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Motivation: Applications of Differential Forms

Leapfrogging vortex rings

Need to measure k-dimensional guantities that are changing in space & time!



Where Are We Going Next?

GOAL: develop discrete exterior calculus (DEC) u ﬁ

Differential forms: spatially-varying k-form

Exterior calculus: how do k-vectors change?

DEC: how do we do all of this on meshes? /

Basic idea: replace vector calculus with computation on meshes.



Recap: Exterior Algebra

e Use wedge product to build up “little volumes” (k-vectors) from ordinary vectors

w

*x(UANv) =w

e Like linear subspaces, but have magnitude and orientation

e Use Hodge star to describe complementary volumes



Recap: k-Forms

e Can measure a vector with a covector; can measure a k-vector with a k-form

/

 Build up k-forms by wedging together covectors

e To measure, project k-vector onto k-form and take volume (e.g., via determinant)



Exterior Calculus: Flat vs. Curved Spaces

e For now, we’ll only consider flat spaces like the 2D plane

e Keeps all our calculations simple

e Don’t have to define manifolds (yet!)

* True power of exterior calculus revealed on curved spaces
* In flat spaces, vectors and forms look very similar
* Difference is less supertficial on curved spaces

¢ Close relationship to curvature (geometry)

e Also close relationship to mass (physics)
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Review: Vector vs. Vector Field

e Recall that a vector field is an assignment of a vector to each point:

vector vector field



Differential Form

e A differential k-form is an assignment of a k-form to each point™:

k-form differential k-form

*Common (and confusing!) to abbreviate “differential k-form” as just “k-form”!



Differential O-Form

Assigns a scalar to each point. E.g., in 2D we have a value at each point (x1,x2):
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Note: exactly the same thing as a scalar function!



Differential 1-Form

Assigns a 1-form each point. E.g., in 2D we have a 1-form at each point (x1,x2):
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Note: NOT the same thing as a vector field!



Vector Field vs. Differential 1-Form

Superficially, vector fields and differential 1-forms look the same (in Rn):

vector field

But recall that a 1-form is a linear function from a vector to a scalar (here, at each point.)

1-form

)Xl



Applying a Differential 1-Form to a Vector Field

At each point (x1,x2), we can therefore use a 1-form to measure a vector field:
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Differential 2-Forms

Likewise, a differential 2-form is an area measurement at each point (x1,x2,x3):
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Differential 2-Forms
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Differential 2-Forms

(OC A\ IB) (X //\ Y) (xl,xz,x3)

Resulting function says how much a 2-vector field “lines up” with a given 2-form.



Pointwise Operations on Differential k-Forms

e Most operations on differential k-forms simply apply that operation at each point.

o E.q., consider two differential forms «, 3 on Rn. At each point p := (x1,...,xx),
(x0)p = *(ap)
(@A B)p = (ap) A (Bp)

* In other words, to get the Hodge star of the differential k-form, we just apply the
Hodge star to the individual k forms at each point p; to take the wedge of two
differential k-forms we just wedge their values at each point.

o Likewise, if Xi, ..., X\ are vector fields on all of R”, then

(X1, Xie)p = (ap) ((X1)ps oo, (Xie)p)

Typically we just drop the p entirely and write xa, a A B, a(X,Y), etc.




Differential k-Forms in Coordinates



Basis Vector Fields

* Just as we can pick a basis for vectors, we can also pick a basis for vector fields

e The standard basis for vector fields on R” are just constant vector fields of unit
magnitude pointing along each of the coordinate axes:
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e For historical reasons, these fields have funny-looking names that look like partial
derivatives. But you will do yourself a huge tavor by forgetting that they have
anything at all to do with derivatives! (For now...)



Basis Expansion of Vector Fields

e Any other vector field is then a linear combination of the basis vector fields...

e ...but, coetficients of linear combination vary across the domain:
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Q: What would happen if we didn’t allow coefficients to vary?



Bases for Vector Fields and Differential 1-forms

The story is nearly identical for differential 1-forms, but with different bases:

d VECTOR FIELDS DIFFERENTIAL1-FORMS
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Stay sane: think of these symbols as bases; forget they look like derivatives!



Coordinate Bases as Derivatives

Q: That being said, why the heck do we use symbols that look like derivatives?

Key idea: derivative of each coordinate function yields a constant basis field.

“We'll give a more precise meaning to “d” in a little bit.



Coordinate Notation — Further Apologies

* There is at least one good reason for using this notation for basis fields

e Imagine a situation where we’re working with two different coordinate systems:
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¢ Including the name of the coordinates in our name for the basis vector field (or basis
differential 1-form) makes it clear which one we mean. Not true with e;, X;, etc.



Example: Hodge Star of Differential 1-form

e Consider the differential 1-form « := (1 — x)dx + xdy s ST f/fff M
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Example: Wedge of Differential 1-Forms

Consider the differential 1-forms* ST S
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(What does the result look like?)

*All plots in this slide (and the next few slides) are over the unit square [0,1] x [0,1].



Volume Form | Differential n-form

e Our picture has little parallelograms

e But what information does our
differential 2-form actually encode?

a\NB=(x—xy)dx Ndy

e Has magnitude (x-xy), and “direction” dx/\dy
e But in the plane, every differential 2-form will be a multiple of dx"\dy!

e More precisely, some positive scalar function times dx”dy, which measures unit area
e In n-dimensions, any positive multiple of dx* A dx* A --- A dx" is called a volume form.

e Provides some meaningful (i.e., nonzero, nonnegative) notion of volume.



Applying a Differential 1-Form to a Vector Field

e The whole point of a differential 1-form is to measure vector fields. So let’s do it!
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(Kind of like a dot product...) 0( X




Differential Forms in R* - Summary

o Started with a vector space V' (e.g., R")

* (1-forms) Dual space V* of covectors, i.e., linear measurements ot vectors

* (k-forms) Wedge together k covectors to get a measurement of k-dim. volumes

* (differential k-forms) Put a k-form at each point of space

differential 2-form



Exterior Algebra & Differential Forms — Summary

primal dual
vector space vectors covectors
exterior algebra k-vectors k-forms

spatially-varying k-vector fields differential k-forms




Where Are We Going Next?

GOAL: develop discrete exterior calculus (DEC) u ﬁ

Exterior calculus: how do k-vectors change?

DEC: how do we do all of this on meshes?

/

Basic idea: replace vector calculus with computation on meshes.



Thanks!
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