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Abstract

This writeup studies the nature of conformal maps, particularly in connection with discrete
differential geometry. The discrete model we focus on is the triangular linkage geometry intro-
duced in Konakovic, et.al., [KCD+16]. Abstractly, these linkages are equilateral triangles such
that pairs of triangles meet at vertices and the triangles are connected in cycles of length six.
In practice, such surfaces can be manufactured from flat “auxetic” (opening) materials with
slits cut in them, providing many more degrees a freedom than ordinary developable (no-cut)
surfaces. We present an overview of discretization of conformal geometry, both in the traditional
Lagrangian element model as well as in the Crouzeix-Raviart element model. We describe how
this theory connects to the geometry of triangular linkages, laying a foundation of discrete dif-
ferential geometry for these structures. Furthermore, we propose a working definition of discrete
conformal maps on triangular linkages, and prove some implications.

1 Introduction: Conformal Geometry in the Smooth Setting

The over-arching theme of this project is the study of conformal maps on two-dimensional sur-
faces, particularly in the discrete setting. Intuitively, conformal maps keep angles on the surface
unchanged but may change relative scaling in the process. Classic examples of conformal maps
include the Mercator and stereographic projections of the surface of the Earth onto the plane (see
Figure 1).

In the smooth setting, conformal maps have been studied extensively for over a century, and
have found numerous applications. In fluid mechanics, conformal maps have been used to recon-
struct two-dimensional flows based on boundary conditions [MZ83]. In geometric optics, conformal
maps can be used to describe a change of coordinates in four-dimensional space-time [Bat09]. Fur-
thermore, conformal maps are important in the study of general relatively and cosmology [FGN99].

There are many ways to formally define conformal maps. We present a handful of these ways
to motivate the discretizations explored in subsequent sections. From the perspective of complex
analysis (e.g., [Nee98, Cra15]), a conformal map is one which preserves angles between tangent
vectors. If a two-dimensional surface M ⊆ R3 has two tangent vectors v0 and v1 at p ∈ M which
make an angle of θ, then a conformal map f : M → C will send v0 and v1 to a new pair of tangent
vectors v′0 and v′1 at f(p) make the same angle of θ. Furthermore, the angles still have the same
orientation. This can be elegantly captured by the Cauchy-Riemann equation (from e.g., [Cra15])

idf(v) = df(J v), (1)

e where df(v) is the directional derivative of f in the direction v at the point p, and J is the 90◦

counter-clockwise rotation of M on the surface of M . If the orientation reverses everywhere, we
say that the map f is anti-conformal. See [Nee98] for a brief introduction to how conformal maps
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Figure 1: The Mercator projection (left) and the stereographic projection (right) of the Earth are an
examples of conformal map from the sphere to the plane. Note that the shapes of continents are (in
small regions) similar to those on a globe, but the relative sizes are distorted. Image urls: https://
upload.wikimedia.org/wikipedia/commons/f/f4/Mercator_projection_SW.jpg and https:

//upload.wikimedia.org/wikipedia/commons/a/a6/Stereographic_projection_SW.JPG. At-
tribution: “By Strebe (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/
by-sa/3.0)], via Wikimedia Commons”

connect to complex analysis. Maps to surfaces embedded in R3 instead of the complex plane can
be described in an analogous way using quaternions (see, e.g., [CPS11]).

We can also view conformal maps from the perspective of metrics. If we have a manifold M
which comes with a metric g, we may define a conformal map entirely in terms of g. More precisely,
a map f : M → N between n-dimensional manifolds M and N with metrics g and ĝ is conformal
if and only if there exists a scalar φ : M → R such that

gp(u, v) = e2φ(p)ĝf(p)(df(u), df(v)), for all p ∈M and tangent vectors u, v. (2)

See, e.g. [BPS15]. Intuitively, this says that a conformal map re-scales different regions of the
geometry of M but otherwise does preserves the structure.

A third definition of conformal map is defined in terms of the conformal energy of a manifold.
From the course lecture notes [Cra15], the conformal energy DC(f) of a map f : M → C is defined
to be to what extent (1) fails to be true. The formula for this is often written as (see p. 92)

DC(f) =
1

2
〈〈∆f, f〉〉M −A(f),

where 〈〈·, ·〉〉M is the inner product operator on M , ∆ is the Laplace-Beltrami operator, and A(f)
is the area of the image of M with respect to f . The first term of the sum is often known as the
Dirichlet energy of f . We have that f is conformal, if DC(f) is minimized, but we also need to
specify that f is bounded away from the 0 function (see pages 93-94).

With these different definitions of conformal maps in the smooth setting, we explore methods
of discretizing the these notions.
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2 Discrete Conformal Geometry: Theory and Applications

In the past couple of decades, much work has been done to discretize the theory of conformal maps
in ways which are amenable to computation. In the section, we survey many of these works, most
of which pertain to the traditional ‘triangle mesh’ model of discrete differential geometry.

The first approaches reduced finding discrete conformal maps to optimization problems. One
approach, called “Least Squares Conformal Maps” is due to Levy, et.al., [LPRM02] and similarly
discovered by Desbrun, et.al., [DMA02]. They use the Cauchy-Riemann equation as a guide by
attempting to minimize the squared error of a discrete version of the equation within the local
neighborhood of each vertex. Another approach due to Sheffer, et.al., [SdS01], finds a mapping of
the whole mesh into the plane such that the angles of the triangles of the original mesh are distorted
to a minimum. This algorithm was later improved upon in a collaboration by Sheffer, Levy, et.al.,
[SLMB05].

Later on, models of conformal maps drew more richly from the theory of Discrete Differential
Geometry. One such model of conformal maps on triangle meshes was developed by Kharevych,
et.al., [KSS06] based on the circumcircles of the faces of the mesh. In particular, they define a map
to be conformal if the angle between circles (when flattened out) is preserved. This most closely
generalization the angle-preservation definition of a conformal map in the smooth setting. This
was one of the first approaches for discretizing conformal maps which resulted in a large number
of degrees of freedom (e.g. one could set the entire boundary) yet also having efficient algorithms
for applications.

In another model due to Springborn, et.al., [SSP08], conformal maps are discretized at the
vertex level. Recall that if a mesh has a vertex set V and an edge set E, a discrete metric is a
function ` : E → R+ such that is satisfies the triangle inequality on the faces. Two different metrics
` and ˆ̀ are then conformally equivalent if there is a function φ : V → R such that

`(u, v) = eφ(u)+φ(v) ˆ̀(u, v), for all (u, v) ∈ E. (3)

([BPS15] cites [Luo04] as the original source.) Note that this equation is nearly identical to defini-
tion (2) of conformal maps.

Another example of a discrete conformal map is Discrete Ricci Flow (e.g., [GY08]).
The above results mostly assume that the triangular meshes we are constructing are “C0” that

they don’t have any breaks in them. Other work, such as [KMB+09], has shown how to study
discrete differential geometry on surfaces with cuts and aberrations using harmonic functions,
which are less specific than conformal maps.

Other work, such as Crane, et.al.,[CPS11] applies an adaptation of these discrete conformal
maps, particularly the work of [LPRM02], to allow for dynamic conformal perturbations of triangle
meshes, although they also make their own theoretical contributions. They also introduce other
applications such as efficiently computing a conformal flow from a surface to the plane.

Further theoretical work by Bobenko, et.al., [BPS15] shows the connections of these discrete
conformal maps to hyperbolic geometry as well as rigorously exploring the the theory of the model
studied by Springborn, et.al.

In all of the above papers, the discretized objects consisted of “C0” triangle meshes. That is,
the faces are linearly interpolated between vertices. The following works [Pol00, War06] consider
models of discrete differential geometry with relatively more freedom, where the only constraint on
the faces is that they are continuous at the edge midpoints. See the right side of Figure 4 for an
example. We soon delve more deeply into this model.
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Wardetzky [War06] shows how geometry can be discretized both using Lagrangian elements
(vertex-based elements to traditional triangle meshes) as well as Crouzeix-Raviart elements (edge-
based elements). The latter elements have been used in numerous applications in PDEs (e.g.,
[HL03]).

In the subsequent sections, we explore a relatively new model of discrete differential geometry,
known as triangular linkages, which have strong connections with conformal maps.

3 Defining the Object: Triangular Linkages

The primary focus of the implementation phase of the project is to study a relatively unexplored
model of discrete geometry known as triangular linkages, introduced by Konakovic, et.al.,[KCD+16].
Their main motivation for studying such linkages is due to their ease of manufacturing as well
as being an auxetic materials (materials which expand in all directions when being stretched).
Such materials have been previously studied by material scientists in connection with foams (e.g.
[Lak87]).

What is a triangular linkage? Informally, it is a collection of triangles connected to each other
at vertices, in contrast with edges in the classical model). Otherwise, the triangles are free to move
about with their remaining degrees of freedom. See Figure 2 for an example of what a triangular
linkage looks like. The triangular linkages studied in Konakovic, et.al., [KCD+16], consist of equi-
lateral triangles which are etched out of a 2-dimensional sheet and then subsequently manipulated
into a 3-dimensional shape. As noted in the article, this pattern is purposely chosen so that the
scaling of the triangular linkage can be uniform. They note that this mode of manufacturing allows
for a much greater variety of surfaces to be produced from 2-dimensional materials compared to that
of folding or origami-based methods (known as “developable” surfaces). They further suggested
some potential applications such as in the manufacturing of clothing and light fixtures.

The authors of [KCD+16] noted many qualitative properties about the triangular linkages. In
particular, the authors suggest that the movement of these linkages have the behavior suggesting
that of a conformal map. One reason they give is that the number of degrees of freedom is correlated
with the number of triangles on the boundary (see Appendix A of [KCD+16]). A more intuitive
reason is that the linkages such the faces in Figure 2 have a ‘smooth-scaling’ look to them that is
characteristic of a conformal map. One caveat they due give is that these linkages could in no way
express all conformal maps because they triangles can only open up so much (see the left-hand side
of Figure 2).

To assist in discussing the formal geometric properties of these meshes, we now present formal
definitions from which we will develop a geometric theory.

Definition 1. A triangular linkage T = (V, T ) consists a set V ⊆ R3 of finitely many vertices
along with an incidence structure T ⊆ V 3 which are triples of distinct vertices of V . For each
(u, v, w) ∈ T , we say that the convex hull of (u, v, w) is a face of T . We assume that for all v ∈ S,
there is at least one and at most two t ∈ T for which v is a vertex of t. We furthermore assume
that any two distinct t1, t2 ∈ T overlap in at most one vertex.

Note that typically we would like to have the vertices of each face be non-colinear. We say
that a triangular linkage T is uniform if every face of T is an equilateral triangle . Our discussion
mostly focuses on uniform T . To more easily discuss each triangles position in space, we define the
concepts of the center and normal of each triangle.
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Figure 2: Left: Manufactured triangle linkages and a schematic of the linkages opening up. Right:
An elaborate example of a triangular linkage. Images from [KCD+16] with permission.

Definition 2. Let (u, v, w) be the vertices of a face t of a triangle linkage T . The center of the face
is the circumcenter of u, v, w in the plane through (u, v, w). The normal of the face is the unique
unit vector n(t) which which is normal to the plane through (u, v, w) and the path u→ v → w → u
goes around n(t) in the counter-clockwise orientation.

The above definition loses one key property of triangular linkages which is that they typically
arise from 2-dimensional surfaces. Throughout our discussion, we will often think of the dual graph
of T .

Definition 3. The dual graph GT of T = (S, T ) is an undirected graph on vertex set T such that
two elements of T are connected by an edge if and only if that share a vertex in T .

Throughout our discussion, we assume that GT is planar that it can be embedded in the plane
such that no two edges cross. Note that GT is planar whenever the T arose from triangles cut out
of the plane. Each face of GT corresponds to a collection of triangles of T , we call such a collection
a void.

This leads to our main question to be investigated in the implementation phase of this project.

Question 1. Can we develop a theory of discrete differential geometry on conformal maps? More
specifically, can we explain the conformal structure of these triangular linkages as noted by [KCD+16]
in a matter which is harmonious with other theories of discrete differential geometry?

4 Initial Attempt: Mesh Identification

One naive approach to understanding the triangular linkages is to bootstrap the methods of tradi-
tional simplicial-complex model of discrete differential geometry by finding an ‘auxiliary mesh’ M
which tracks the behavior of T as it is manipulated. By a triangle mesh, we are referring to a C0

manifold constructed from Lagrangian elements. In particular, we would like for the graph formed
by the vertices and edges of M to be the same as the dual graph GT . One way to do this would
be as follows, for each triangle t of T , we would like there to be a corresponding triangle t′ in M .
We can’t force t and t′ to be similar triangles, of else the mesh M would be too rigid. Instead,
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we would like to stipulate that the normal for t′ is in the same direction as the normal for t. The
vertices of M would then correspond to voids between the triangles (e.g. Figure 2). The following
lemma shows that such a correspondence is impossible.

Lemma 1. Given an arbitrary triangular linkage T , there may not exist a C0 triangular mesh M
with the same normals.

Sketch of proof. It suffices to find a local obstruction to this fact. That is, we only need to find a
subset of T which fails to have a corresponding partial mesh. To do this, we will use a degrees of
freedom argument, that T has more freedoms than M . Define a cycle of triangles t1, . . . , t` of T
to be a collection of triangles such that consecutive triangles (including t1 and t`) share a vertex,
and that these triangles wrap around a single void of T . Let t′1, . . . , t

′
` be the other triangle which

is connected to each of these triangles. Let n1, . . . ,n` and n′1, . . . ,n
′
` be the normals for t1, . . . , t`

and t′1, . . . , t
′
`, respectively. Assume there there exists a mesh M with vertex v corresponding to the

void around t1, . . . , t`. Let v1, . . . , v` be the vertices of M connected to v such that triangle vvivi+1

has ni as a normal for all i = 1, . . . , ` (where v`+1 = v1). Then, we can infer a lot about how M
sits in R3. In particular, we know that the vector vvi+1 must be in the direction of ni × ni+1 since
the edge is in planes normal to ni and ni+1. We may assume that we have chosen T so that these
cross products are never 0.

Likewise, we know that the vector vivi+1 is in the direction of ni×n′i for all i. Since none of these
constraints on M fix the translation or scaling of M , we may assume without loss of generality that
v is the origin in R3 and that vv1 has length 1. Then, since we know the directions v1v2 and vv2,
we have forces the location of v2 (unless there is a degeneracy). Likewise, we know the locations of
all of v1, . . . , v`, and in deducing these we did not need to know the value of n′`. But, we still have
the constraint, that the vector v`v1 is in the direction of n` × n′`. Since M has run out of degrees
of freedom, we can perturbate n′` without affecting any of n1, . . . ,n` and n′1, . . . ,n

′
`−1 so that v`v1

is not in the same direction as n` × n′`. Thus, our auxiliary mesh M does not exist in general.

Although the above proof shows that M does not exist in general, we can still adapt the
normal-based definition of Gaussian curvature [Cra15] to obtain a notion of Gaussian curvature
in our setting. If v is a vertex of M and n1, . . . , n` are the normals to the faces with vertex v
ordered in counterclockwise order, then the Gaussian curvature of vertex v is the signed area of
the spherical polygon formed by connecting n1, . . . , n` with geodesics on the unit sphere. Likewise,
we can define the Gaussian curvature of a void of T in the same way (see Figure 4). Since these
normals partition the unit sphere, it is intuitively clear that the Gauss-Bonnet theorem holds if T
lacks boundary.

5 Application of Work of Polthier and Wardetzky

A more sophisticated attack on this question is to integrate this geometry with the discrete con-
formal methods of [Pol00] and [War06]. As previously discussed, that context concerns the nature
of triangles connected at edge midpoints. To connect that with our geometry, we can imagine
quadrupling the area of each of our triangles by reflecting the triangle across each of its edges (see
Figure 4). That way, the triangles will be connected at the midpoints but will overall have the
same geometry. In particular, the angles of the larger triangles are identical to the angles of the
smaller triangles (in the uniform case they are all equilateral).

As mentioned previously, one line of attack of coming up with a theory of discrete differential
geometry for triangle linkages is using the methods of Polthier [Pol00] and Wardetzky [War06].
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Figure 3: On the left is a void of a triangular linkage with normals. On the right is the normals
placed on a unit sphere. The area of the region bounded by the green arcs is what we define to be
the Gaussian curvature of the void.

Figure 4: A method of transforming the triangular linkages into a midpoint-connected triangular
mesh by reflecting each triangle through each of its edges. Normals and centers are added for
reference.
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Figure 5: On the left is an example of a triangular linkage which should be consider to have
large-area and thus conformal. On the right, an example of a triangular linkage which should be
considered to have smaller area and thus non-conformal.

Recall from the lecture notes [Cra15] how the complex plane can be discretized using Lagrangian
elements. In that particular case, the discretization of the complex plane was the lattice Z[ω], where

ω = 1+i
√
3

2 is a sixth root of unity. Then, for any z ∈ Z[ω], we have the neighbors w + ω0, w +

ω1, . . . , w + ω5. Then, any discrete map f̂ : Z[ω] → V , where V is some vector space, can be
extended to C0 map C→ V as follows

f(z) = af̂(z1) + bf̂(z2) + cf̂(z3)

where (a, b, c) are the barycentric coordinates of the lattice triangle (z1, z2, z3) which z is in. The
contribution of each vertex z ∈ Z[ω] is known as a Lagrange element. Note that if V = R3, then f
is an embedding of a (infinite) triangle mesh.

Polthier and Wardetzky use an alternative basis known as Crouzeix-Raviart elements for dis-
cretization. Let m(Z[ω]) be the set of midpoints of adjacent lattice points. Our discretized function
is then f̂ : m(Z[ω])→ V . We can extend this to a function f : C→ V as follows.

f(z) =

(
1

2
− a
)
f̂

(
z2 + z3

2

)
+

(
1

2
− b
)
f̂

(
z1 + z3

2

)
+

(
1

2
− c
)
f̂

(
z1 + z2

2

)
,

where (a, b, c) are the barycentric coordinates of the lattice triangle (z1, z2, z3) and thus (z1 +
z2)/2, (z1 + z3)/2, and (z2 + z3)/2 are the midpoints. We need to be careful defining this function
along the edges of the lattice. Note that f is continuous at the points of m(Z[ω]) as well as the
interiors of the lattice triangles, but is not necessarily continuous elsewhere on the edges. Relaxing
this constriction yields many degrees of freedom. We can canonically choose which triangle each
boundary vertex is a part of to avoid difficulty.

5.1 Connection to Triangular Linkages

A triangular linkage can be described a map f̂ : E → R3, where E ⊆ m(Z[ω]) represent the ‘vertices’
where two triangles meet in the triangular linkage. We say that the map f̂ is an embedding if for
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any w, z ∈ E which are adjacent; that is ‖w − z‖2 = 1/2, then ‖f̂(w) − f̂(z)‖2 = 1. We further
constrain that the extension f is injective within the convex hull of a triple of three adjacent points
(i.e. a face).

The faces of the embedding are then (f̂(z1), f̂(z2), f̂(z3)), where z1, z2, z3 ∈ E form an equilateral
triangle of side length 1/2. We say that z ∈ E is a boundary vertex if it is adjacent to at most one
triangle. Note that we can identify voids of the triangular linkages with points z ∈ Z[ω] such that
z + ωk/2 ∈ E for k ∈ {0, 1, . . . , 5}. This is now our formal definition of void.

5.2 Laplacian and Dirichlet Energy

Wardetzky [War06] developed the notion of the Laplace-Beltrami operator for these surfaces. Recall
that if we have a Lagrangian mesh, f̂L : (V ⊆ Z[ω])→ R3, then the Laplacian [War06, Cra15] is

∆f̂L(z) =
1

2

5∑
k=0

(cotαk + cotβk)(f̂L(z + ωk)− f̂L(z)),

where αk and βk are the two angles opposite the segment from f̂L(z) to f̂L(z + ωk). Now consider
our Crouzeix-Raviart mesh f̂CR : (E ⊆ m(Z[ω]))→ R3. Wardetzky chooses a Laplacian of

∆f̂CR(w) = 2
∑

w′,‖w′−w‖=1/2

cotαw,w′(f̂CR(w′)− f̂CR(w)).

Assuming that w ∈ E is not on the boundary of the triangular linkage, this sum is taken over 4
vertices of the triangles connecting w. The αw,w′ is the angle opposite edge from f(w) to f(w′)
which will always be 60◦ in our case.

Likewise, Polthier [Pol00] (and perhaps also Wardetzky) defines a notion of the Dirichlet energy
of one of these discrete maps which is important in determining if a map is harmonic. His definition
is

ED(f̂CR) =
∑
v∈E

(
cotαv‖f̂CR(v1)− f̂CR(v2)‖22 + cotβv‖f̂CR(v−1)− f̂CR(v−2)‖22

)
,

where v1, v2 and v−1, v−2 are the vertices on the two faces incident with v, and αv and βv are the
angles v makes with these two pairs of vertices. In the case of embedding a triangular linkage, all
of these values are constant, so our embeddings already have ‘minimized’ Dirichlet energy.

Wardetzky [War06] also defines other operators such as the curl and divergence in these settings,
but the ones presented seem the most applicable to what we seek to study.

Note that in our triangular linkage construction all of these quantities, the distances and the
angles, remain constant. Thus, physical transformations of the triangular linkage can be described
as Dirichlet-energy preserving maps! As previously discussed, low Dirichlet energy is not quite
the required condition for a conformal map. The proper constraint is that we seek to minimize
is the conformal energy (see Equation (3))which is the difference between the Dirichlet energy
and the area of the resulting surface (see [Cra15]). Since the Dirichlet energy is constant, the
conformal maps correspond to triangular linkages which are the most ‘spread out.’ Note that the
non-degeneracy constraints are not of concern since the faces of our triangular mesh are rigid and
cannot collapse to a point.

Of course, this leads to a new problem, what does area mean in this context? Intuitively our
definition of area should say that shapes like those in Figure 2 and the left-hand-side of Figure
5 have large area and thus are ‘near-conformal’ while excluding those in the right-hand-side of
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Figure 6: The green vector depict the (negated) mean curvature normals of the triangle mesh. The
red vectors are the face normals.

Figure 5. In Section 6, we answer this question by proposing a model of discrete conformal maps
on triangular linkages.

5.3 Mean Curvature Normals

Recall from Homework 4 how the planar Laplacian relates to mean curvature.

∆f = 2HN,

where f : C→ R3 is our embedding. In the case where f was constructed from the Lagrange basis,
we used this identity yield both a normal vector as well as a mean curvature value (up to sign).
Wardetzky notes that using the Crouzeix-Raviart elements, we may use the discretized Laplacian
to compute mean curvature normals at each edge of our mesh.

Although this gives a definition of mean curvature normals, in practice they do not seem to be
the optimal definition as they are extremely sensitive to the local geometry. See Figure 5.3.

5.4 Connecting Back to Lagrangian Elements

As discussed with the mean curvature normals, there are unsettling discontinuities when build-
ing the discrete operators off of these Crouzeix-Raviart elements. One workaround suggested by
Wardetzky (See Lemma 2.4.1) is by deriving a Lagrangian map f̂L : Z[ω]→ V from the Crouzeix-
Raviart map f̂CR : m(Z[ω])→ V via the transformation

f̂L(z) =
1

2

5∑
k=0

f̂CR(z + ωk/2).

We could apply this to the mean curvature normals to potential get more sensible-looking normals.
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6 Conformal Scale Factors

By consulting the literature, we have found a few discrete operators for triangular linkages, and
have applied some desirable properties to obtain other operators (such as edge normals and mean
curvature). These constructions only give partial insight the main motivation of this project which is
to understand how the ‘natural’ triangle linkage positions relate to conformal maps. In this section,
we directly attack the question of conformal behavior of triangular linkages by using elementary
geometry.

6.1 Defining Triangular Conformal Maps

Looking closely at the elegant triangular linkages in Konakovic, et.al., [KCD+16], one may notice
that the six vertices surrounding each void bunch in groups of three, an ‘inward’ cluster of three
vertices and an ’outward’ cluster. Furthermore, each of these clusters appears to form an equilateral
triangle. That behavior is our motivation of a definition of conformal maps on triangular linkages.

Definition 4. Consider E ⊆ m(Z[ω]), and let f̂ : E → R3 be an embedding. We say that the
embedding is conformal if for any z0, z1, z2 ∈ E there exists w ∈ Z[ω] such that zik = w + ω2k for
k ∈ {0, 1, 2}, then (f̂(z0), f̂(z1), f̂(z2)) is an equilateral triangle.

Unpacking the formal definition, we have that a conformal map preserves one of the two equi-
lateral triangles in each void, and the triangle we pick is consistent between voids so that each
vertex is part of at most one constrained equilateral triangle. We call the triangle we picked the
void’s equilateral triangle. This also yields a canonical 1-to-3 injective map from voids to vertices.
Note that this choice of definition allows for much freedom in the geometry.

Lemma 2. The number of real degrees of freedom of conformal triangular map is at least the sum
of the number of voids and the number of boundary vertices.

Proof. Let E be the number of vertices in the triangular linkage (i.e. Crouzeix-Raviart edges), let
V be the number of voids, and let B be the number of vertices on the boundary, and let F be
the number of faces. Since each void is adjacent to six non-boundary vertices and each vertex is
adjacent to at most two voids, we have the identity V ≤ 1

3(E −B). Each face is adjacent to three
vertices, and each vertex is adjacent to at most two faces, so F ≤ (2/3)E.

Next we compute the number of real degrees of freedom in the triangular linkage. Each vertex
has 3 real degrees of freedom a priori, but each face removes 3 real degrees of freedom (to specify
the edge lengths), and each each void stipulates another 2 real degrees of constraints to enforce its
equilateral triangle. Thus, there are at least

3E − 3F − 2V ≥ 3E − 2E − 2V = E − 2V ≥ 3V +B − 2V = V +B,

degrees of freedom.

Note that if we would have enforces that both triangles of each void would need to be equilateral,
then we would have B − V degrees of freedom, which would often be negative, and thus force a
rigid configuration. One can directly prove this without a degrees of freedom argument, but this
is omitted. Note that this degrees of freedom argument does not rigorously ensure that all the
constraints are consistent, but the examining the triangular linkages from [KCD+16] should be
convincing evidence that we made the right decision.
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6.2 Scale factors

To give another motivating reason for why this choice of conformal maps is the ‘correct’ choice, we
now derive a what the scale factor should be of our conformal maps.

Let’s restrict our attention to the case that our conformal embedding f̂CR : m(Z[ω])→ R3 maps
to the plane where the z coordinate is 0. Although we will not rigorously show it, such conformal
embeddings are extremely rigid. Once you fix the equilateral triangle of a void, you also essentially
fix the six faces surrounding that void. With a little work, these fixed triangles “propagate” to fix
neighboring triangles. Thus, it appears that the only such embeddings are the uniform scalings of
the plane depicted in [KCD+16]. Because of this rigidity, we can unambiguously define the scale
factor of each void.

Definition 5. Let f̂CR : m(Z[ω]) → R3 be a planar embedding. Let z ∈ Z[ω] be a void. Define
the scale factor φf (z) to be the sum of twice the area of a unit equilateral triangle and the area of

the (possibly non-convex) hexagon with f̂CR(z + ωk), k ∈ {0, 1, . . . , 5}, as vertices.

The reason we add twice the area of a unit equilateral triangle is that each void is adjacent
to two six faces, but each face is adjacent to at most 3 voids, so the scale factor of a void should
account for a third of the area of the surrounding faces, which is 2 units equilateral triangles, or√

3
2 . Note that the ‘units’ of are scale factor are squared units.

Lemma 3. Let f̂CR : m(Z[ω]) → R3 be a planar conformal embedding in which both triangles of
each void are equilateral. Let z ∈ Z[ω] be a void. Then

φf (z) = 2(A1 +A2)−
√

3,

where A1 is the area of the triangle with vertices f̂CR(z + 1), f̂CR(z + ω2), f̂CR(z + ω4), and A2 is
the area of the triangle with vertices f̂CR(z + ω), f̂CR(z + ω3), f̂CR(z + ω5).

Proof. For notational simplicity, let Vk = f̂CR(z+ωk). Let α = ∠V0V1V2. Since V0V2 = V2V4 = V4V0
and ViVi+1 = 1 for all i, we have that V0V1V2 ∼= V2V3V4 ∼= V4V5V0 by SSS. Thus, α = ∠V2V3V4 =
∠V4V5V0. Thus,

∠V1V2V3 = ∠V1V2V0 + ∠V2V0V4 + ∠V4V2V3

=
180◦ − α

2
+ 60◦ +

180◦ − α
2

= 240◦ − α,

where we are considering the internal angle of the hexagon. Thus, by Law of Cosines

(V0V2)
2 = (V0V1)

2 + (V1V2)
2 − 2(V0V1)(V1V2) cosα = 2− 2 cosα

(V1V3)
2 = (V1V2)

2 + (V2V3)
2 − 2(V1V2)(V2V3) cos(240◦ − α) = 2 + cosα+

√
3 sinα.

Since V0V2V4 and V1V3V5 are equilateral, we have that

A1 +A2 =

√
3

4
((V0V2)

2 + (V1V3)
2)

=

√
3

4
(4− cosα+

√
3 sinα)

=
√

3−
√

3

4
cosα+

3

4
sinα.
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Now observe that since the area of a unit equilateral triangle is
√

34

φf (z) = A(V0V1V2) +A(V2V3V4) +A(V4V5V0) +A(V0V2V4) +

√
3

2

= 3A(V0V1V2) +

√
3

4
(2− 2 cosα) +

√
3

2

=
3

2
sinα+

√
3

4
(2− 2 cosα) +

√
3

2
(sine area formula)

=
√

3−
√

3

2
cosα+

3

2
sinα

= 2(A1 +A2)−
√

3,

as desired.

With this elegant alternative definition, we adopt it as our definition of scale factor for a general
conformal embedding. In fact, since the definition does not even require the void’s triangles to be
equilateral, this definition holds for general embeddings. Looking at the images of [KCD+16], the
change in scale factor is fairly continuous throughout the objects, which they mention is a key sign
that the mappings are conformal.

Now that we have a notion of scale factor, we can relate it to other quantities such as the
Gaussian curvature (see e.g., [KCD+16]).

K =
∆(log φ)

2φ

Most likely, this does not correspond to the normal-based definition of curvature defined previously,
but it would be an interesting experiment to see how the two compare. Furthermore, it would be
nice to have a ‘complete’ theory of discrete differential geometry for at least this special family of
triangular linkages.

7 Future Directions and Applications

There are many potential directions of further exploration.

• Most of the above discussion has deal with the extrinsic geometry of triangle linkages. Can
we develop a compatible theory of intrinsic geometry? In particular, what is the natural
discrete metric on these triangle linkages?

• Earlier we proposed an extrinsic definition of discrete Gaussian curvature. Can we find other
natural definitions of Gaussian curvature which can be proven to be equivalent? In particular,
can we find a compatible intrinsic definition of Gaussian curvature for such a surface?

• Can we build a theory of discrete exterior calculus on these surfaces? What would be natural
notions of 0-, 1-, and 2-forms? What should the exterior derivative and Hodge star be?

• Would it be possible to unify the traditional and triangle linkage models of differential geom-
etry? Although the naive attempt presented in Section 4 failed, there may be more subtle
ways to create a correspondence.
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• Can we find efficient algorithms pertaining to triangular linkages? In particular, it would be
desirable to find an efficient algorithm for constructing a triangular linkage approximating a
given surface.

By developing such an alternate theory of discrete differential geometry, we hope to lay the
groundwork for future computationally-driven applications of (e.g. novel application of ‘real-time’
conformal maps). From an algorithmic perspective, our proposed definition of conformal maps
should be amenable to computation. For example, approximating a Lagrangian mesh with a tri-
angular mesh could be done as some sort of an optimization problem. Furthermore, it would
be desirable to develop some motion-planning algorithm which starts with cut sheet metal and
describes how to deform it into the prescribe linkage.
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