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Administrivia
e First reading assignment was due 10am today! (Please use Andrew ID)
* First homework assignment (A1) — coming soon!

e Covers today’s material in greater detail (combinatorial surfaces)

e Written part out today, coding part out next week

 Special recitation on how to use code framework: TBD

geometry-processing-js  Modules»  Classes»  Global~

geometry processmg J

geometry-processing- fra ork for interactive geometry processing in the web!
It d dtobefastand e O work with, which s suitable for coursework
and ‘(_:r rc_-lv._'s SINE demaos
At a high level, the framework is divided into three parts - an implementation of
a haltedge mesh data structure, an optimized linear algebra package and s

code for various geometry processing algorithms Eglt-": algorithm comes with its own




Reading: Overview of DDG
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...I'm intimidated by the math. .. ...I'm intimidated by the coding...

DDG is by its very nature interdisciplinary—euveryone will teel a bit uncomfortable!

We are aware of this fact! Everyone will be ok. :-) Lots of details; focus on the ideas.



Assignment 1— Written Out Later Today!

e First assignment

Written Assignment 1:
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* Detailed background in our course notes
e Good idea to get started now! (Read notes first.)

e All administrative details (handin, etc.) in assignment.



Today: What 1s a Mesh?

* Many possibilities...

* Simplicial complex
* Abstract vs. geometric simplicial complex
* Oriented, manifold simplicial complex
» Application: topological data analysis

* Cell complex

e Poincaré dual, discrete exterior calculus

e Data structures:

® adjacency list, incidence matrix, halfedge
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Connection to Differential Geometry?

topological space™ <—  abstract simplicial complex

*We’ll talk about this later in the course!



\

onvex Set




Convex Set— Examples

Which of the following sets are convex?

\

a,
\\

NX

(C)

(F)



Convex Set

Definition. A subset S C R" is convex if for every pair of points p,g € S the
line segment between p and g is contained in S.

convex not convex



(B)
(E)

(C)
(F)

Convex Set — Examples
(A)



Convex Hull

Definition. For any subset S C IR”, its convex hull conv(S) is the smallest
convex set containing S, or equivalently, the intersection of all convex sets con-
taining S.

S conv(S)



Q: What is the convex hull of the set S := {(&1,£1,41)} C R¥?

A: A cube.

(1,1, 1)







Simplex — Basic Idea

Roughly speaking, a k-simplex is a point, a line segment, a triangle, a tetrahedron...

k=0 k k=2 k=3 k=4 k

|
o

5

...much harder to draw for large k!



Linear Independence

Definition. A collection of vectors vy, ..., v, is linearly independent it no vec-
tor can be expressed as a linear combination of the others, i.e., if there is no
collection of coetticients ay, ..., a4, € R such thatv; = )it AiV; (for any v;).

02

02

linearly dependent linearly independent



Affine Independence

Definition. A collection of points py, . . ., px are affinely independent if the vectors
v; := p; — po are linearly independent.

(A) (B)
@

(Colloquially: might say points are in “general position”.)



Affine Independence

Definition. A collection of points py, . . ., px are affinely independent if the vectors
v; := p; — po are linearly independent.

(A) (B)
P2
(%) D1
m.
pr @ (0)) Po
po
P1
affinely independent affinely dependent

(Colloquially: might say points are in “general position”.)



Stmplex — Geometric Definition

Definition. A k-simplex is the convex hull of k + 1 affinely-independent points,
which we call its vertices.



Stmplex — Geometric Definition

Definition. A k-simplex is the convex hull of k + 1 affinely-independent points,
which we call its vertices.

Q: How many affinely-independent points can we have in n dimensions?



Barycentric Coordinates —1-Simplex

* We can describe a simplex more explicitly using barycentric coordinates.

 For instance, a 1-simplex is comprised of all weighted combinations of
the two points where the weights sum to 1:

p(t):=(1—t)a+tb, tel|0,1




Barycentric Coordinates —k-Simplex

e More generally, any point in a k-simplex can be expressed as a weighted

combination of the vertices, where the weights sum to 1. 0,0.1)
p2 = (U, U,
e The weights t; are called the barycentric coordinates.

1

k
0 = { ) tipi
i=0

k
t. =1, t; > O\V/Z}

0
p1 = (0,1,0)

po = (1,0,0)

(Also called a “convex combination.”)



Stmplex — Example

Definition. The standard n-simplex is the collection of points

_— {(xo,...,xn) - 1Rn+1

(0,0,1)

1
in:L xi>OVi}.
1=1

(0,1,0)

(1,0,0)

(Also known as the “probability simplex.”)
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plicial Complex

e o i e e



Simplicial Complex — Rough Idea

e Roughly speaking, a simplicial complex is “a bunch of simplices™”
o ...but with some specific properties that make them easy to work with.

e Also have to resolve some basic questions—e.¢., how can simplices intersect?

A,
A

Plural of simplex; not “simplexes.” Pronounced like vertices and vortices.



Face of a Stmplex

Definition. A face of a simplex ¢ is any simplex whose vertices are a subset® of
the vertices of 0. D,
®

2,

P2

1o
Q: Anything missing from this picture?

A: Yes—formally, the empty set .

*Doesn’t have to be a proper subset, i.e., a simplex is its own face.



Stmplicial Complex — Geometric Definition

Definition. A (geometric) simplicial complex is a collection ot simplices where:
e the intersection of any two simplices is a simplex, and

e every face of every simplex in the complex is also in the complex.

A

simplicial complex not a geometric simplicial complex...



Stmplicial Complex — Example




Stmplicial Complex — Example

0 1
2\ /5
3 4
6 3
X‘

9 10

Q: What are all the simplices?

A: {6,7,9]

16,7}
16}

\7,9)

7}

18

7,10,8}

19,6}
9

7,8}
110}

12,3 341 451 0F i

18,10; 10,7} 12} 3; 41 1O

Didn’t really use the geometry here...



Abstract Simplicial Complex

Definition. Let S be a collection of sets. If for each set o € S all subsets of ¢ are
contained in S, then S is an abstract simplicial complex. A set o € S of size k 41
is an (abstract) simplex.

A
Ar

geometric simplicial complex abstract simplicial complex™

e Only care about how things are connected, not how they are arranged geometrically.
* Serve as our discretization of a topological space

*...visualized by mapping it into R3.



Abstract Simplicial Complex — Graphs

e Any (undirected) graph G = (V,E) is an abstract simplicial (1-)complex

* O-simplices are vertices

* ]-simplices are edges |



Abstract Simplicial Complex — Example

Example: Consider the set
5 = 1l,2,911, 12,9, O1 11,2}, 12, 91,19, 1], {2, ©}, 19, O}, {1}, 12}, {9}, 1O}, 0}

Q: Is this set an abstract simplicial complex? If so, what does it look like?

A: Yes—it’s a pair of 2-simplices (triangles) sharing a single edge:

\ 4

2

Vertices no longer have to be points in space; can represent anything at all.



Application: Topological Data Analysis

Forget (mostly) about geometry—try to understand data in terms of connectivity.

E.g., persistent homology:

Idea: Connect nearby points, build a simplicial complex.
-
1. Choose a 3k * . '
| complete
distance d. | | °
simplices to ® v
obtain the v
2. Connect Rips complex. .’
pairs of points }0
that are no ; 4. Homology .
further apart ¢ detects the ’
than d. ; hole. p
(persistence diagram)

Problem: How do we choose distance d?

https://youtu.be/h0bnG1Wavag



Material Characterization via Persistence

Regular Random Glass
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Nakamura et al, “Persistent Homology and Many-Body Atomic Structure for Medium-Range Order in the Glass”




Persistent Homology — More Applications

M. Carriere, S. Oudot, M. Ovsjanikov, “Stable Topological Signatures for Points on 3D Shapes

C. Carstens, K. Horadam,
“Persistent Homology of Collaboration Networks

0 Filt;;ﬂm u'lt.oe. t

o o |
T H. Lee, M. Chung, H. Kang, B. Kim, D. Lee e suesectoco s e
% # ., &’ :go b ;': o “Discriminative Persistent Homology of Brain Networks
Y e s S
PR ® X . o;o:?g R, )
3y r¥yas [ ...and much much more (identifying patients with breast cancer
Yy classifying players in basketball, new ways to compress images, etc.)



Anatomy of a Simplicial Complex

* Closure: smallest simplicial complex containing a given set of simplices
e Star: union of simplices containing a given subset of simplices

e Link: closure of the star minus the star of the closure

closure star
/_\L /_\L

link




Vertices, Edges, and Faces

e Just a little note about notation:
e For simplicial 1-complexes (graphs) we often write G = (V,E)
e Likewise, for simplicial 2-complexes (triangle meshes) we write K = (V,E,F)

— Vertices
‘\\
~Ed ‘&X&\; —
ges " NV —1

* \
— f.?aces ¥ "%
e K is for “Komplex!” A

G = (V,E) K = (V,E,F)

*Not to be confused with the generic face of a simplex...



Oriented Simplicial Complex



Orientation — Visualized




Orientation of a 1-Simplex

*Basic idea: does a 1-simplex {4,b} go from a to b or from b to a?

e [nstead of set {a,b}, now have ordered tuple (a,b) or (b,a)
(1 (1
e Why do we care? Eventually will have to do with integration...

/abf(x)dx:—/baf(x)dx



Orientation of a 2-Simplex

eFor a 2-simplex, orientation given by “winding order” of vertices:

b b
(a,b,c) (a,c,b)
(b,ca) C C (c,b,a)
(c,a,b) (b,a,c)
a a

Q: How can we encode these oriented 2-simplices?

A: Oriented tuples, up to circular shift.



Oriented k-Simplex

How do we define orientation in general?

SV X

Similar idea to orientation for 2-simplex:

Definition. An oriented k-simplex is an ordered tuple,
up to even permutation.

Hence, always™ two orientations: even or odd permutations of vertices.

Call even permutations of (0,..., k) “positive”; otherwise “negative.”



Oriented 0-Simplex?

What's the orientation of a single vertex?

i

Only one permutation of vertices, so only one orientation! (Positive):

(a)



Oriented 3-Simplex

Hard to draw pictures as k gets large!

But still easy to apply definition:

even / positive odd / negative

(1,2,3,4) (3,1,2,4) (1,2,4,3) (3,1,4,2) a
(1,3,4,2) (3,2,4,1) (1,3,2,4) (3,2,1,4)
(1,4,2,3) (3,4,1,2) (1,4,3,2) (3,4,2,1)
(2,1,4,3) (4,1,3,2) (2,1,3,4) (4,1,2,3)
(2,3,1,4) (4,2,1,3) (2,3,4,1) (4,2,3,1)
(2,4,3,1) (4,3,2,1) (2,4,1,3) (4,3,1,2)

...much easier, of course, to just pick a single representative.
E.g.,+0:=(1,2,3,4),and —c := (1, 2,4, 3).




Oriented Simplicial Complex

Definition. An orientation ot a simplex is an ordering of its vertices up to even
permutation; one can specify an oriented simplex via one of its representative
ordered tuples. An oriented simplicial complex is a simplicial complex where each
simplex is given an ordering.

C C
Example.
a d a d
b b
{9, (a),(b), (c), (), {9, (a),(b),(c), (),
(a,c),(b,a),(b,c),(c,d),(d,Db), (c,a),(a,b),(b,c),(c,d),(dDb),

(a,c,b),(b,c,d)} (a,b,c),(b,c,d)}



Relative Orientation

Definition. Two distinct oriented simplices have the same relative orientation
if the two (maximal) faces in their intersection have opposite orientation.

Example: Consider two triangles that intersect along an edge:

C C
a d a d
b b
same relative orientation different relative orientation
(a,c,b) = (c,b) (a,b,c) = (b,c)
(b,c,d) = (b,c) (b,c,d) = (b,c)

(¢,b) = —(b,c) (b,c) = +(b,c)



mplicial Manifold



Manifold — First Glimpse




Manifold — First Glimpse

manifold nonmanifold

Key idea: “looks like R up close”



Stmplicial Manifold — Visualized

Which of these simplicial complexes look “manifold?”

(E.g., where might it be hard to put a little xy-coordinate system?)



Manifold Meshes — Motivation

e Why might it be preferable to work with a manifold mesh?
* Analogy: 2D images

* [ ots of ways you could arrange pixels...

e A regular grid does everything you need

e And very simple (always have 4 neighbors)
e Same deal with manifold meshes

* Could allow arbitrary meshes...

e A manifold mesh is often good enough

e And very simple (e.g., regular neighborhoods)

e F.9., leads to nice data structures (later)

(1-1,3) i,

(i+1,3)




Simplicial Manifold — Definition

Definition. A simplicial k-complex is manifold it the link of every vertex looks

like* an (k — 1)-dimensional sphere.

link (k=1) link (k=2)

— *>/“/ > T 2

" W

Aside: How hard is it to check if a given simplicial complex is manifold?

* (k=1) trivial—is it a loop?
* (k=2) trivial—is each link a loop?
*(k=3) is each link a 2-sphere? Just check if V-E

F =2 (Euler’s formula)

*(k=4) is each link a 3-sphere? ...Well, it's known to be in NP! [S. Schleimer 2004]

“l.e., is homeomorphic to.



Manifold Triangle Mesh

Key example: For a triangle mesh (k=2):

*every edge is contained in exactly two triangles

* ...or just one along the boundary
*every vertex is contained in a single “loop” of triangles

e ...or asingle “fan” along the boundary

nonmanifold edge nonmanifold vertex
Why? One reason: data structures..



Topological Data Structures
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Example

| Data Structures —Ad

Topologica
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e Store only top-d
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simple, small storage cost

e Implicitly includes all facets

e °’ros

hard to access neighbors

e Cons
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tex? What’s the cost?

How might you list all edges touching a given ver
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Topological Data Structures—Incidence Matrix

Definition. Let K be a simplicial complex, let 11, denote the number of k-simplices
in K, and suppose that for each k we give the k-simplices a canonical ordering so
that they can be specified via indices 1, ..., n,. The kth incidence matrix is then a

N1 X 1, matrix EX with entries Ef-‘]- = 1 if the jth k-simplex is contained in the ith

(k + 1)-simplex, and Ef.‘]- = ( otherwise. 3
Example.
001 2 3 5 .
o (1 1 0 O 0 1 2 3 4 5 4
1|10 10 o[1 1010 0° ! 3\2
r0 _ 2 1 0 0 1 rl_ 1 1 01 0 1 O 0 3
5101 1 0 >0 1100 1 0
101 01 3100011 1
510 0 1 1 1

Q: Now what’s the cost of finding edges incident on a given vertex?



Data Structures — Signed Incidence Matrix

A signed incidence matrix is an incidence matrix where the sign of each
nonzero entry is determined by the relative orientation of the two simplices
corresponding to that row /column.

Example.

0
0 1 2 3
1 -1 0 0
1 0 1 0 ii
0 0 -1 1 gl —° -
s 0 1 0 -1 :
4 | 0 -—1 1 O_

(Closely related to discrete exterior calculus.)

— O N

—_ O W

| |




Topological Data Structures— Half Edge Mesh

Basic idea: each edge gets split into two half edges.
e Half edges act as “glue” between mesh elements.

e All other elements know only about a single half edge.

struct Halfedge

{ struct Edge
Halfedge* twin; {

Halfedge* next;

halfedge
edge
halfedge \

Halfedge* halfedge;

Vertex* vertex; ys struct Face
4
Edge* edge; {
Face* face; Halfedge* halfedge;
}i }i
o
)
O
0] %‘ twin
H1 o
—
©
aw
halfedge
vertex
struct Vertex
vertex {

Halfedge* halfedge;

}i
(You'll use this one in your assignments!)



Half Edge— Algebraic Definition

Definition. Let H be any set with an even number of elements, let p : H — H be
any permutation of H, and let 7 : H — H be an involution without any fixed points,
i.e, non =id and n(h) # h for any h € H. Then (H, p, ) is a half edge mesh, the
elements of H are called half edges, the orbits of 1 are edges, the orbits of p are faces,
and the orbits of 17 o p are vertices.

Fact. Every half edge mesh describes a compact oriented topological surface (with-

out boundary). 0

(ho, ..., ho) = (hy, o, ho, hy, s, i3, g, T, Tz, Tig) / \ \
ext? 2 fomldln f 2
Y (hs, he, h7, ho, hs, ho, hy, hy, hy, his) %\ %

(ho,---,h9)l:\7ii”3, 6, 117, Mo, hg, hg, hy, hy, hy, hs 8 \/ 1




Smallest examples (two half edges):

(images courtesy U. Pinkall)



Data Structures —Quad Edge

(L. Guibas & . Stolfi, “Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams”)



Dual Complex




Dual Mesh— Visualized
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Poincaré Duality

simplicial complex (Poincaré Duality)

cell complex




Primal vs. Dual

primal

dual

0-simplex

2-cell

> A
! !
P A

1-cell 0-cell

(Will say more when we talk about discrete exterior calculus!)



Poincaré Duality in Nature

Sl AW 5.



Thanks!
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