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Curves, Surfaces, and Volumes
•In general, differential geometry studies n-dimensional manifolds; we’ll focus 

mostly on low dimensions: curves (n=1), surfaces (n=2), and volumes (n=3)
•Why? Geometry we encounter in “every day life” (Common in applications!)
•Low-dimensional manifolds are not baby stuff! :-)

•n=1: unknot recognition (open as of July 2017)
•n=2: Willmore conjecture (2012 for genus 1)
•n=3: Geometrization conjecture (2003, $1 million)

•Serious intuition gained by studying low-dimensional manifolds
•Conversely, problems involving very high-dimensional manifolds (e.g., statistics/

machine learning) involve less "deep" geometry than you might imagine!
• fiber bundles, Lie groups, curvature flows, spinors, symplectic structure, ...

•Moreover... curves and surfaces are beautiful! (And sometimes boring for large n…)



Curves & Surfaces
•Much of the geometry we encounter in life well-described by curves and surfaces*

*Or solids… but the boundary of a solid is a surface!

(Curves)

(Surfaces)



•Many ways to express the geometry of a curve or surface:

•height function over tangent plane

•local parameterization

•Christoffel symbols — coordinates/indices

•differential forms — “coordinate free”

•moving frames — change in adapted frame

•Riemann surfaces (local); Quaternionic functions (global)

•People can get very religious about these different “dialects”... best to be multilingual!

•We'll dive deep into one description (differential forms) and touch on others

Smooth Descriptions of Curves & Surfaces



•Also many ways to discretize a surface
•For instance:

•implicit — e.g., zero set of scalar function on a grid
•good for changing topology, high accuracy
•expensive to store/adaptivity is harder
•hard to solve sophisticated equations on surface

•explicit — e.g., polygonal surface mesh
•changing topology, high-order continuity is harder
•cheaper to store / adaptivity is much easier
•more mature tools for equations on surfaces

•Don’t be “religious”; use the right tool for the job!

Discrete Descriptions of Curves & Surfaces

explicit implicit



•Goal: understand curves & surfaces from complementary smooth and discrete points 
of view.

•Smooth setting:

•express geometry via differential forms

•will first need to think about vector-valued forms

•Discrete setting:

•use explicit mesh as domain

•express geometry via discrete differential forms

•Payoff: will become very easy to switch back & forth between smooth setting 
(scribbling in a notebook) and discrete setting (running algorithms on real data!)

Curves & Surfaces—Overview



Vector Valued Differential Forms



Vector Valued k-Forms
•So far, we’ve defined a k-form as a linear map from k vectors to a real number
•For working with curves and surfaces in Rn, it will be essential to generalize this 

definition to vector-valued k-forms.
•In particular, a vector-valued k-form is a multi-linear map from k vectors in a vector 

space V to some other vector space U (not necessarily U=V)

•So far, for instance, all of our forms have been R-valued k-forms on Rn (V=Rn,U=R)
•A R3-valued 2-form on R2 would instead be a multilinear, fully-antisymmetric map 

from a pair of vectors u,v in R2 to a single vector in R3:

Q: What kind of object is a R2-valued 0-form on R2?

2v



Vector-Valued k-forms—Example
Consider for instance the following R3-valued 1-form on R2:

Q: What do we get if we evaluate this 1-form on the vector

A: Evaluation is not much different from real-valued forms:

Key idea: coefficients just have a different type



Wedge Product of Vector-Valued k-Forms
•Most important change is how we evaluate wedge product for vector-valued forms.

•Consider for instance a pair of R3-valued 1-forms:

•To evaluate their wedge product on a pair of vectors u,v we would normally write:

•If α and β were real-valued, then α(u), β(v), α(v), β(u), would just be real numbers, so 
we could just multiply the two pairs and take their difference.

•But what does it mean to take the “product” of two vectors from R3?

•Many possibilities (e.g., dot product), but if we want result to be an R3-valued 2-form, 
the product we choose must produce another 3-vector!



Wedge Product of R3-Valued k-Forms
•Most common case for our study of surfaces:

•k-forms are R3-valued

•use cross product to multiply 3-vectors



R3-valued 1-forms: Antisymmetry & Symmetry
With real-valued forms, we observed antisymmetry in both the wedge product of 1-
forms as well as the application of the 2-form to a pair of vectors, i.e.,

What happens w/ R3-valued 1-forms?  Since cross product is antisymmetric, we get

(no change) (big change!)



R3-valued 1-forms: Self-Wedge
Likewise, we saw that wedging a real-valued 1-form with itself yields zero:

…But, no longer true with (R3, ×)-valued 1-forms:

Q: What was the geometric interpretation?
A: Parallelogram spanned by two copies of the same vector has zero area!

Geometric meaning will become clearer as we work with surfaces.



•Just as we distinguished between a k-form (value at a single point) and a differential k-
form (value at ever point in space), we will also say that a vector-valued differential k-
form is a vector-valued k-form at each point of space.

•Just like any differential form, a vector-valued differential k-form gets evaluated on k 
vector fields X1, …, Xk.

•Example: an R3-valued differential 1-form on R2 (with coordinates u,v):

Vector-Valued Differential k-Forms

Q: What does this 1-form do to any given vector field X on the plane?

A: It simply “copies” it to the yz-plane in 3D.



Exterior Derivative on Vector-Valued Forms
Unlike the wedge product, not much changes with the exterior derivative. 
For instance, if we have an Rn-valued k-form we can simply imagine we have 
n real-valued k-forms and differentiate as usual.
Example.

Example.



Planar Curves



Parameterized Plane Curve
• A parameterized plane curve is a map* taking each point in an interval 

[0,L] of the real line to some point in the plane       :

*Continuous, differentiable, smooth…



Curves in the Plane—Example
• As an example, we can express a circle as a parameterized curve    :

The circle is an example of a closed curve, meaning that endpoints meet.



Differential of a Curve
•If we think of a parameterized curve as an R2-valued 0-form on an 

interval of the real line, then the differential (or exterior derivative) 
says how vectors on the domain get mapped into the plane:



• Informally, a vector is tangent to a curve if it 
“just barely grazes” the curve.

• More formally, the unit tangent (or just 
tangent) of a regular curve is the map 
obtained by normalizing its first derivative:

Tangent of a Curve

• If the derivative already has unit length, then we say the curve is arc-
length parameterized and can write the tangent as just



Tangent of a Curve—Example
• Let’s compute the unit tangent of a circle:



Reparameterization of a Curve

•The image of the new curve is the same, even 
though the map itself changes.  For example:

s
�(s) := (1 + s)(cos(�s), sin(�s))



Regular Curve / Immersion
•A parameterized curve is regular (or immersed) if the differential is 

nonzero everywhere, i.e., if the curve “never slows to zero”

•Without this condition, a parameterized curve may look non-smooth 
but actually be differentiable everywhere, or look smooth but fail to 
have well-defined tangents.



Irregular Curve—Example
•Consider the reparameterization of a piecewise linear curve:

•Even though the reparameterized curve has a continuous first 
derivative, this derivative goes to zero at s = 0:

•Hence, (still) can’t define tangent at zero.



Embedded Curve
•Roughly speaking, an embedded curve 

does not cross itself

•More precisely, a curve is embedded 
if it is a continuous and bijective map 
from its domain to its image, and the 
inverse map is also continuous

•Q: What’s an example of a continuous 
injective curve that is not embedded?

•A: A half-open interval mapped to a 
circle (inverse is not continuous)

0 2π

embedded not embedded



• Informally, a vector is normal to a curve if it 
“sticks straight out” of the curve.

• More formally, the unit normal (or just normal) 
can be expressed as a quarter-rotation      of the 
unit tangent in the counter-clockwise direction:

Normal of a Curve

• In coordinates (x,y), a quarter-turn can be achieved by* 
simply exchanging x and y, and then negating y:

*Why does this work?



Normal of a Curve—Example
• Let’s compute the unit normal of a circle:

Note: could also adopt the 
convention                    .
(Just remain consistent!)



Curvature of a Plane Curve
• Informally, curvature describes “how much a curve bends”

• More formally, the curvature of an arc-length parameterized plane 
curve can be expressed as the rate of change in the tangent

Here the angle brackets denote the usual dot product, i.e.,                                            .

Equivalently:



Fact. Up to rigid motions, an arc-length parameterized plane curve is 
uniquely determined by its curvature.

Q: Given only the curvature function, how can we recover the curve?

A: Just “invert” the two relationships

Fundamental Theorem of Plane Curves

Then evaluate unit tangents:

Finally, integrate tangents to get curve:

Q: What about the rigid motion?  Will this work for closed curves?

First integrate curvature to get angle:



Turning and Winding Numbers
•For a closed regular curve in the plane…

•The turning number k is the number of counter-
clockwise turns made by the tangent

•The winding number n is the number of times 
the curve goes around a particular point p

•can also be viewed as the total signed length of 
the projection of the curve onto a unit-length 
circle around p

k=+3

k=+2

k=+1

k=0

k=-3

k=-2

k=-1

n=0 n=1 n=3 n=-3



Whitney-Graustein Theorem
•(Whitney-Graustein) Two curves have the same turning number k if and only if 

they are related by regular homotopy, i.e., if one can continuously “deform” into 
the other while remaining regular (immersed).

https://youtu.be/fKFH3c7b57s“Regular Homotopies in the Plane” —

https://youtu.be/fKFH3c7b57s


Application: Generalized Winding Numbers
• For messy, “real world” data (instead of 

perfect closed curves) can still measure 
notion of how much a curve, surface, etc., 
“wraps around” a point

• Just sum up signed projected lengths (or 
areas)

• Fractional winding number gives good 
indication of which points are inside/
outside

• Useful for a wide variety of practical tasks: 
extracting “watertight” mesh, tetrahedral 
meshing, constructive solid geometry 
(booleans), …

Jacobson et al, “Robust Inside-Outside Segmentation using Generalized Winding Numbers” (2013)
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Space Curves



Parameterized Space Curve
• A parameterized space curve is a map* taking each point in an interval 

[0,L] of the real line to some point in      

*Continuous, differentiable, smooth…



Pushforward of Vectors on a Space Curve
Suppose we apply the differential of a parameterized space curve to 
a vector field X on its domain:

Q: What’s the geometric meaning?



Parameterized Space Curve
• A parameterized space curve is a map* taking each point in an interval 

[0,L] of the real line to some point in      

*Continuous, differentiable, smooth…

• Its differential takes vectors on      to vectors in    



Curvature and Torsion of a Space Curve
•For a plane curve, curvature captured the notion of “bending”
•For a space curve we also have torsion, which captures “twisting”

increasing torsion
Intuition: torsion is 
“out of plane bending”



Frenet Frame
•Each point of a space curve has a 

natural coordinate frame called the 
Frenet frame, which depends only on 
the local geometry

• As in the plane, the tangent T is found 
by differentiating the curve, and 
differentiating the tangent yields the 
curvature times the normal N

•The binormal B then completes an 
orthonormal basis with T and N



Frenet-Serret Equation
•Curvature 𝜅 and torsion 𝜏 can be defined in terms of the change 

in the Frenet frame as we move along the curve:

•Most importantly, change in the tangent describes bending 
(curvature); change in binormal describes twisting (torsion)



Example—Helix
•Let’s compute the Frenet frame, curvature, and torsion for a helix*

*For simplicity, let’s pick a,b such that a2 + b2 = 1.

a
b



Fundamental Theorem of Space Curves
•The fundamental theorem of space curves tells us we can also go the 

other way: given the curvature and torsion of an arc-length 
parameterized space curve, we can recover the curve itself

•In 2D we just had to integrate a single ODE; here we integrate a 
system of three ODEs—namely, Frenet-Serret!

T

B

N



Adapted Frames on Curves
•Q: If our curve has a straight piece, is the Frenet frame well-defined?

•A: No, we don’t have a clear normal/binormal (since, e.g., dT/ds = 0)

•However, there are many ways to choose an adapted frame

•Any orthonormal frame including T

•E.g., least-twisting frame (Bishop)

•Unlike Frenet, global rather than local

•First example of moving frames

•(Will see more later for surfaces…)

N,B = ?



Thanks!
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