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LECTURE 16:
DISCRETE CURVATURE II (VARIATIONAL)



A Unified Picture of Discrete Curvature
• By making some connections between smooth and 

discrete surfaces, we get a unified picture of many 
different discrete curvatures scattered throughout the 
literature

• To tell the full story we’ll need a few pieces:

• geometric derivatives

• Steiner polynomials

• sequence of curvature variations

• assorted theorems (Gauss-Bonnet, Schläfli, ∆f = 2HN)

• Start with integral viewpoint (1st lecture), then cover 
variational viewpoint (2nd lecture).



Discrete Geometric Derivatives



Discrete Geometric Derivatives
• Practical technique for calculating derivatives 

of discrete geometric quantities

• Basic question: how does one geometric quantity 
change with respect to another?

• E.g., what’s the gradient of triangle area with 
respect to the position of one of its vertices?

• Don’t just grind out partial derivatives!

• Do follow a simple geometric recipe:

• First, in which direction does the quantity change quickest?
• Second, what’s the magnitude of this change?
• Together, direction & magnitude give us the gradient vector



Dangers of Partial Derivatives
• Why not just take derivatives 

“the usual way?”
• usually takes way more work!
• can lead to expressions that are

• inefficient
• numerically unstable
• hard to interpret

• Example: gradient of angle 
between two segments (b,a), (c,a) 
w.r.t. coordinates of point a
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Geometric Derivation of Angle Derivative
• Instead of taking partial derivatives, let’s 

break this calculation into two pieces:
1. (Direction) What direction can we move the 
point  a to most quickly increase the angle 𝜃?

A: Orthogonal to the segment ab.
2. (Magnitude) How much does the angle 
change if we move in this direction?

A: Moving around a whole circle changes the 
angle by 2! over a distance 2!r, where r = |b-
a|. Hence, the instantaneous change is 1/|b-a|.

• Multiplying the unit direction by the 
magnitude yields a final gradient expression.
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Gradient of Triangle Area
Q: What’s the gradient of triangle area with respect to one of its vertices p?

A: Can express via its unit normal N and vector e along edge opposite p:

p

N

e



Geometric Derivation
• In general, can lead to some pretty slick expressions (give it a try!)



Aside: Automatic Differentiation
• Geometric approach to differentiation greatly 

simplifies “small pieces” (gradient of a 
particular, angle, length, area, volume, …)

• For larger expressions that combine many 
small pieces, approach of automatic 
differentiation is extremely useful*

• Basically does nothing more than automate 
repeated application of chain rule

• Simplest implementation: use pair that store 
both a value and its derivative; operations on 
these tuples apply operation & chain rule

*More recently known as backpropagation

Example.
// define how multiplication and sine
// operate on (value,derivative) pairs
// (usually done by an existing library)
(a,a’)*(b,b’) := (a*b,a*b’+b*a’)
sin((a,a’)) := (sin(a),a’*cos(a))

// to evaluate a function and its
// derivative at a point, we first
// construct a pair corresponding to the
// identity function f(x) = x at the
// desired evaluation point
x = (5,1) // derivative of x w.r.t x is 1

// now all we have to do is type a
// function as usual, and it will yield
// the correct value/derivative pair
fx = sin(x*x) // (-0.132352, 9.91203)



Schläfli Formula



Schläfli Formula
• Consider a closed polyhedron in R3 with edge lengths lij and dihedral 

angles 𝜑ij.  Then for any motion of the vertices,



Curvature Variations



Sequence of Variations (Smooth)
For a smooth surface f : M ⟶ R3 (without boundary), let

How can we move the surface so that each of these quantities changes as quickly as 
possible?  Remarkably enough…



Discrete Normal via Volume Variation
• Recall that we still don’t have a clear definition for discrete 

normals at vertices, where the surface is not differentiable

• However, in the smooth setting we know that the normal is 
equal to (half) the volume gradient

• Idea: Since volume is perfectly well-defined for a discrete 
surface, why not use volume gradient to define vertex 
normals?

• Now just need to calculate the gradient of volume with 
respect to motion of one of the vertices, which we can do 
using our “geometric approach”…

?



Volume Enclosed by a Smooth Surface
• What’s the volume enclosed by a smooth surface f ?

• One way: pick any point p, integrate volume of 
“infinitesimal pyramids” over the surface

• For a pyramid with base area b and height h, the 
volume is V = bh/3 (no matter what shape the 
base is)

• For our infinitesimal pyramid, the height is the 
distance from the surface f to the point p along the 
normal direction:

• The area of the base is just the infinitesimal surface 
area dA.  Now we just integrate…

p

dA

h

Notice: doesn’t depend on choice of point p!



Volume Enclosed by a Discrete Surface
• What’s the volume enclosed by a discrete surface?

• Simply apply our smooth formula to a discrete f !

• Exercise. Show that the volume enclosed by a 
simplicial surface can be expressed as fi

fj

fk



Discrete Volume Gradient
• Taking the gradient of enclosed volume with respect to the position fi of 

some vertex i should now give us a notion of vertex normal:

• But wait—this expression is the same as the discrete area vector!

• In other words: taking the gradient of discrete volume gave us exactly 
the same thing as integrating the normal over the dual cell.

• Agrees with the first expression in our sequence of variations:



Total Area of a Discrete Surface
• Total area of a discrete surface is simply the sum of the triangle areas:

i

j

k
Aijk

Q: Suppose f is not a discrete immersion.  Is area well-defined?  Differentiable?



Discrete Area Gradient
• Recall that the gradient of triangle area with respect to position p of a 

vertex is just half the normal cross the opposite edge:

• By summing contribution of all triangles touching a 
given vertex, can show that gradient of total surface 
area with respect to vertex coordinate fi is

• Agrees with second expression in our sequence:



Total Mean Curvature of a Discrete Surface
• From our Steiner polynomial, we know the total 

mean curvature of a discrete surface is

(In fact, total volume and area used for the previous 
two calculations also agree with Steiner polynomial…)



Discrete Mean Curvature Gradient
• What’s the gradient of total mean curvature with respect to a 

particular vertex position fi?

• Agrees with third expression in our sequence:



Total Gauss Curvature
• Total Gauss curvature of a discrete surface is sum 

of angle defects:

• From (discrete) Gauss-Bonnet theorem, we know 
this sum is always equal to just 2πχ = 2π(V-E+F)

• Gradient with respect to motion of any vertex is 
therefore zero—sequence ends here!



Discrete Curvature—Panoramic View



Thanks!
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