

Curvature Estimation of High Dimensional Submanifolds
Based on Noisy Observations

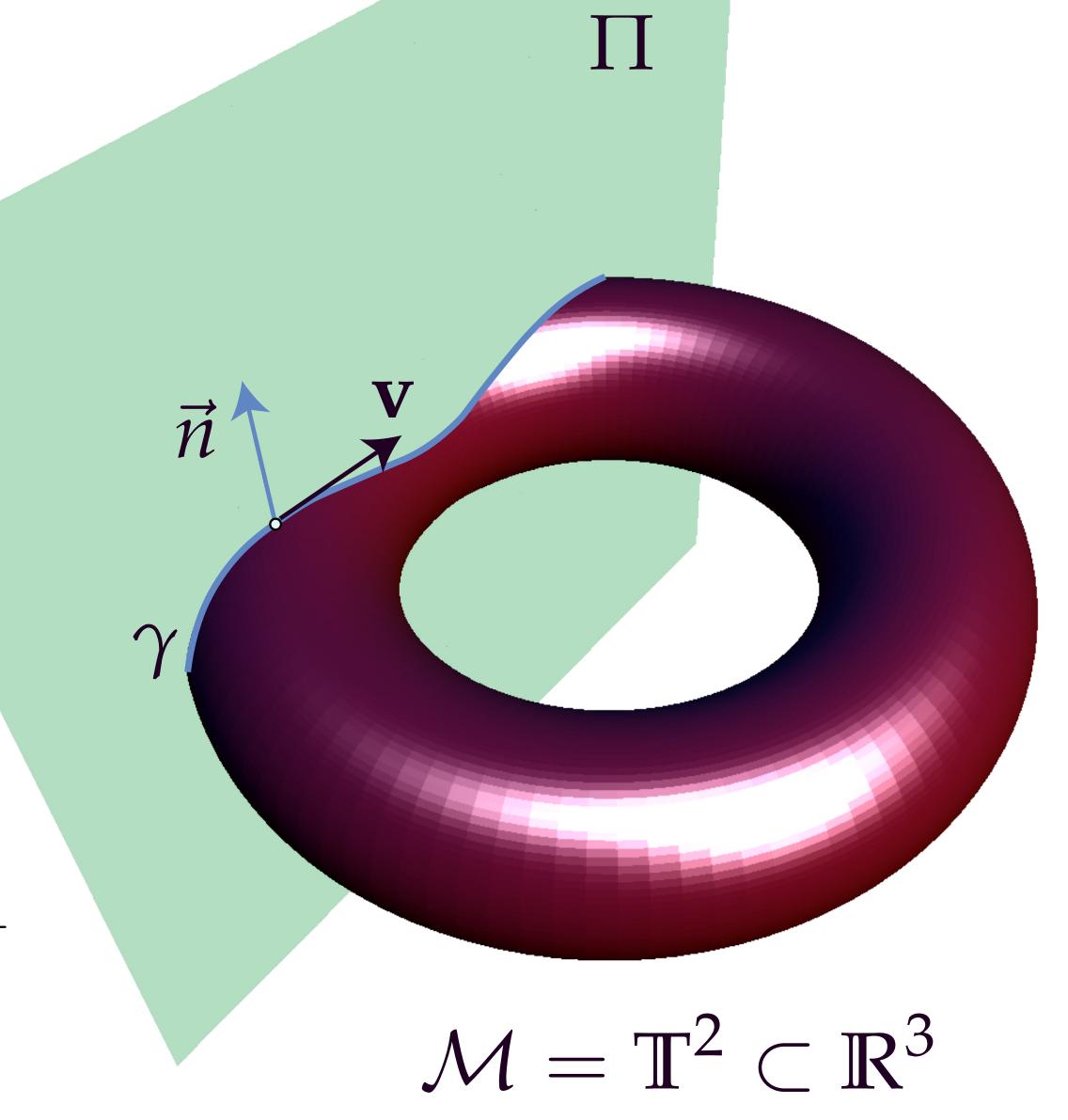
Yousuf M. Soliman

Principal Curvatures of Surfaces

 $\kappa(\mathbf{v})$ is the curvature of γ

$$\kappa_1 = \max_{\mathbf{v} \in T_p \mathcal{M}} \kappa(\mathbf{v})$$

$$\kappa_2 = \min_{\mathbf{v} \in T_p \mathcal{M}} \kappa(\mathbf{v})$$



$$\mathbf{v} \in T_p \mathcal{M}$$

$$\vec{n} \in (T_p \mathcal{M})^{\perp}$$

$$\gamma = \Pi \cap \mathcal{M}$$

Principal Curvatures of Hypersurfaces

The second fundamental form:

$$\mathcal{M} \subset \mathbb{R}^n$$

$$\mathbf{I}_p:T_p\mathcal{M}\to (T_p\mathcal{M})^{\perp}$$

$$\mathbb{I}_{p}\left(v^{i}\partial_{i}\right) = \sum_{i,j=1}^{m} \left(\frac{\partial^{2}\varphi}{\partial x_{i}\partial x_{j}}(0)\right)^{\perp} v^{i}v^{j}$$

$$\dim \mathcal{M} = m$$

 $(U \subset \mathbb{R}^m, \varphi)$ is a local chart around p

$$\varphi(0) = p$$

 ∂_i - basis for $T_p\mathcal{M}$

In codimension 1:

$$\mathbf{II}(\mathbf{v}) = (\mathbf{II}(\mathbf{v}) \cdot \vec{n}) \cdot \vec{n}$$

$$\mathbf{I}(v^i\partial_i)\cdot\vec{n} = \sum_{i,j=1}^m \left(\Phi_{ij}v^iv^j\right)$$

The principal curvatures are the eigenvalues of Φ The principal directions are the eigenvectors of Φ

$$\Phi \in \mathbb{R}^{m \times m}$$

Local Representation of Submanifolds

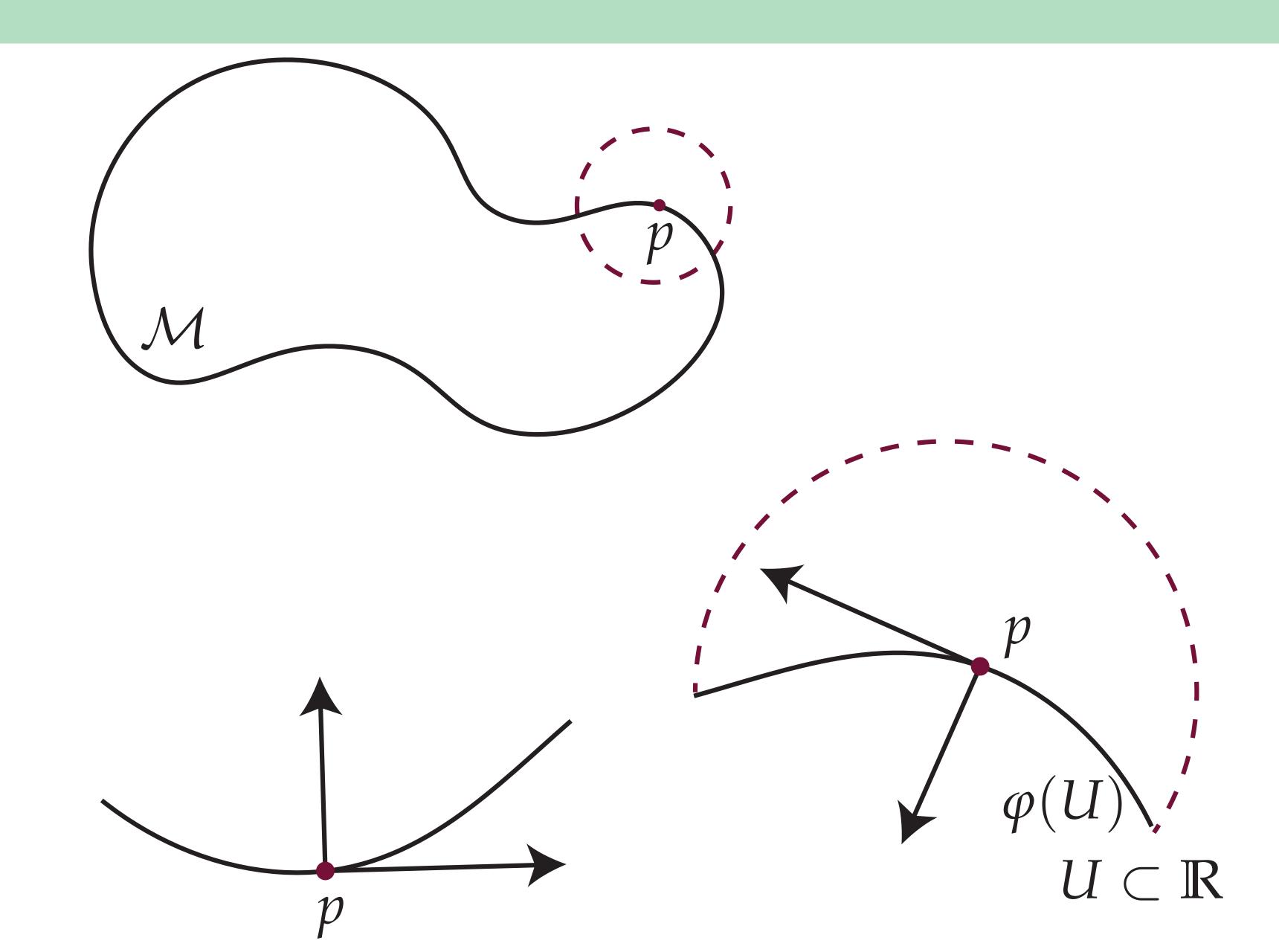
Note that the entries of \mathbb{I}_p are the second partial derivatives $\left(\Phi_{ij} = \frac{\partial^2 \varphi}{\partial x_i \partial x_j}(0) \cdot \vec{n}\right)$, so we have that they coincide with the Hessian. So we can express the normal change of a hypersurface locally using a Taylor series:

$$f(x_1,...,x_m) = \frac{1}{2} \mathbb{I}_p(x_1,...,x_m) + \mathcal{O}(\|x\|^3)$$
$$= \frac{1}{2} \sum_{i=1}^m \kappa_i x_i^2 + \mathcal{O}(\|x\|^3)$$

More generally, we have that

$$(\varphi(x+h) - \varphi(x))^{\perp} = \frac{1}{2} \mathbb{I}_{p}(h) + \mathcal{O}(\|h\|^{3})$$

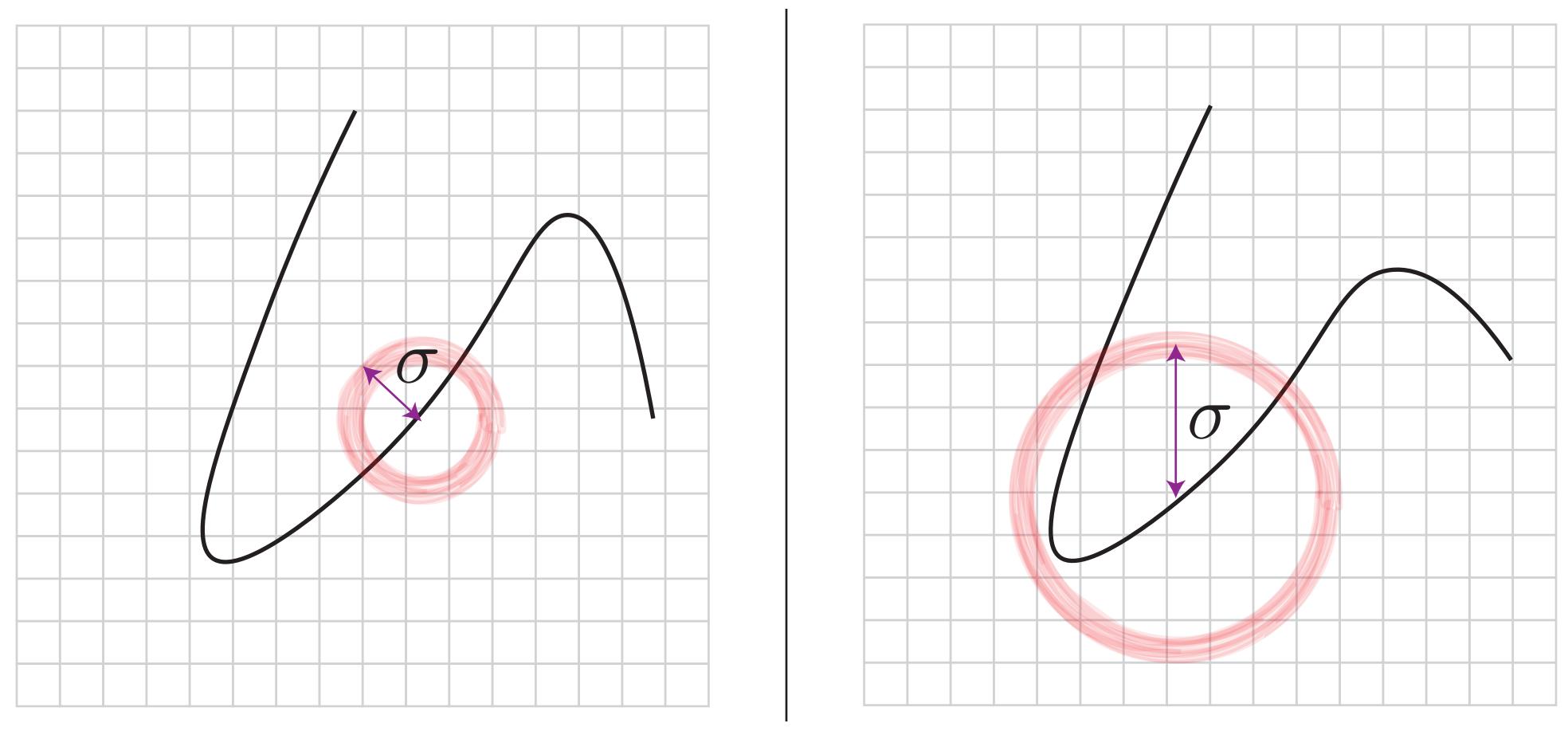
Local Representation of Submanifolds

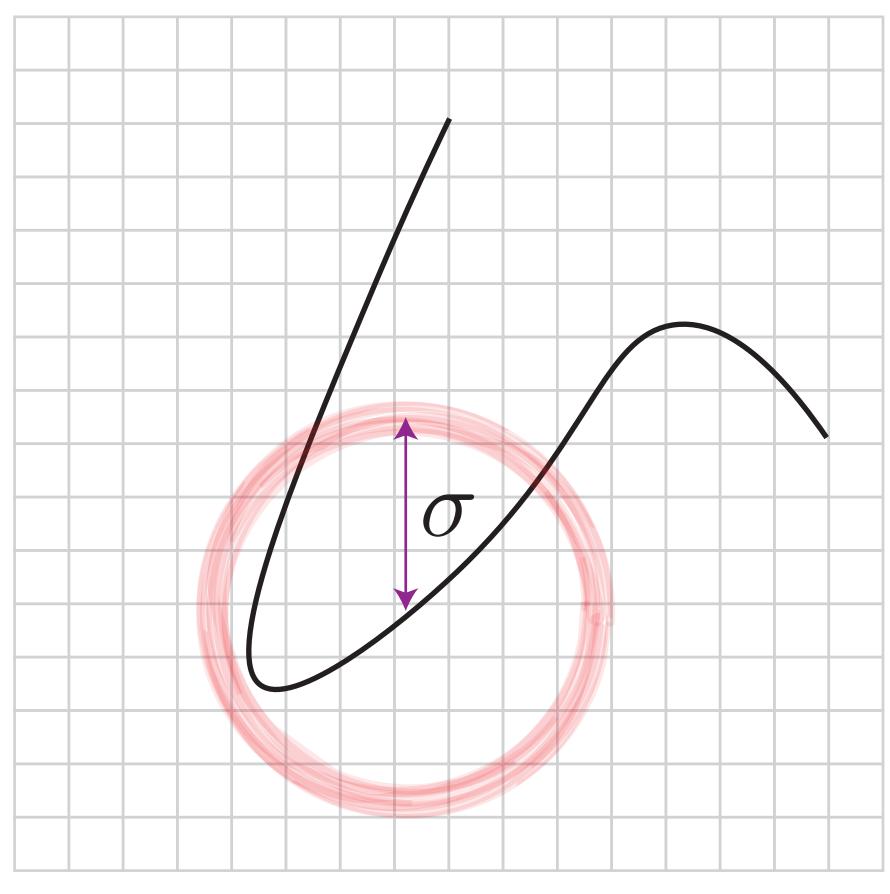


Curvature as a Shape Descriptor

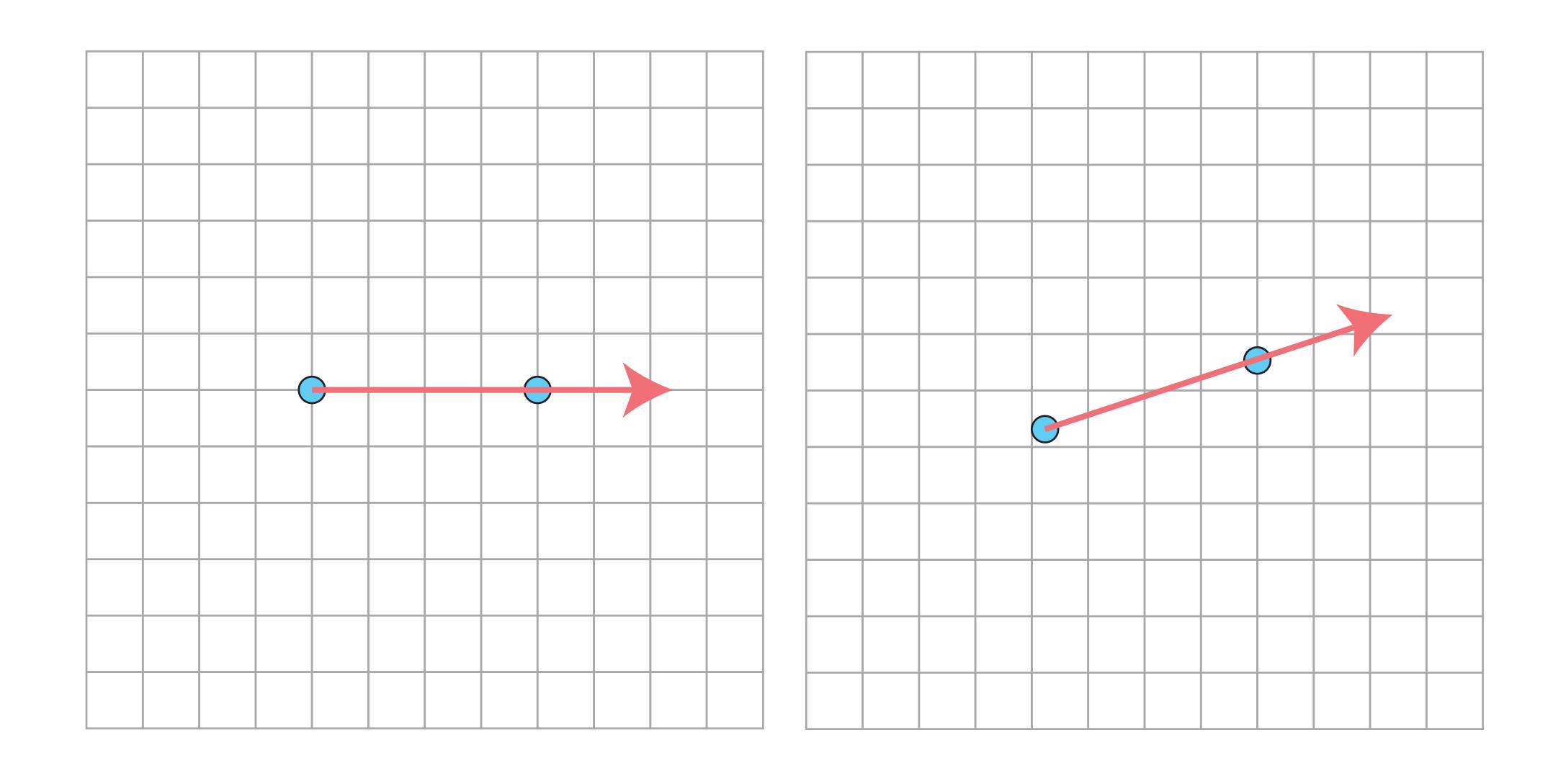
- Local Features:
 - Summarize the manifold by a subset of significant points
 - Construct informed triangulations of neighborhoods
 - A denoising algorithm
- Global Features:
 - Principal Curves
 - Data Segmentation
 - Registration and Comparison
- Manifold Learning and Estimation

The Effects of Noise on Geometric Inference

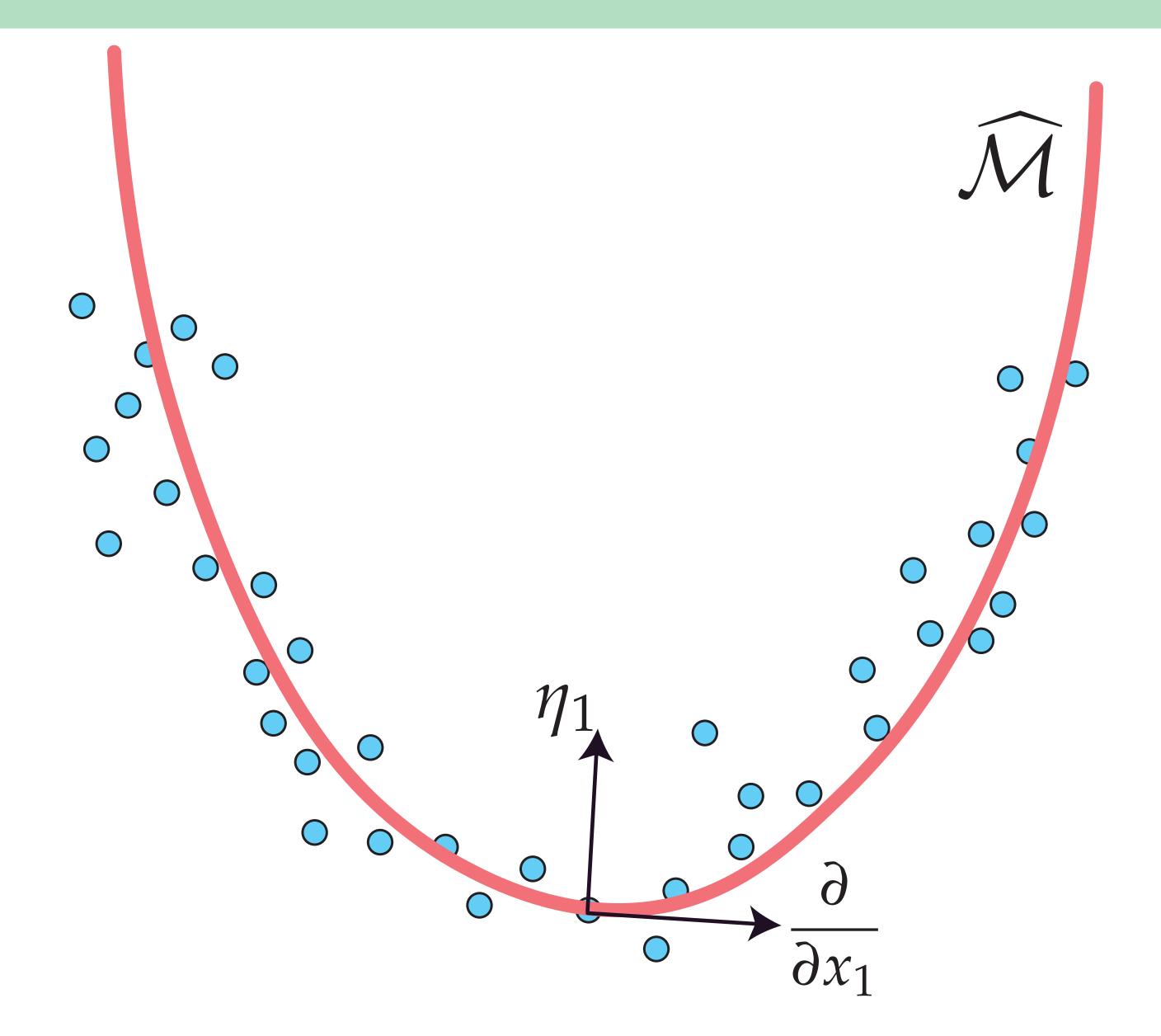




Differentiation is Not Robust to Noise

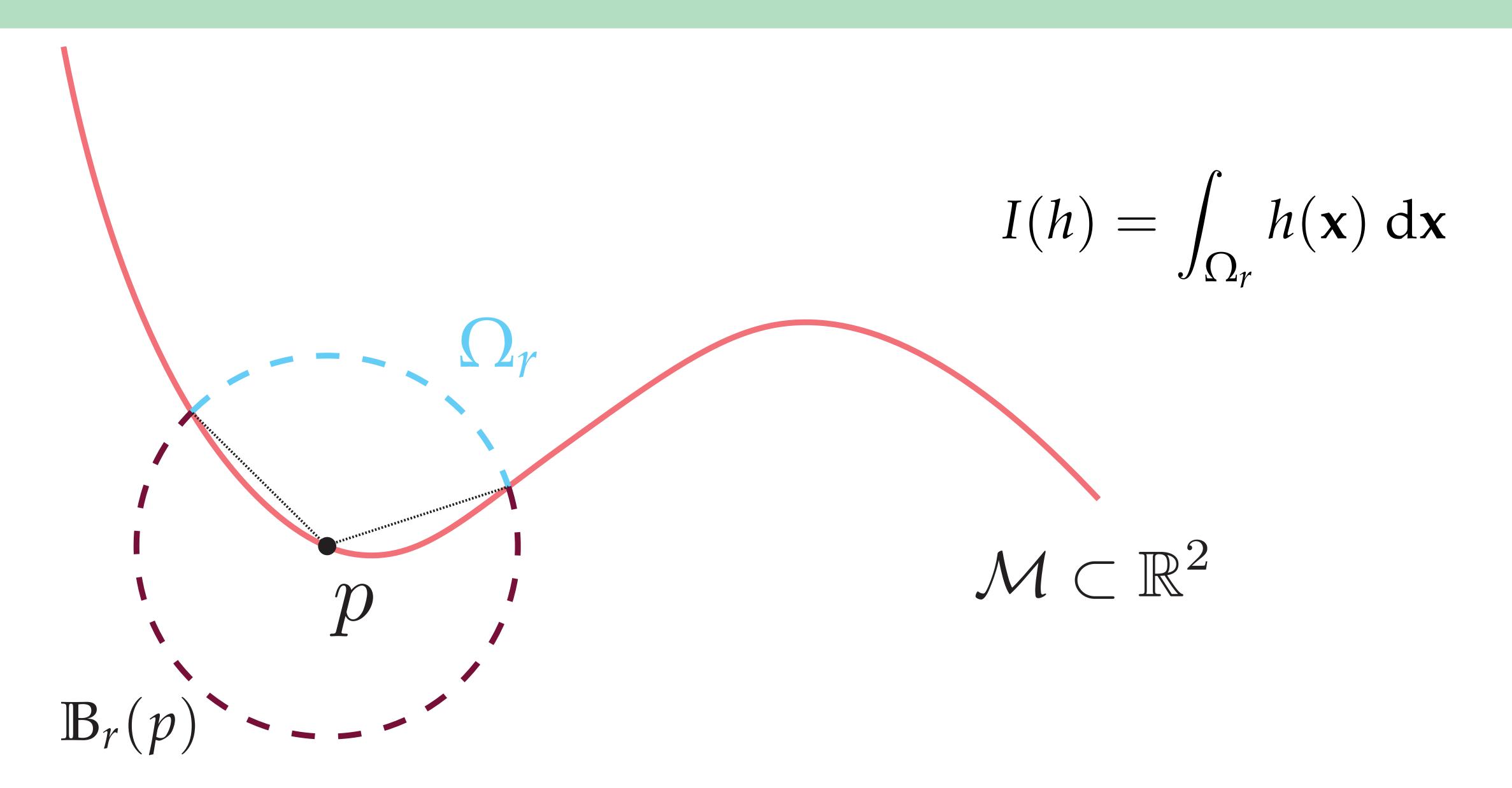


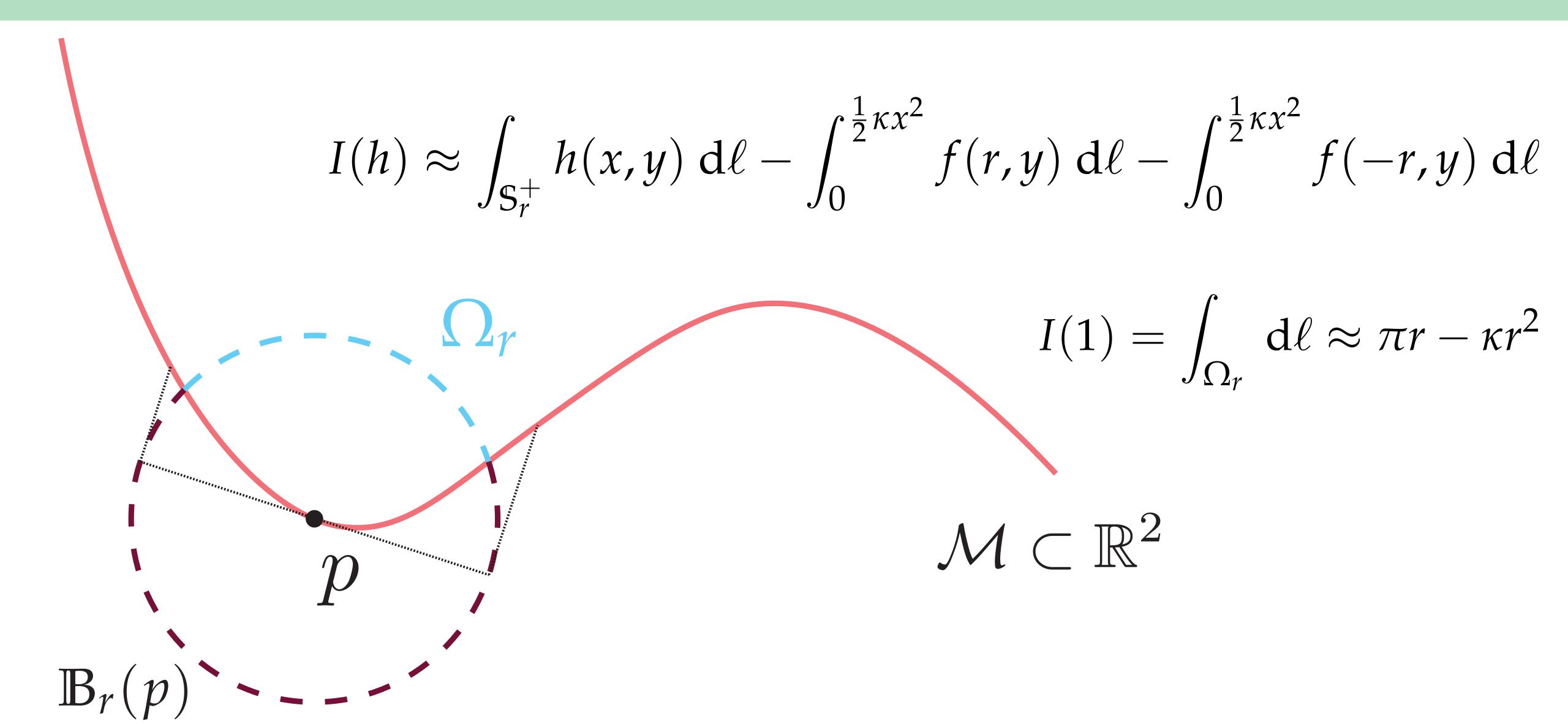
Curvature Estimation - Local Chart Estimation

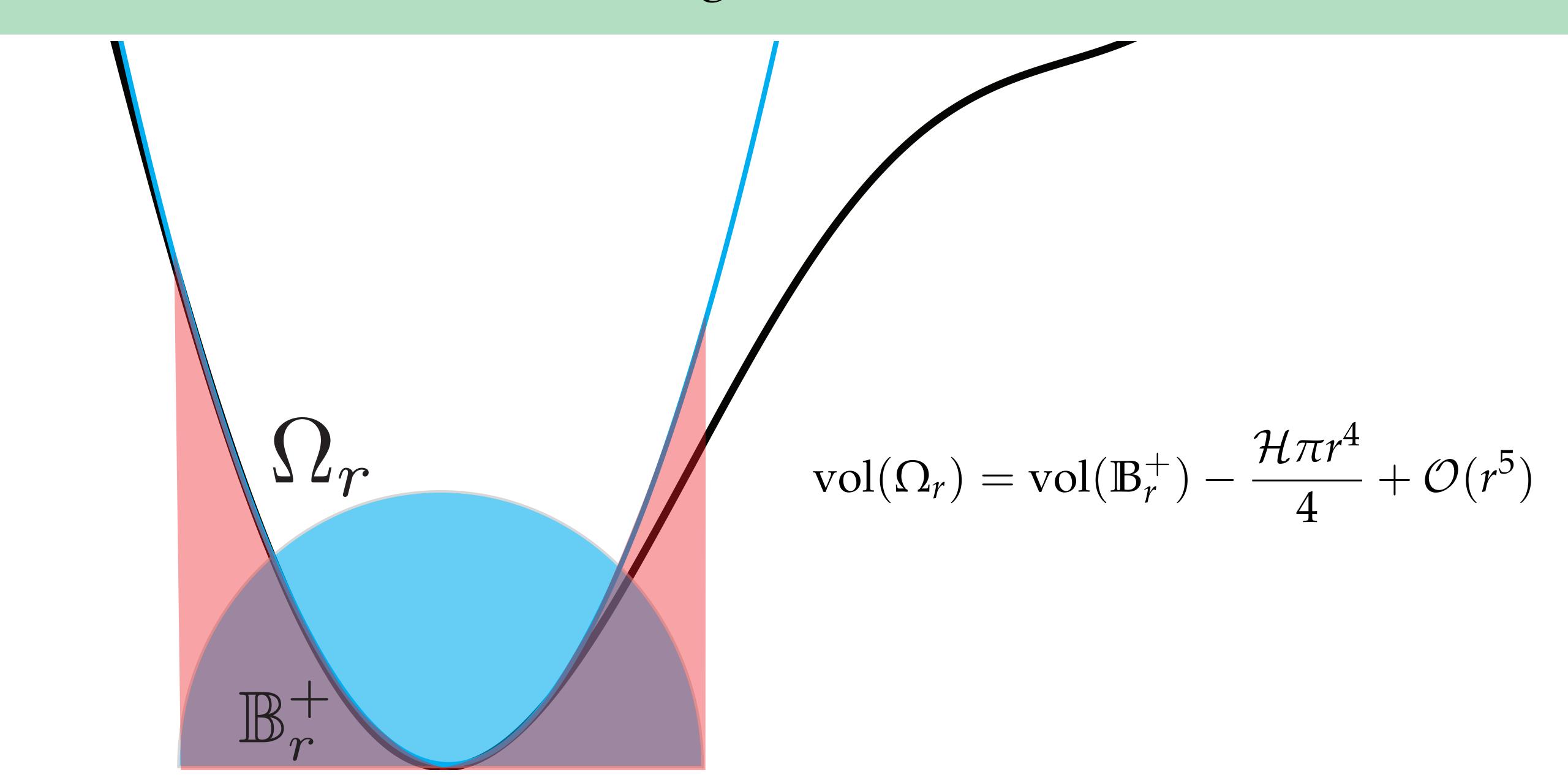


Curvature Estimation - Tensor Voting

- Directly estimate the second fundamental form
- First the neighboring points vote on the normal vector
- Next we compute the estimated curvature in the directions of the neighboring points
- Eigenvalues and Eigenvectors of II are the principal curvature and directions





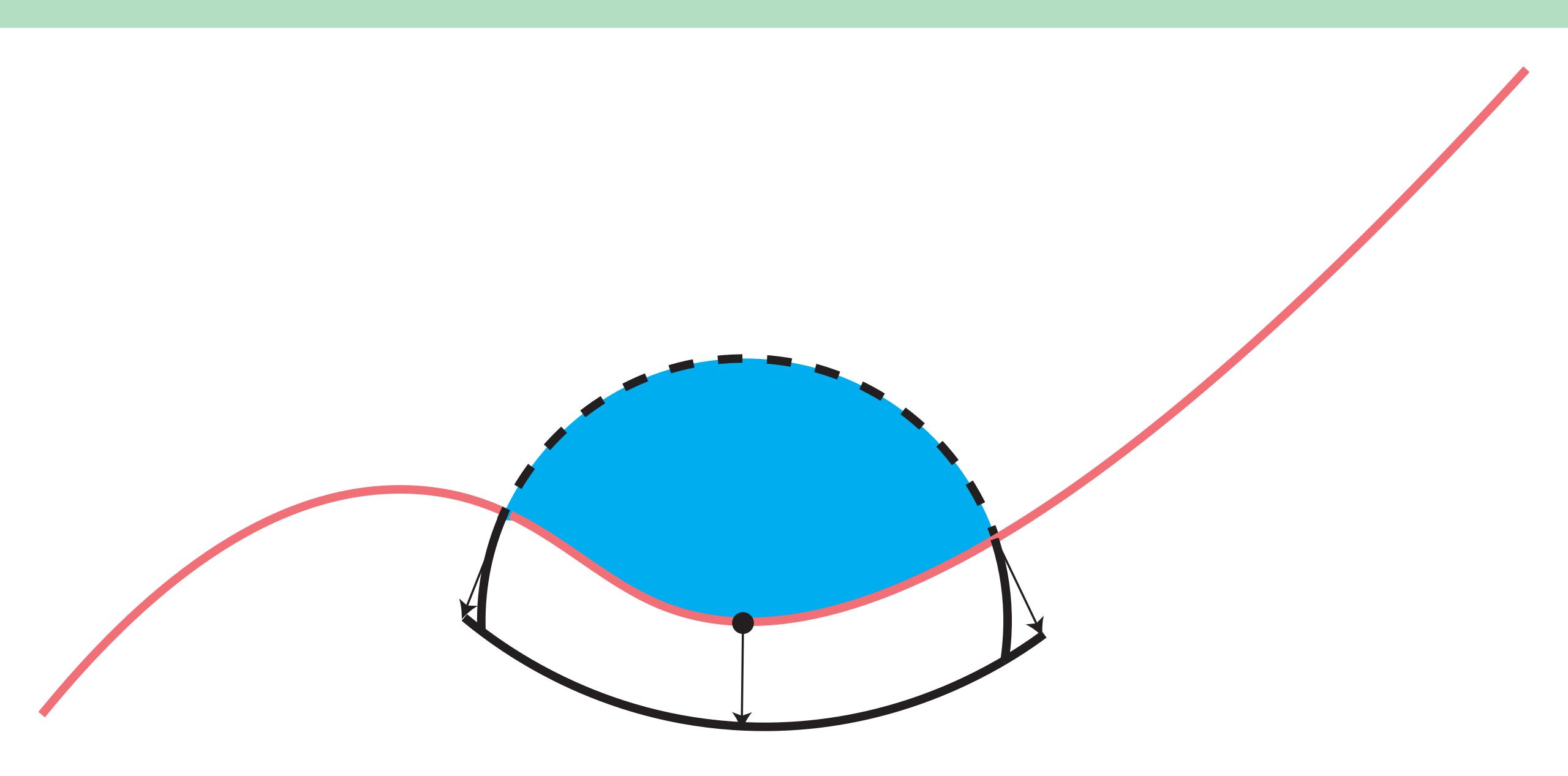


$$I(h) = \int_{\Omega_r} h(x) \, \mathrm{d}x \approx \int_{\mathbb{B}_r^+} h(x) \, \mathrm{d}x - \int_{|x_1| \le r} \int_{x_2=0}^{x_2 = \frac{1}{2}\kappa x_1^2} h(x) \, \mathrm{d}x_2 \mathrm{d}x_1$$

For arbitrary hypersurfaces, I have shown that the mean curvature can be estimated as:

$$\widehat{\mathcal{H}}^{(r)} pprox rac{\Gamma\left(rac{m+1}{2}
ight)\cdot(m+2)}{\pi^{rac{m+1}{2}}r^{m+2}} \left(\mathrm{vol}(\mathbb{B}_r^+) - \mathrm{vol}(\Omega_r) + \mathcal{O}(r^{m+3})
ight)$$

Analyzing the Effects of Noise



What's next?

- Error bounds of different integral invariants
- Analyzing the effects of noise in higher codimension
- Implementation