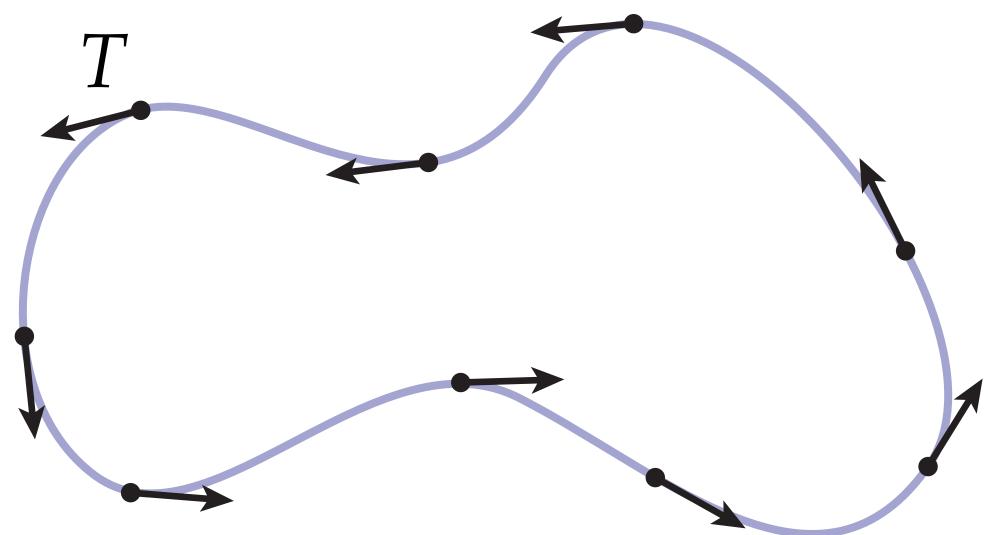
Turning Number

Definition. Let $\gamma : S^1 \to \mathbb{R}^2$ be an immersion, and let

be its unit tangent field; note that T is a map from S^1 to S^1 . If T is homotopic to η_k , then *k* is the *turning number* of γ .



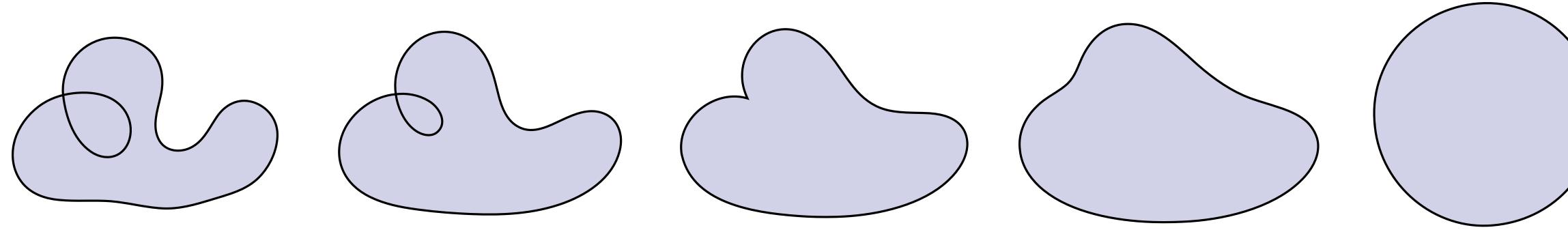
 $T := \gamma' / |\gamma'|$



Whitney-Graustein

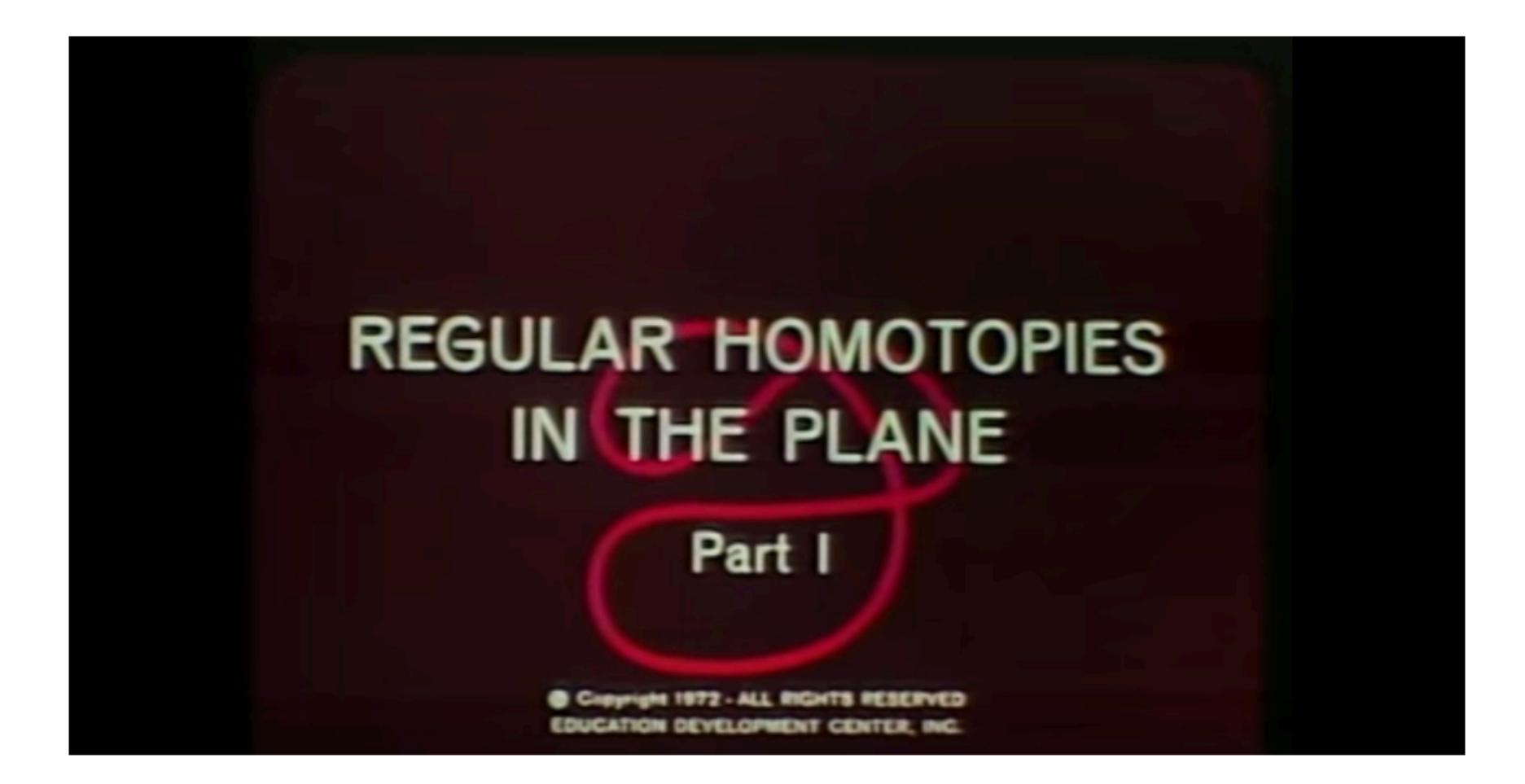
Theorem (Whitney-Graustein). Two re *turning number*.

Corollary. In the plane, you can't turn the circle inside-out, *i.e.*, there is no *eversion* of the circle.



Theorem (Whitney-Graustein). Two regularly homotopic curves have the same

Regular Homotopies in the Plane

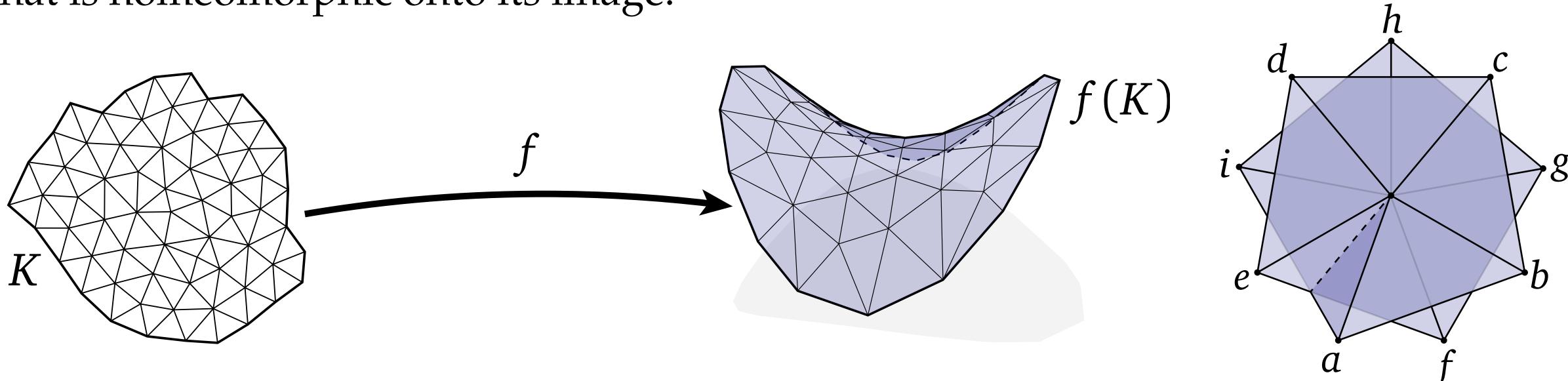


https://youtu.be/m7k8fxaAC40 https://youtu.be/fKFH3c7b57s https://youtu.be/mY-V0TSMVCY https://youtu.be/olVQt_qx-bw

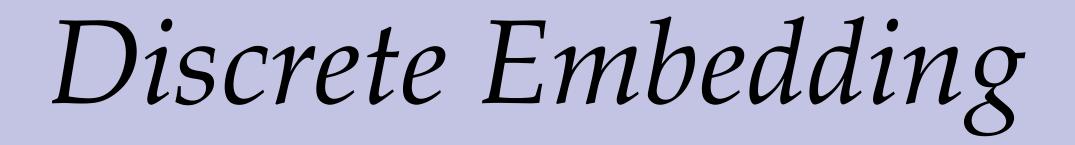
Sphere Eversion

Discrete Immersion

Definition. A simplicial map f is a *discrete immersion* if it is locally injective, *i.e.*, if around every point p there exists a small neighborhood U such that $f|_U$ is injective. Equivalently, f is a discrete immersion if every vertex star St(v) is mapped bijectively onto its image. A *discrete immersion* is a globally injective discrete immersion that is homeomorphic onto its image.



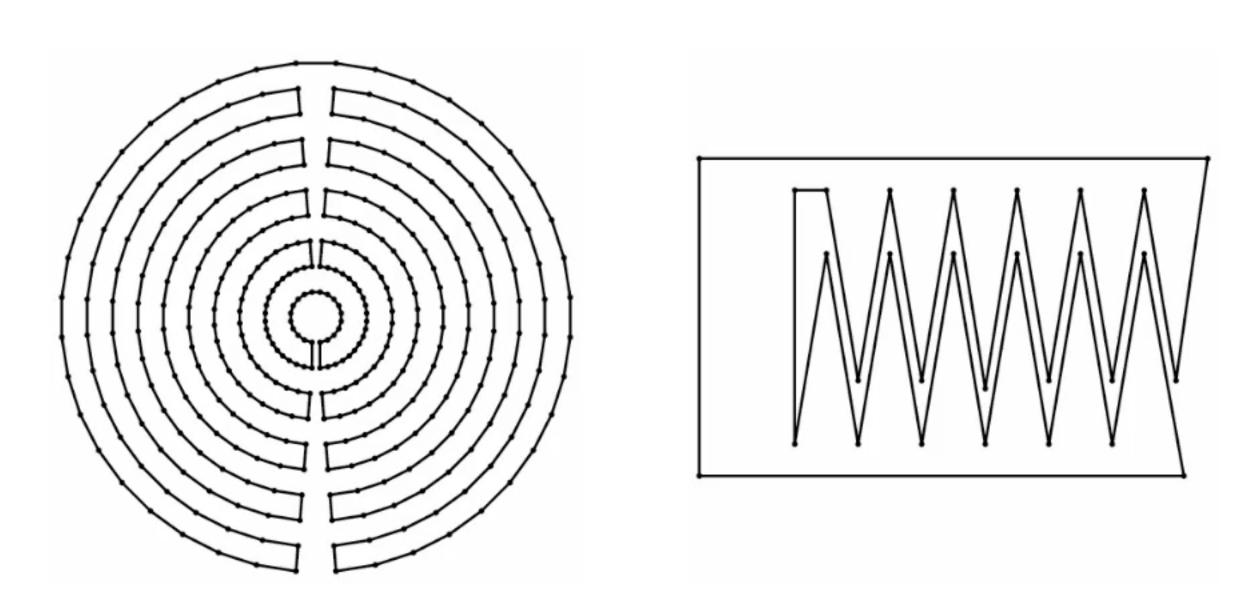
Note: "no degenerate simplices" is **NOT** the same as "locally injective!"



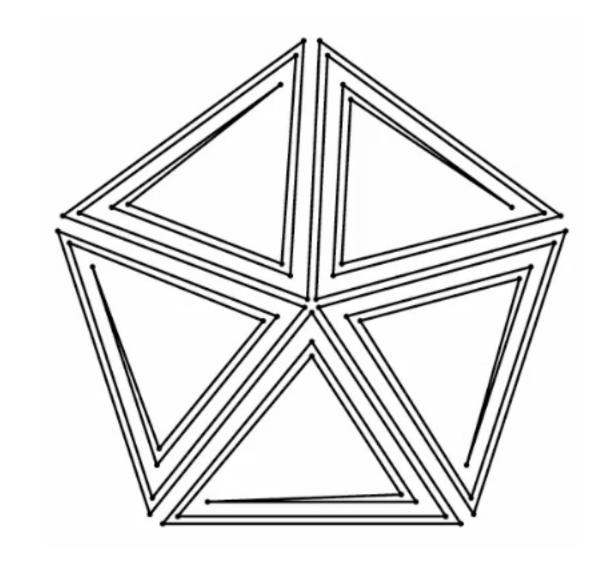
What do you think?

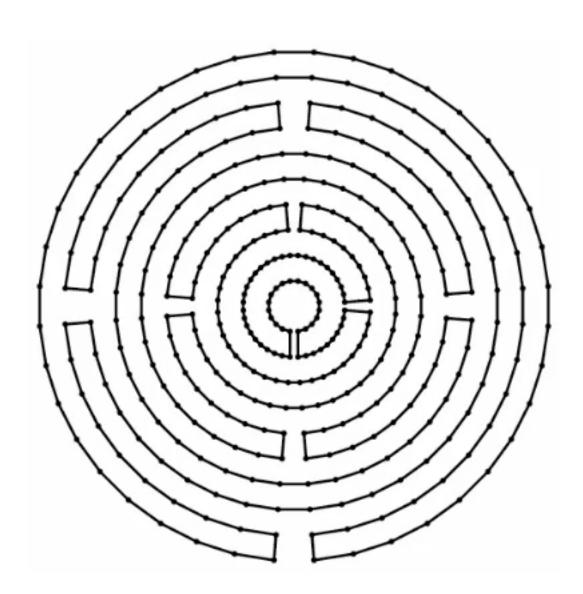
Discrete Regular Homotopy / Isotopy

Definition. A family of simplicial maps f_t is a discrete regular homotopy if each map in the family is a discrete immersion; it is a *discrete regular isotopy* if each map is a discrete embedding.



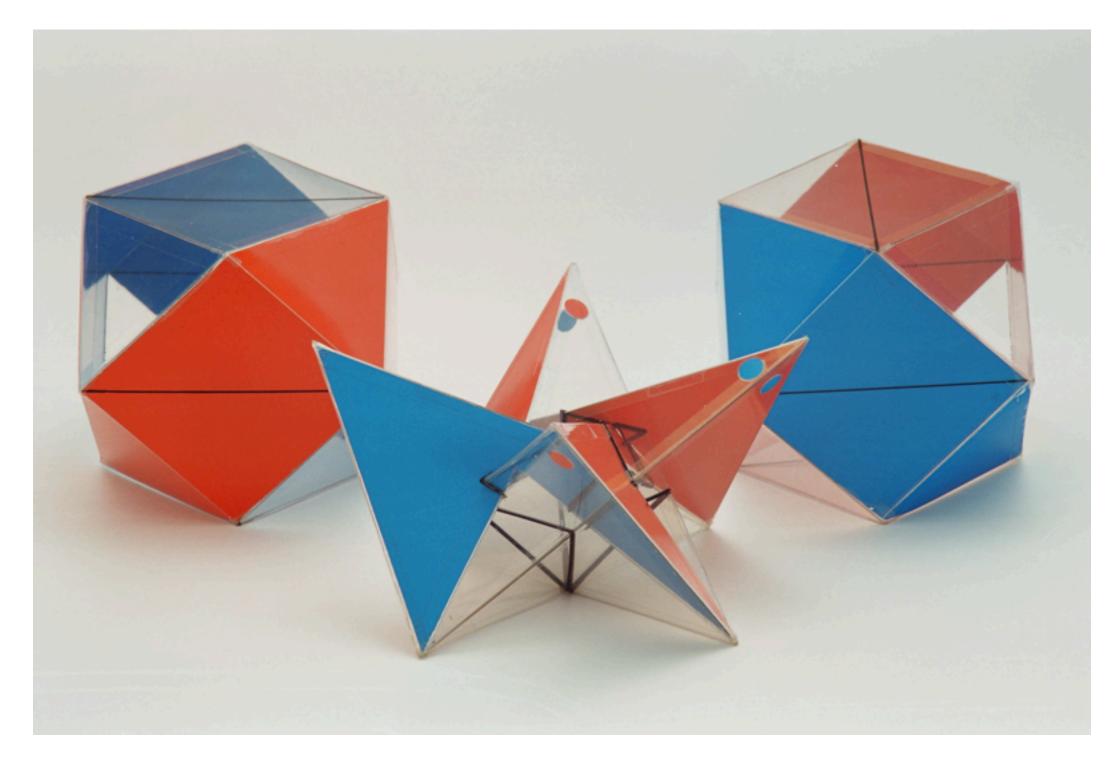
Cantarella et al, "An Energy-Driven Approach to Linkage Unfolding"



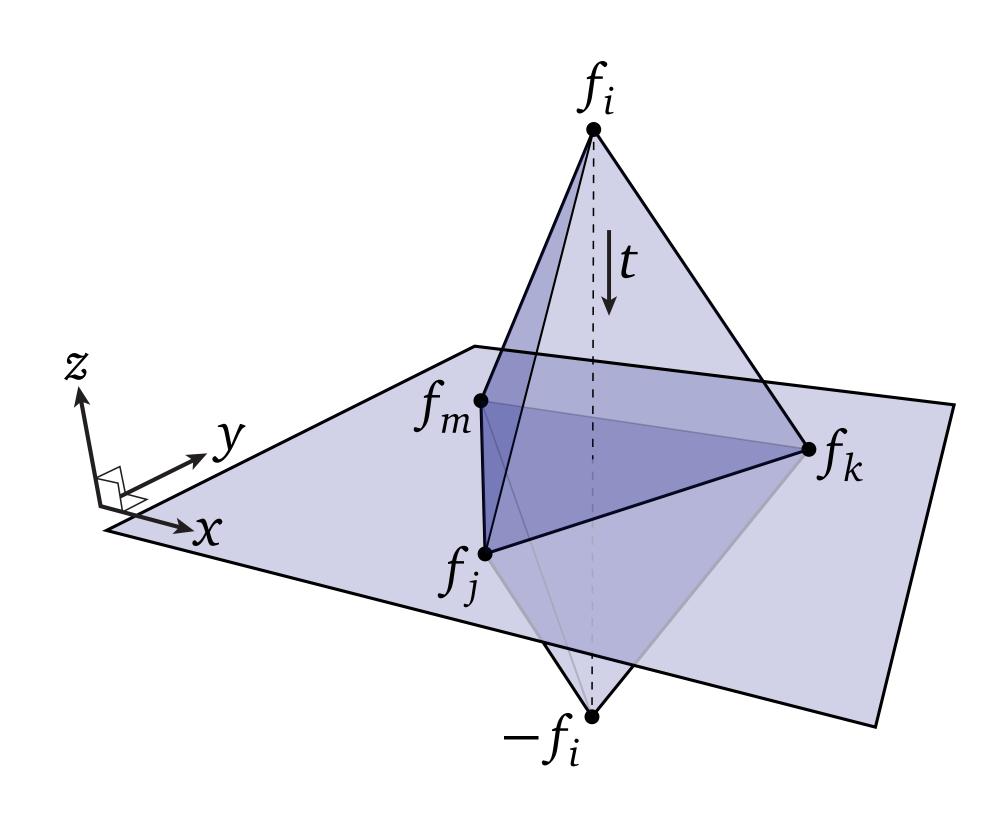


Discrete Sphere Eversion

A discrete regular homotopy is a homotopy by discrete immersions. Can you *always* turn a simplicial sphere inside-out? Can you turn a simplicial sphere inside-out?

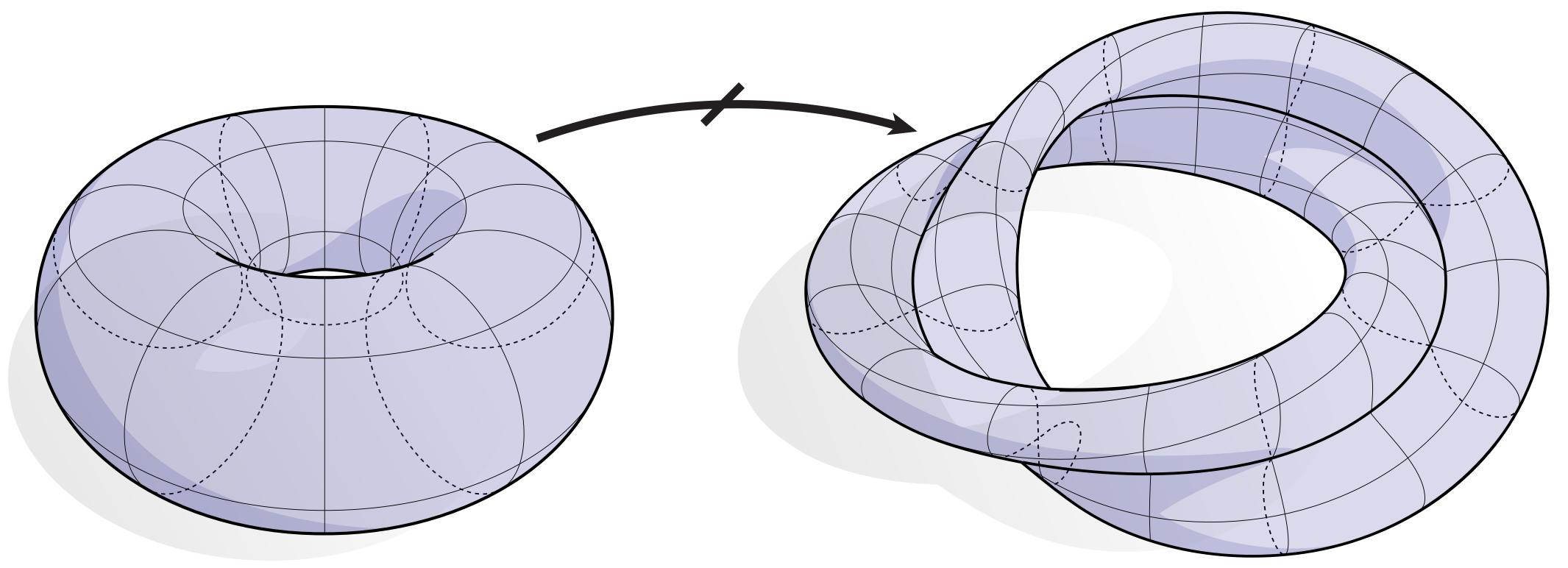


Denner, "Polyhedral Eversions of the Sphere"



Regular Homotopy Classes of Surfaces

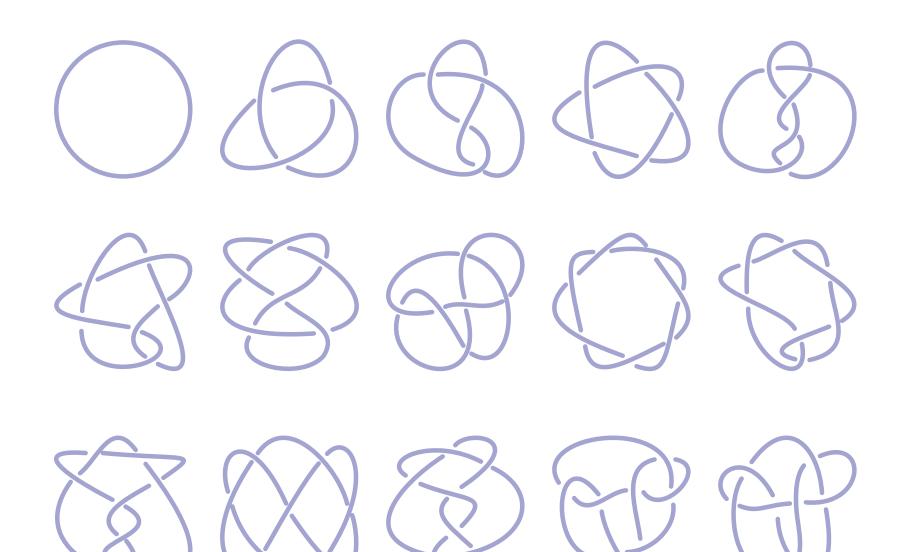
of immersions into \mathbb{R}^3 .

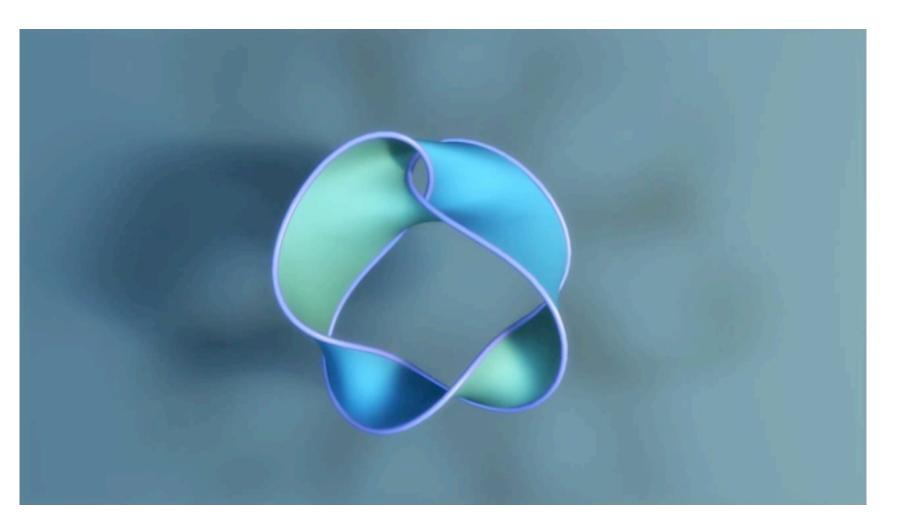


Theorem (Pinkall). For a surface of genus *g*, there are 2^{2g} regular homotopy classes

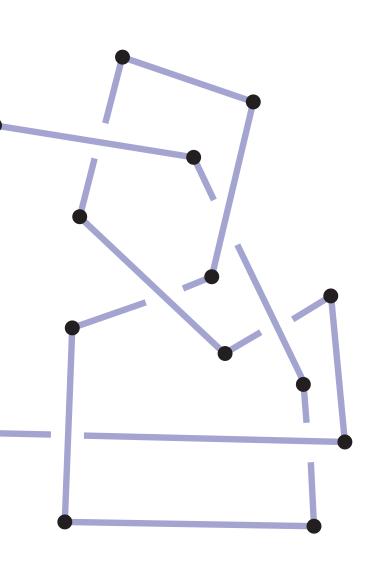
(Discrete theorem...?)

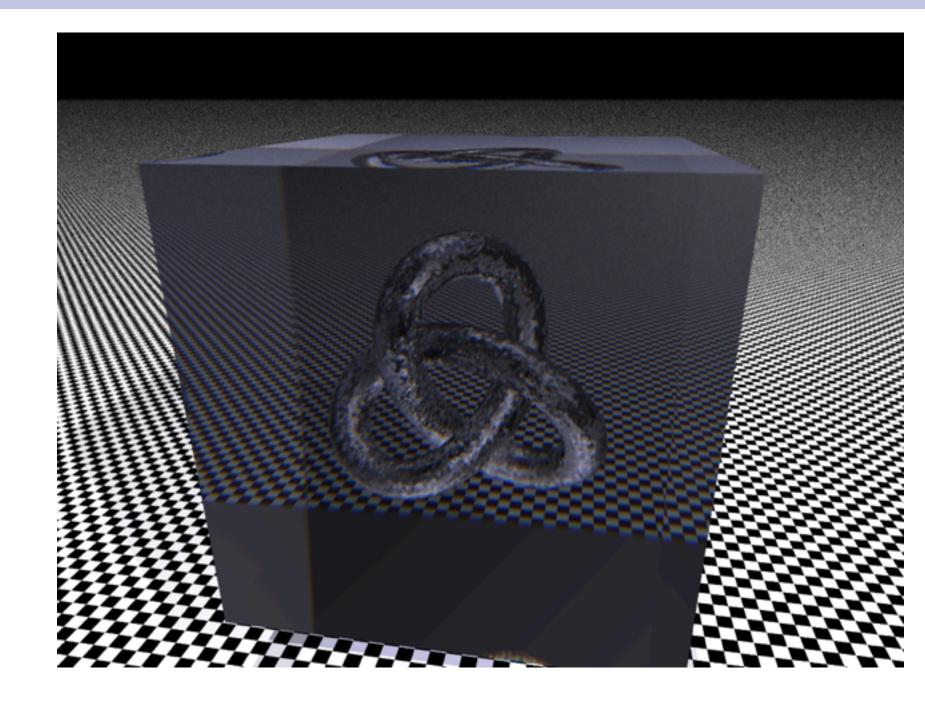
Geometric Topology





Mustafa Hajij / SeifertView





Computational Geometric Topology

What we know: the complexity of $EMBED_{k\to d}$

						d			
k	2	3	4	5	6	7	8	9	1
1	Ρ								
2	Ρ	D	NPh						
- 3 4		D	NPh	NPh	Ρ				
4			NPh	und	NPh	NPh	Ρ		
5 6				und	und	NPh	NPh	Ρ	F
6					und	und	NPh	NPh	NF
7						und	und	NPh	NF

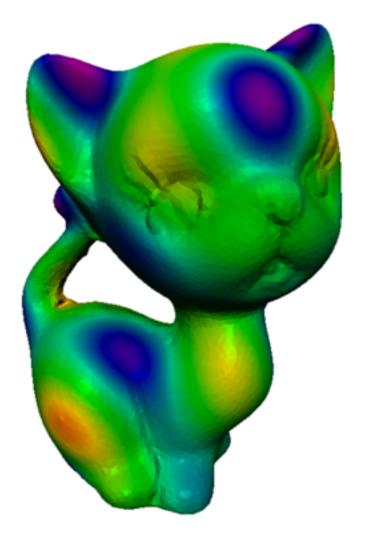
und = algorithmically undecidable [Matoušek, Tancer, W.] NPh = NP-hard [Matoušek, Tancer, W.] D = algorithmically decidable [Matoušek, Sedgwick, Tancer, W.] P = polynomial-time solvable; new results based on algorithmichomotopy classification of (equivariant) maps [Čadek, Krčál, Matoušek, Sergeraert, Vokřínek, W.]

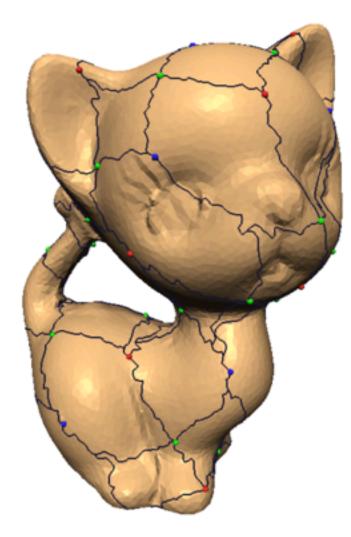
11 12 13 14 LO

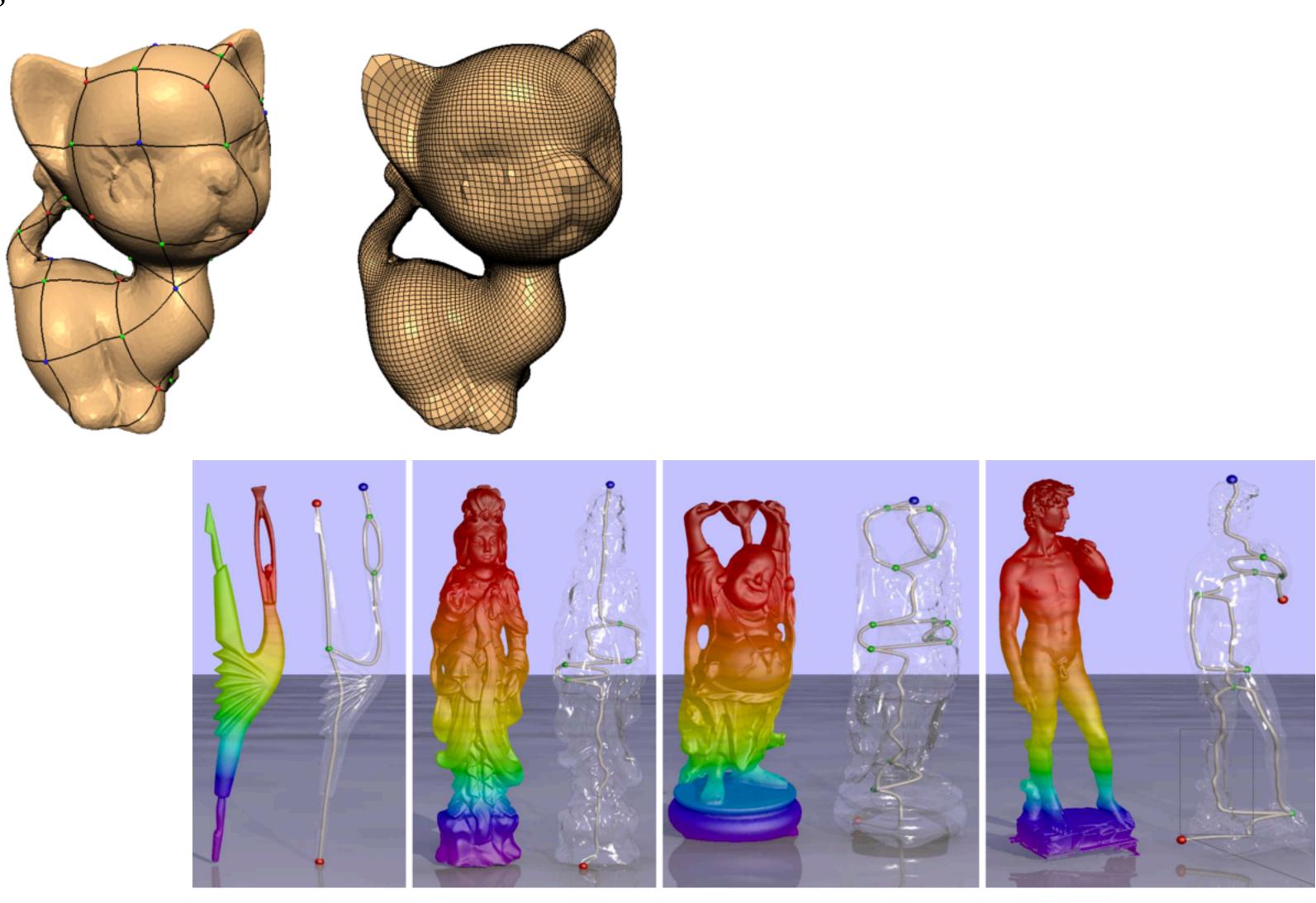
IPh P P IPh NPh P P P

[Courtesy Uli Wagner]

Garland et al, "Spectral Surface Quadrangulation"







Computational Topology in Geometry Processing

Pascucci et al, "Robust On-line Computation of Reeb Graphs"

Summary—Differentiable Manifolds

CONTINUOUS

derivative differentiable manifold differentiable map tangent space immersion

Fact. For $n \leq 3$, smooth structure is uniquely determined by topology. **Fact.** There are often more regular homotopy classes in the discrete case than in the continuous setting.

• • •

Hence, not everything is captured by discretization!

DISCRETE

difference simplicial manifold simplicial map rescaled angles locally injective simplicial map • • •

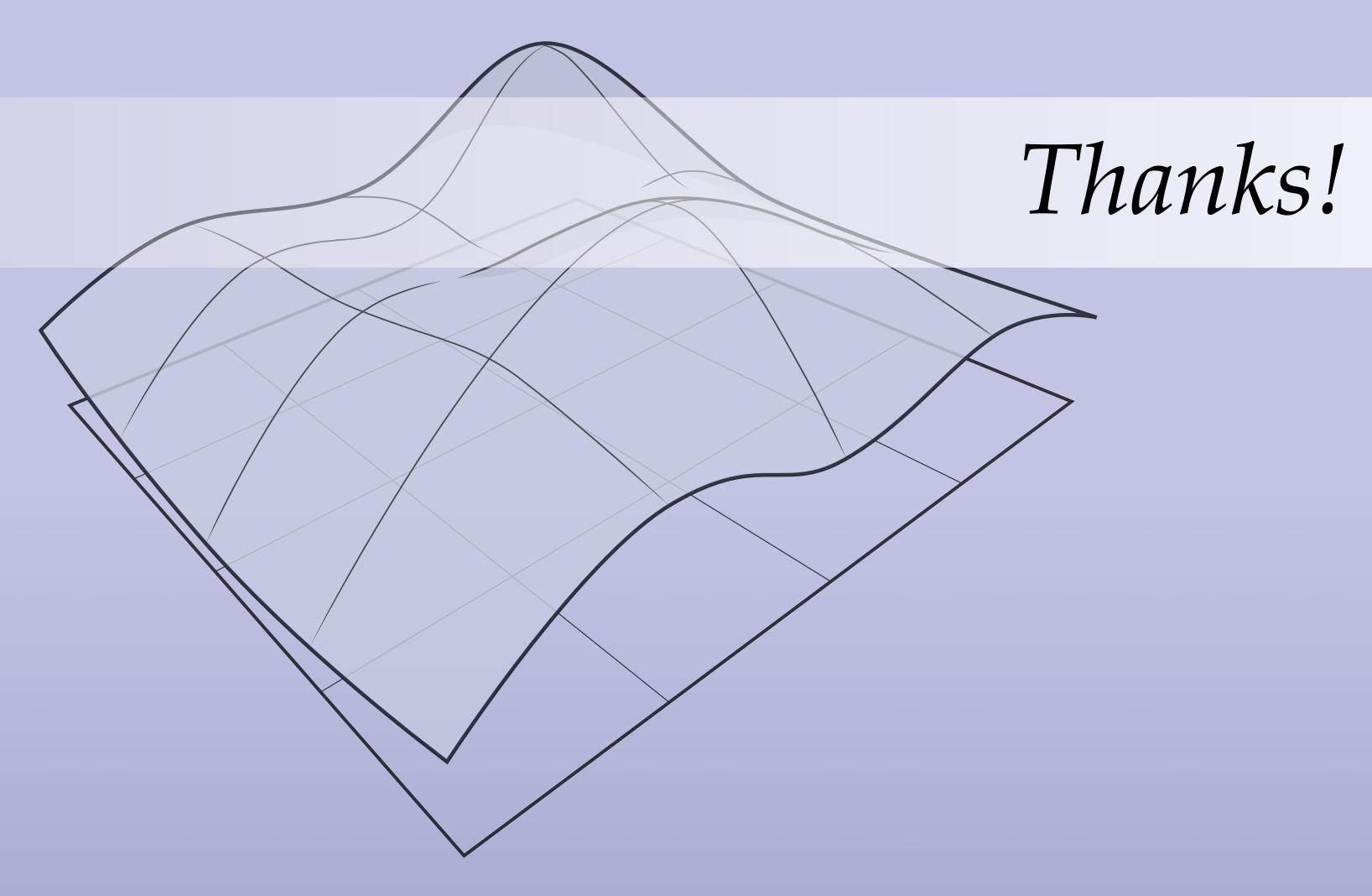
Topological vs. Geometric Structures

Set "floppier" TOPOLOGICAL SPACE TOPOLOGICAL MANIFOLD SMOOTH MANIFOLD COMPLEX MANIFOLD **RIEMANNIAN MANIFOLD**

"topology"

"differential topology"

"geometry"



DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-869(J) • Spring 2016