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Where Are We Going Next?

GOAL: develop discrete exterior calculus (DEC)

Prerequisites:

Linear algebra: “little arrows” (vectors)
Vector Calculus: how do vectors change?

Next few lectures:

Exterior algebra: “little volumes” (k-vectors)
Exterior calculus: how do k-vectors change?
DEC: how do we do all of this on meshes?

Basic idea: replace vector calculus with computation on meshes.



Why Are We Going There?

 TLDR: So that we can solve equations on meshes!
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e Geometry processing algorithms solve eguations on meshes
e Meshes are made up of little volumes

= Need to learn to integrate equations over little volumes to do computation!



Basic Computational Tools
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Applications

..and more!






Review: Vector Spaces

e What is a vector? (Geometrically?)

finite-dimensional infinite-dimensional

For geometric computing, often care most about dimensions 1, 2, 3, ...and oo!



Review: Vector Spaces

e Formally, a vector space is a set V together with a binary operations®

+: VXV =V “addition”
. RxV =V “scalar multiplication”

e Must satisty the following properties for all vectors x,y,z and scalars a,b:

X+y=y+x (ab)x = a(bx)
(x+vy)+z=x+(y+2z2) Ix = x

0 EVstx+0=0+x=x a(x +y) = ax +ay
Vx,3x e Vst.x+x=0 (a4 b)x = ax + bx

*Note: in general, could use something other than reals here.



Vector Spaces — Geometric Reasoning

e Where do these rules come from?

e As with numbers, reflect how oriented lengths (vectors) behave in nature.

/

rT+yY=Y—+2o

TT+Y

r+yecV

r+0=x2x







Review: Span

Q: Geometrically, what is the span of two vectors?

0

L,

u,oeV, span({u,v}):=4{xeV |x=au+bv, abec R}



Span

Definition. In any vector space V, the span of a finite collection of vectors {v1, ..., v}
is the set of all possible linear combinations

k
span({vl,. ..,Z)n}) — {x cV |x= Zaﬂ)i, a; © IR} :
=1

(Note: one cannot extend this definition to infinite sums without additional assump-
tions about V.) The span of a collection of vectors is a linear subspace, i.e., a subset
that forms a vector space with respect to the original vector space operations.



Wedge Product ()

(Y

Analogy: span



Wedge Product ()
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Wedge Product ()
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Wedge Product ()

UND = —DNU

Analogy: span
Key differences: orientation & “finite extent”
Key property: antisymmetry



Wedge Product — Degeneracy

Q: What is the wedge product of a vector with itself?

A: Geometrically, spans a region of zero area.

uNu=~0

(*Slight oversimplification. More later...)



Wedge Product - Associativity

[/u' / [/u'

UND AW (u A o) u (v A\w)



Wedge Product - Distributivity

uNv,+uNvy=uA(vq +vp)




k-Vectors

UNONW
The wedge of k vectors is called a “k-vector.”

i

O-vector 1-vector 2-vector 3-vector



Visualization of k-Vectors

Our visualization is a little misleading: k-vectors only have direction & magnitude.

E.q., parallelograms w/ same plane, orientation, and area represent same 2-vector:

U1 \N01 = Uy N0y = Uz N\ 03

(Could say a 2-vector is an equivalence class of parallelograms...)



0-vectors as Scalars

Q: What do you get when you wedge zero vectors together?
A: You get this:

For convenience, however, we will say that a “0-vector” is a scalar value (e.g., a real
number). This treatment becomes extremely useful later on...

Key idea: magnitude, but no direction (scalar).






Review: Orthogonal Complement

Q: Geometrically, what is the orthogonal complement of a linear subspace?

Example: orthogonal complement of a span

V :=span({u,v})

Vti={x e R"(x,w) =0Vw € V}
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Notice: orthogonal complement meaningful only if we have an inner product!



Orthogonal Complement

Definition: Let U C V be a linear subspace of a vector space V with an inner
product (-, -). The orthogonal complement of U is the collection of vectors

Ut :={veVl{uv)=0,Vuecl}

(Note: depends on choice of inner product!)

Example. “What kind of cuisine do you like?”
Option 1: “I like Vietnamese, Italian, Ethiopian, ...”
Option 2: “I like everything but Bavarian food!” -\
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Key idea: often it’s easier to specify a set by saying what it doesn’t contain.



Hodge Star (x)

*x(UNv) =w

/

Analogy: orthogonal complement
Key differences: orientation & magnitude ks (n—k)
Small detail: z A xz is positively oriented



Hodge Star - 2D

* * U

* Kk xU

Analogy: 90-degree rotation

*U




Exterior Algebra— Recap

Let V be an n-dimensional vector space, consisting of vectors or 1-vectors.

Can “wedge together” k vectors to Can apply the Hodge star to get
get a k-vector (signed volume). the “complementary” k-vector.

*(UAND) =w

w

0

¢ /
—

UNDNW

(Also have the usual vector space operations: sum, scalar multiplication, ...)



Basis

Definition. Let V be a vector space. A collection of vectors is linearly independent if
no vector in the collection can be expressed as a linear combination of the others. A
linearly independent collection of vectors {ey, ..., e, } is a basis for V if every vector
v € V can be expressed as

0 =70161 + T+ 0Uyly

for some collection of coefficients v¢, ..., v, € R, i.e., if every vector can be uniquely
expressed as a linear combination of the basis vectors e;. In this case, we say that V' is
finite dimensional, with dimension n. e

U = 0161 + 026>




Basis k-Vectors — Visualized

(V = R?)

basis 1-vectors basis 2-vectors

€3
¢

e3 N\ e

ey N e3

T e

€1 €2

Key idea: signed volumes can be expressed as linear
combinations of “basis volumes” or basis k-vectors.

basis 3-vectors

€1 /\:82/\83

”~




Basis k-Vectors—How Many?

Consider V = R* with basis {e1,er,e3,64}.

Q: How many basis 2-vectors?

e1 \Nes e»/\ej3 er N ez /\ey
e1 /\e3 N\ ey
e1/\Nes €ex/N\eg e3/\ey 5 3 4
e-Ne Ne

Why not ez N ex? eg N ey?
What do these bases represent geometrically?

: How many basis 4-vectors? .
Q Y N Q: How many basis 1-vectors?

e1 /Nex /ANes /ey Q: How many basis 0-vectors?

Q: Notice a pattern?

Q: How many basis 3-vectors?

— ) W =

— O\



Hodge Star — Basis k-Vectors

Consider V = R’ with orthonormal basis {ej, >, e3}

Q: How does the Hodge star map basis k-vectors to basis (n — k)-vectors (n=3)?

A: Defining property of Hodge star—for any k-vector « := ¢;; A\ - - - Ae; , must have
det(a A xa) = 1, i.e., if we start with a “unit volume,” wedge with its Hodge star

must also be a unit, positively-oriented volume. For example:

Given « := e, find *a such that det(e, A xep) = 1. »

*€1

— Must have xa = e3 A eq, since then *€7
*€3

ey \xey = er Ne3 Neq, *(e2 Aes)

*(e3 Aeq)
*(e1 Aep)
)

which is an even permutation of e; A ey A e3. x(eg Aes Aes

e1 /\ e A\ es
er /N e3
e3 N\ eq
e1 /\ é



Exterior Algebra— Formal Definition

Definition. Let ¢1,...,e, be the basis for an n-dimensional inner product space V. For each integer 0 < k < n, let A
denote an (})-dimensional vector space with basis elements denoted by e;, A --- A¢; for all possible sequences of indices

1 <i; <--- < i < n,corresponding to all possible “axis-aligned” k-dimensional volumes. Elements of A are called k-vectors.
The wedge product is a bilinear map
k l k+1
/\k,l . /\ X /\ — /\

uniquely determined by its action on basis elements; in particular, for any collection of distinct indices i1, . .., ik,

(eil ANRIRR /\Eik) Nk ] ( AR /\eikH) = sgn(a) Eo( )/\ c e /\60(

Cir 11 y ft1)”
where 0 is a permutation that puts the indices of the two arguments in canonical (lexicographic) order. Arguments with

repeated indices are mapped to 0 € A“. For brevity, one typically drops the subscript on A r1- Finally, the Hodge star on
k-vectors is a linear isomorphism
k —k
o N = A

det(a A xa) =1

uniquely determined by the relationship

where « is any k-vector of the form &« = ¢;, A --- Ae; and det denotes the determinant of the constituent 1-vectors (treated as

column vectors) with respect to the inner product on V. The collection of vector spaces A\* together with the maps A and *
define an exterior algebra on V, sometimes known as a graded algebra.

(...don"t worry too much about this!)



Sanity Check

Q: What's the difference between
x = 2e1 + 3e and B = 2e1 N\ 3ep?

A: €n €2

(vector) (2-vector)



Exterior Algebra— Example

282)

(261 +ep) A (—eq) + (2e1 +e2) A (2ep)

V = R? Q: What is the value of a A 57?
X = 2e1 + e A: a ANB=(2e1+e) N (—e
p = —e1+2e N

—Mgeg/\el

=e1 Ney +4e1 Ney

be1 N\ er

Q: What does the result mean, geometrically?

4e1 N\ ep




Exterior Algebra— Example

V=R’ Q: Whatisx(a A+ BAY)?
x = 2e1 /\ ey
B = 3e3 A: x(a AB+BNY) = *((2e1 Nex) AN3es+3e3 A\ (ex Nep))

|
*

(661 Neyx Aes+3ez Aexy Neq)
(661 N ey ANes —3e; ANep Aes)
*(381 /\ €2 /\63)

3.

Y = ey N\ e

|
*

Key idea: in this example, it would have been fairly hard to reason about the
answer geometrically. Sometimes the algebraic approach is (incredibly!) useful.



Exterior Algebra - Summary

* Exterior algebra

* Janguage for manipulating signed volumes

¢ length matters (magnitude)

e order matters (orientation)

e behaves like a vector space (e.g., can add two volumes, scale a volume, ...)
* Wedge product—analogous to span of vectors
e Hodge star—analogous to orthogonal complement (in 2D: 90-degree rotation)
* Coordinate representation—encode vectors in a basis

* Basis k-vectors are all possible wedges of basis 1-vectors



Thanks!
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