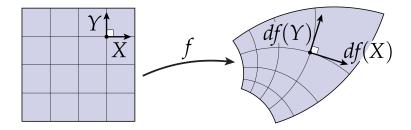

On the Conformal Maps of Triangle Linkages

Anonymous

April 26, 2016 15-869J course project

Anonymous On the Conformal Maps of Triangle Linkages

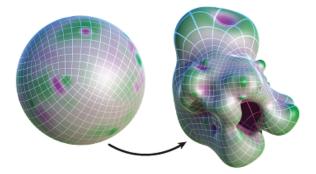

https://upload.wikimedia.org/wikipedia/commons/f/f4/Mercator_projection_SW.jpg and https://upload.wikimedia.org/wikipedia/commons/a/a6/Stereographic_projection_SW.JPG. "By Strebe (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons"

Smooth Setting: Angular Definition

 $f: M \to \mathbb{C}$ is *conformal* if f has nonvanishing derivative and

 $df(\mathcal{J}X) = idf(X)$

for all tangent vectors X.



Source: Crane's 15-869 Spring 2016 Slides

Smooth Setting: Metric Scaling Definition

g and \tilde{g} are metrics of a Riemannian Manifold M.

$$g=e^{2\phi} ilde{g}$$

Source: Crane, et.al. [2011]

Turn finding a conformal map $f : M \to \mathbb{C}$ into a convex optimization problem.

Turn finding a conformal map $f : M \to \mathbb{C}$ into a convex optimization problem. Minimize:

$$E_C(f) = \langle \langle \Delta f, f \rangle \rangle_M - \mathcal{A}(f(M))$$

Turn finding a conformal map $f : M \to \mathbb{C}$ into a convex optimization problem. Minimize:

$$E_C(f) = \langle \langle \Delta f, f \rangle \rangle_M - \mathcal{A}(f(M))$$

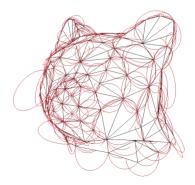
where

$$egin{aligned} &\langle \Delta f, f
angle
angle_M = \int_M (\Delta f)(ar f) \, dA \ &\mathcal{A}(f(M)) = ext{area of } f(M) ext{ in } \mathbb{C} \end{aligned}$$

Turn finding a conformal map $f : M \to \mathbb{C}$ into a convex optimization problem. Minimize:

$$E_C(f) = \langle \langle \Delta f, f \rangle \rangle_M - \mathcal{A}(f(M))$$

where


$$\langle \langle \Delta f, f \rangle \rangle_M = \int_M (\Delta f)(\bar{f}) \, dA$$

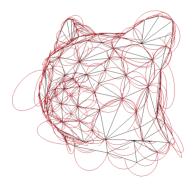
 $\mathcal{A}(f(M)) = \text{area of } f(M) \text{ in } \mathbb{C}$

subject to normalizing constraints

$$\sup_{p\in M} |f(p)| = 1$$

 $\langle \langle f(p), 1 \rangle \rangle_M = 0$

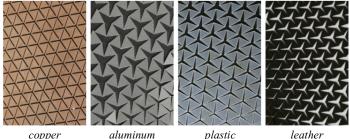
Discretization: Previous Methods


Angles/Circle Packing

Kharevych, et.al. [2006]

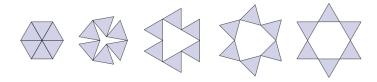
Discretization: Previous Methods

Angles/Circle Packing


 $\mathsf{Scaling}/\mathsf{Cross}\ \mathsf{Ratios}$

Kharevych, et.al. [2006]

Springborn, et.al. [2008]


Discretization: Triangular Linkage

copper

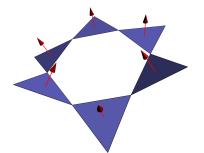
plastic

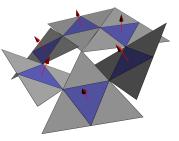
leather

Source: Konakovic, et.al. [2016]

Discretization: Triangular Linkage

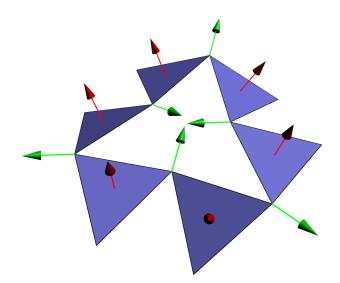
Source: Konakovic, et.al. [2016]


Anonymous


Theoretical Goal

Come up with a (partial) theory of DDG for triangular linkages which explains the conformal structure.

Theoretical Goal


Come up with a (partial) theory of DDG for triangular linkages which explains the conformal structure.

Polthier and Wardetzky

Implementation

Chalkboard.

Thank you!