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1. Introduction	
In	the	mathematical	study	of	heat	conduction	and	diffusion,	the	fundamental	guiding	equation	
is	called	the	heat	equation,	which	is	a	parabolic	partial	differential	equation	that	describes	the	
distribution	of	heat	or	temperature	in	space	over	time	[1].	The	heat	equation	is	also	called	the	
"diffusion	 equation",	which	models	 a	wide	 variety	 of	 phenomena	 beyond	 heat,	 e.g.,	 general	
dissipation	 phenomena	 (known	 to	 some	 scientists	 as	 "Fick's	 law").	 For	 a	 heat/temperature	
distribution	function	𝑢(𝑥, 𝑦, 𝑧, 𝑡)	in	3D	space	(𝑥, 𝑦, 𝑧)	and	with	time	variable	𝑡,	the	heat	equation	
is		
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which	can	be	generalized	in	any	coordinate	system	as	
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where	Δ 	is	 the	 Laplace	 operator	 and	𝛼 	is	 a	 positive	 constant	 which	 can	 be	 set	 to	 1	 as	 a	
mathematical	treatment.	
	
				Suppose	we	have	a	compact	Riemannian	manifold	𝑀,	 then	heat	diffusion	process	over	𝑀	is	
governed	by	the	heat	equation:	
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where	Δ8 	is	 the	 Laplace-Beltrami	 operator	 of	𝑀.	Given	 the	Riemannian	metric	𝑔	of	𝑀,	𝛥8 	in	
local	coordinates	can	be	expressed	as		
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As	introduced	in	the	class,	writing	Δ8	in	terms	of	exterior	calculus	leads	to	a	much	more	concise	
expression	and	easy	computation:	

Δ8 =	⋆ 𝑑 ⋆ 𝑑 + 𝑑 ⋆ 𝑑 ⋆	 	 	 	 	 (	5	)	
where	the	⋆	is	the	hodge	star	that	encapsulates	curvature	information	of	𝑀.	Note	that	if	𝑀	has	
boundary,	additional	boundary	condition	is	applied	as	𝑢 𝑥, 𝑡 = 	0	∀	𝑥 ∈ 𝜕𝑀.	
	
Let	𝑢O	be	the	initial	heat	distribution	on	𝑀	(𝑢O 𝑥 = 	𝑢(𝑥, 0)),	then	the	solution	of	heat	equation	
(	3	)	has	the	form	

𝑢 𝑥, 𝑡 = ∫ 𝑘+ 𝑥, 𝑦 𝑢O(𝑦)𝑑𝑦		 	 	 	 (	6	)	
where	𝑑𝑦 	is	 the	 volume	 form	 at	𝑦 ∈ 𝑀 ,	 and	ℎ+(𝑥, 𝑦) 	is	 the	 so	 called	 heat	 kernel	 function.	
Intuitively,	ℎ+(𝑥, 𝑦)	can	be	thought	as	the	total	amount	of	heat	transferred	from	𝑦	to	𝑥	at	time	𝑡	
if	there	is	a	unit	amount	of	heat	at	𝑦	initially.	In	other	words,	𝑘+ 𝑥,⋅ 	is	a	solution	to	a	Poisson	
problem	 with	 initial	 condition	 𝑘O = 𝛿0 ,	 where	 𝛿0 	is	 Dirac	 delta	 function	 on	 point	 𝑥 	and	
𝛿0 𝑧 𝑑𝑧 = 18 .	



Thus,	if	we	multiply	ℎ+(𝑥, 𝑦)	with	the	initial	heat	distribution	at	𝑦	and	integrate	over	the	whole	
𝑀,	we	will	be	able	to	get	the	heat	distribution	𝑢 𝑥, 𝑡 	at	𝑥	at	time	𝑡.	Note	that	the	heat	kernel	is	
not	known	to	be	in	closed-form	for	most	manifolds,	but	for	simple	cases	like	Euclidean	space.	
	
				For	a	compact	Riemannian	manifold	𝑀,	the	heat	kernel	function	has	the	eigendecomposition		

𝑘+ 𝑥, 𝑦 = 𝑒WXA+𝜙B 𝑥 𝜙B(𝑦)Z
BIO 	 	 	 	 (	7	)	

where	𝜆B 	and		𝜙B 	are	the	𝑖+]	eigenvalue	and	eigenfunction	of	Δ8	respectively,	Δ𝜙 = 𝜆𝜙.	
	
				The	heat	kernel	function	has	a	lot	of	nice	properties	as	described	in	detail	in	[2].	The	essential	
properties	that	we	are	interested	in	is	its	intrinsic	property,	informative	property	and	multi-scale	
property.	 The	 intrinsic	 property	 means	 the	 heat	 kernel	 is	 invariant	 under	 isometric	
transformation,	which	is	revealed	in	(4)	that	the	Laplacian	can	be	expressed	in	local	coordinates	
as	a	function	of	metric.	Thus	if	a	Riemannian	manifold	is	undergoing	isometric	deformation,	the	
heat	kernel	of	corresponding	points	on	pre	and	post-deformation	manifolds	will	be	the	same.	
The	 informative	property	 implies	 that	 the	heat	 kernel	 contains	 all	 the	 information	 about	 the	
intrinsic	geometry	of	a	Riemannian	manifolds	𝑀,	and	thus	is	able	to	fully	characterize	the	shape	
of	𝑀	up	to	isometry.	The	reason	is	a	consequence	of	work	in	[3],	which	shows	that	
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where	𝑑(𝑥, 𝑦)	is	the	geodesic	distance	between	points	𝑥	and	𝑦.	If	the	geodesic	distance	between	
all	pairs	of	corresponding	points	on	pre	and	post-deformation	manifolds	are	identical,	the	two	
manifolds	have	 the	 same	 intrinsic	 shape.	 Last,	 heat	 kernel	 is	 able	 to	 characterize	 local	 shape	
depending	on	the	choice	of	the	scale	parameter	𝑡.	As	shown	in	Figure	1,	𝑘+ 𝑥,⋅ 	and	𝑘+f 𝑥,⋅ 	are	
the	heat	kernels	of	point	𝑥	(black	point	in	middle)	computed	from	the	entire	horse	shape	and	
from	the	circled	 local	 region	with	BC	𝑢 𝑥, 𝑡 = 	0	∀	𝑥 ∈ 𝜕𝑀	respectively.	As	𝑡	increases,	 the	L2	
norm	of	heat	kernels’	difference	on	circled	region	increases	correspondingly.	However,	for	𝑡 <
0.2,	the	two	heat	kernel	are	nearly	identical	which	implies	that	the	under	small	𝑡,	heat	kernel	is	
able	to	characterize	the	local	shape.	

	
Figure	1[2]	



2. Heat	kernel	signature	
2.1	Definition	

With	 two	 essential	 properties	mentioned	 above,	 the	 heat	 kernel	 becomes	 a	 very	 lucrative	
candidate	 for	 a	 point	 signature.	 However,	 one	 main	 defect	 of	 using	 the	 family	 of	 functions	
{𝑘+ 𝑥,⋅ }+kO		to	characterize	point	𝑥	is	its	high	computational	complexity.	For	each	point	on	𝑀,	
its	heat	kernel	{𝑘+ 𝑥,⋅ }+kO	is	defined	on	 the	product	of	 temporal	and	 spatial	domain	ℝm×𝑀.	
Thus,	the	full	heat	kernel	of	all	points	on	𝑀	require	ℝm×𝑀×𝑀	space,	not	to	mention	the	cost	of	
matching	the	neighbors	while	comparing	the	heat	kernels	of	two	points.		
	
The	full	heat	kernel	actually	contains	a	lot	of	redundant	information,	and	the	change	of	heat	

kernel	function	in	spatial	domain	is	manifested	by	its	change	in	time.	An	approach	to	overcome	
above	difficulty	is	to	reduce	the	dimensionality	to	temporal	domain	only	and	restrict	heat	kernel	
to	its	subset.	Then,	as	proposed	in	[2],	we	have	the	heat	kernel	signature	(HKS)	which	satisfies	
the	requirements	above.	
	
Given	 a	 point	𝑥 	on	 the	manifold	𝑀 ,	 its	 Heat	 Kernel	 Signature,	𝐻𝐾𝑆(𝑥),	 is	 defined	 to	 be	 a	

function	over	the	temporal	domain:	
𝐻𝐾𝑆 𝑥 :ℝm → ℝ,𝐻𝐾𝑆 𝑥, 𝑡 = 𝑘+(𝑥, 𝑥)		 	 	 (	9	)	

As	proved	 in	detail	 in	 [2],	 regardless	of	 restricting	 the	 signature	 to	 the	 temporal	domain	and	
dropping	 the	 entire	 spatial	 domain,	 under	 mild	 assumptions,	 𝑘+ 𝑥, 𝑥 +kO 	keeps	 all	 of	 the	
information	of	 𝑘+ 𝑥,⋅ +kO		(see	Appendix).	
	

2.2	Relation	to	curvature	
	

	
Figure	2[2]	

				The	𝐻𝐾𝑆 𝑥, 𝑡 	defined	above	has	very	close	relation	to	the	local	curvature	of	region	around	
point	𝑥.	Given	a	 small	 fixed	𝑡,	 Figure	2[2]	 shows	 the	values	of	heat	kernel	 function	𝑘+(𝑥, 𝑥)	on	
three	models	respectively.	The	function	values	are	mapped	from	blue	(lowest)	to	red	(highest)	



on	 the	 three	 model	 respectively.	 As	 shown	 in	 the	 figure,	 the	 regions	 with	 large	 Gaussian	
curvatures	generally	have	high	heat	kernel	function	value	while	the	regions	with	small	(negative)	
curvatures	 have	 low	 function	 values.	 An	 intuitive	 explanation	 for	 the	 consistency	 between	
Gaussian	curvature	and	heat	kernel	function	value	is	the	rate	of	the	heat	diffusion.	As	discussed	
in	 class	 (Figure	 3),	 the	 scalar	 curvature	𝑆 	(twice	 the	 Gaussian	 curvature)	 on	 a	 Riemannian	
manifold	measures	 the	 deviation	 of	 the	 volume	 of	 a	 geodesic	 ball	𝐵@ 	from	 the	 volume	 of	 a	
Euclidean	Ball	𝐵ℝt 	of	equal	 radius,	 thus	 region	with	small	 scalar	curvature	has	 larger	𝐵@.	As	a	
consequence,	heat	tends	to	diffuse	faster	 in	region	with	small	curvature	(large	adjacent	area)	
than	in	region	with	large	curvature.	Therefore,	with	small	fixed	𝑡,	points	locally	keep	more	heat	
in	large	curvature	region	and	thus	have	higher	heat	kernel	function	value.	
	
	

	
Figure	3[5]	

3. Discretization	
The	 discretized	 version	 of	 heat	 kernel	 is	 computed	 via	 the	 discretized	 Laplace-Beltrami	

operator.	 In	 [2],	 to	 circumvent	 the	 limitations	 of	 requiring	 well-shaped	 mesh	 and	 possibly	
repeated	 eigenvalues,	 authors	 used	 the	 mesh	 Laplace	 operator[7]	 as	 an	 estimation	 of	 the	
Laplace-Beltrami	 operator.	 For	 now,	 without	 consideration	 for	 practice,	 let’s	 just	 use	 the	
cotangent-weight	Laplace	operator	in	our	discussion.	
	

				Given	a	scalar	function	𝜙	defined	on	discretized	surface	𝑀.	The	cotangent-weight	Laplacian	is	
defined	as		

𝛥𝜙 B =
;
euA

(𝑐𝑜𝑡 𝛼C + 𝑐𝑜𝑡 𝛽C)(𝜙B − 𝜙C)C 	 	 	 	 (	10	)	

where	𝛼C 	and	𝛽C 	are	angles	opposite	to	edge	between	vertex	𝑖	and	𝑗	as	shown	in	figure	below.	𝐴B 	
is	one	third	the	area	of	all	triangles	adjacent	to	vertex	𝑖	which	works	as	a	normalization	factor	as	
proposed	in	[6].	The	Laplacian	value	on	vertex	𝑖	is	obtained	by	summing	cotangent	value	of	𝛼C 	
and	𝛽C 	over	all	the	immediate	neighbors	of	vertex	𝑖	as	shown	in	Figure	4[5].	



		
Figure	4[5]	

Based	on	the	above	formulation,	the	discretized	Laplace-Beltrami	operator	 is	 in	the	form	of	a	
sparse	matrix	 	𝐿 = 𝐴W;𝑊,	where	𝐴	is	a	diagonal	matrix,	whose	element	𝐴(𝑖, 𝑖)	represents	 the	
area	associated	with	vertex	𝑖	as	 the	𝐴B 	in	equation	 (	10	 ),	and	W	 is	a	 symmetric	 semi-definite	
matrix	constructed	from	the	cotangent	scheme.	
	
				Suppose	𝑢+	is	a	time	dependent	function	defined	on	vertices,	then	𝑢+(𝑥)	is	the	amount	of	heat	
on	vertex	𝑥	at	time	𝑡.	Equivalent	to	equation	(	3	),	the	discretized	version	of	heat	equation	is:	

𝐿𝑢+ = 	
)*|
)+
	 	 	 	 	 	 (	11	)	

the	 solution	 to	 the	 equation	 above	 has	 the	 form	𝑢+ = 𝑒W+}𝑢O 	where	𝑢O 	is	 the	 initial	 heat	
distribution	and	𝑒W+}	is	a	matrix	exponential	

𝑒W+} = 	 W+} A

B!
∞
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The	𝑒W+}	can	be	 interpreted	as	a	heat	operator	and	can	be	written	 in	 the	 form	𝑒W+} = 𝐾+𝐴 =

𝑘+ 𝑥, 𝑦 𝑢O(𝑦)𝐴(𝑦)� 	which	is	the	discretized	version	of	equation	(	4	).	Each	entry	of	matrix	𝐾+	
represents	the	heat	kernel	of	a	pair	of	vertices.	Entries	of	𝐾+	has	the	form	

𝐾+ 𝑥, 𝑦 = 		 𝑒WXA+𝜙B 𝑥 𝜙B(𝑦)H
BI; 	 	 	 	 (	13	)	

which	is	identical	to	equation	(	7	)	in	the	smooth	settings.	As	𝐾+(𝑥, 𝑦)	represents	the	heat	kernel	
between	vertex	𝑥	and	vertex	𝑦,	the	heat	kernel	signature	of	vertex	𝑥	is	simply	the	corresponding	
diagonal	element	of	𝐾+.	

𝐻𝐾𝑆 𝑥, 𝑡 = 𝐾+(𝑥, 𝑥)		 	 	 	 (	14	)	
Note	 that	 the	 computation	 for	 large	 heat	 kernel	 by	 matrix	 exponential	 can	 be	 extremely	
expensive.	 Thus	 in	 practice,	 it’s	more	 efficient	 to	 compute	 the	diagonal	 entries	 directly	 from	
eigendecomposition,	and	just	use	the	largest	several	eigenvalues	and	eigenvectors	as	𝑒W+}	will	
gradually	damp	out	“high	frequecies”.	
	



4. Related	applications	in	computation	
4.1	Geodesics	in	heat	

				As	 shown	 in	 equation	 (	 8	 ),	 the	 heat	 kernel	 has	 close	 relation	 to	 computing	 the	 pairwise	
geodesic	distance	a	Riemannian	manifold	which	can	determine	the	Riemannian	metric	(intrinsic	
geometry)	as	we	discussed	in	class.	However,	the	equation	is	not	widely	used	in	the	computation	
of	geodesic	distances.	Limitation	arises	from	the	difficulty	in	reconstructing	heat	kernel	precisely	
in	numerical	computation.	Based	on	same	core	concept	of	heat	kernel,	works	in	[4]	proposed	the	
so	 called	 heat	 method	 for	 computing	 geodesic	 distance.	 Instead	 of	 calculating	 the	 distance	
through	

𝑑 𝑥, 𝑦 = 	 lim
+→O

−4𝑡	𝑙𝑜𝑔	𝑘+(𝑥, 𝑦)	 	 	 	 (	15	)	
authors	ask	 the	gradient	of	 temperature	 field	∇𝑢+ 	to	point	 in	 the	 right	direction.	The	general	
pipeline	can	be	described	as	

• Integrate	the	heat	flow	)*
)+
	= 𝛥𝑢	for	some	fixed	time	𝑡.		

• Evaluate	the	vector	field	𝑋	 = 	−𝛻𝑢/ 𝛻𝑢 	(normalizing	to	unit	vectors	and	only	ask	for	
directions)	

• Solve	the	Poisson	equation	𝛥𝜙	 = 	𝛻	 · 	𝑋	(reconstruct	the	temperature	field)	
	

	
Figure	5[4]	

4.2	Heat	Kernel	Embedding	of	Graphs	
The	work	in	[8]	investigate	the	use	of	heat	kernels	as	a	means	of	embedding	the	individual	

nodes	of	a	graph	on	a	manifold	in	a	vector	space.	The	heat	kernel	of	the	graph	is	found	by	
exponentiating	the	Laplacian	eigen-system	over	time.	Spectral	representation	of	the	heat	
kernel	can	be	used	to	compute	both	Euclidean	and	geodesic	distances	between	nodes.	Thus	the	
resulting	pattern	of	distances	can	be	used	to	embed	the	nodes	of	the	graph	on	a	manifold	using	
multidimensional	scaling.	And	the	distribution	of	embedded	points	are	used	to	characterize	the	
graph	and		perform	graph	clustering	as	shown	in	Figure	6.	



	
Figure	6[8]	

5. Project	implementation	
For	 the	 code	 implementation	 part	 of	 this	 course	 project,	 I	 would	 like	 to	 implement	 the	

computation	of	HKS	by	following	the	pipeline	described	in	[2],	and	apply	it	on	several	geometric	
models.	The	details	will	involve	computing	the	HKS	of	different	feature	vertices	at	different	time	
step,	 comparing	 HKS	 of	 the	 same	 geometric	 models	 under	 isometric	 transformation,	 and	
comparing	 the	HKS	of	different	geometric	models	at	 the	 same	scale.	An	example	as	 Figure	7	
would	be	a	terrific	showcase	for	multi	scale	property	of	HKS,	where	the	chosen	points	are	similar	
under	local	scale	while	the	difference	only	appears	at	large	time	step.	



	
Figure	7[2]	

	
	
	Besides	 the	 planned	 parts	 above,	 testing	 on	 special	 cases	 can	 also	 be	 part	 of	 the	

implementation	if	time	allows.	According	to	[2],	if	the	Laplace-Beltrami	operator	is	implemented	
as	the	naïve	cotangent-weight	Laplacian,	there	might	be	problems	caused	by	ill-shape	mesh	as	
cotangent	 of	 large	 angle	 create	 negative	 weight	 on	 adjacent	 vertices	 while	 computing	 the	
Laplacian.	So	testing	on	mesh	with	large	angle	might	help	to	develop	more	sense	about	these	
arguments,	and	thus	give	a	more	thorough	understanding	of	the	HKS.	
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7. Appendix	
				For	symmetrical	shape	with	repeated	eigenvalues,	e.g.	the	sphere	below,	HKS	can	be	the	same	
for	several	different	points	on	the	surface,	whereas	the	𝑓	is	not	an	isometric	transformation.	Thus	
in	 such	 situation,	 heat	 kernel	 cannot	 be	 fully	 recovered	 from	 HKS	 and	 HKS	 does	 lose	 some	
information	about	the	shape.	

	
Figure	8[5]	


