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Boundary First Flattening (BFF)
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BFF is Robust

Spectral Conformal (SCP) Angle Based (ABF) Boundary First (BFF)
[Mullen et al 2008] [Zayer et al 2008] [Sawhney et al 2017]




MOTIVATION




onformal Flattening Applications
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Why Conformal?

Why so much interest in maps that preserve angles?

QUALITY: Often comparable to nonlinear schemes

EFFICIENCY: Often only one sparse factorization!

é“’/’f’ :, ’

SLIM + PARDISO BFF
[Rabinovich et al 2016] [Sawhney & Crane 2017}

15.9s 0.12s (126x faster)
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Why Conformal?

What about other energies like ARAP, Symmetric Dirichlet, ...?
Distortion is inevitable

Choice of cuts is far more important, with conformal energies much cheaper to minimize
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Problems

Current linear conformal methods have two major shortcomings:

NO BOUNDARY CONTROL
User obtains a single, automatic flattening

Must "take it or leave 1t,” irrespective of quality

SCALE DISTORTION
Conformal maps can scale arbitrarily

Cone singularities mitigate scale distortion

Optimal Cone Singularities for Conformal Flattening
[Soliman et al 2018]
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Spectral Conformal Parameterization (SCP)
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Linear Angle Based Flattening (LinABF)*
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“Free” Boundary Methods

ALGORITHM BOUNDARY CONTROL

Least Squares Conformal Maps (LSCM)

Spectral Conformal Parameterization (SCP)

Angle Based Flattening (ABF)

Linear Angle Based Flattening (LinABF)*

Minimize discrete energy without explicit boundary constraints

*can be modified to provide boundary control
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“Free” Boundary Conditions are Meaningless

Solution has no meaningful interpretation in the smooth setting!

SMOOTH SETTING
Enormous space of perfect conformal flattenings

Obtained by flattening and then applying in-plane maps

DISCRETE SETTING

Unique solution must depend on discretization

Results change based on mesh or numerical treatment

Special Conformal Parameterization
[Mullen et al 2008]



Forcing the Boundary

First attempt: Pin all boundary points to get desired shape



Forcing the Boundary

First attempt: Pin all boundary points to get desired shape

Least squares yields harmonic map with severe angle distortion:

Harmonic Conformal



Prescribed Lengths and Angles

ALGORITHM

COMPLEXITY

BOUNDARY CONTROL

Circle Patterns (CP) Nonlinear
Conformal Equivalence (CETM) Nonlinear
Curvature Prescription (CPMS)* Linear
Boundary First Flattening (BFF) Linear

*can be modified to provide boundary control
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Prescribed Lengths and Angles

ALGORITHM COMPLEXITY BOUNDARY CONTROL

Circle Patterns (CP) Nonlinear
Conformal Equivalence (CETM) Nonlinear
Curvature Prescription (CPMS)* Linear
Boundary First Flattening (BFF) Linear

BFF is faster than existing linear methods

CETM

Quality & control comparable to nonlinear schemes

*can be modified to provide boundary control



SMOOTH THEORY
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Key ldea

If you know the boundary
of a conformal map,

then extension to the
Interior Is easy
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Algorithm Outline

Given a surface with either scale or curvature of target boundary curve
1. Solve Yamabe Problem to get complementary data (curvature or scale)

2. Integrate boundary data to get boundary curve

3. Extend boundary curve to a pair of conjugate harmonic functions



Compatibility of Boundary Data

Not every parameterized curve Is
the boundary of a conformal map!
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Yamabe Problem

Yamabe equation provides explicit relationship between conformal scaling

and change in curvature:

log scale factor

N v
Au =K — e?K on M
[N
origina new

Gaussian curvature Gaussian curvature

Cherrier boundary conditions:

ou -
— =Kk —e"K on oM
original new

geodesic curvature geodesic curvature

Can prescribe either curvature or scaling,
but not both!




Curve Integration

Curvature and scaling determine a closed curve up to rigid transformation
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Curvature and scaling determine a closed curve up to rigid transformation
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How do we find the solution on the interior?
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Conjugate Harmonic Functions

How do we find the solution on the interior?

JVa=Vb
Aa =0
Ab = ()
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Conjugate Harmonic Functions

How do we find the solution on the interior?

CONJUGATE HARMONIC PAIR

Fix a along the boundary and minimize conformal energy w.r.t. b (easy linear problem!)




Algorithm Outline

Given a surface with either scale or curvature of target boundary curve
1. Solve Yamabe Problem to get complementary data (curvature or scale)

2. Integrate boundary data to get boundary curve

3. Extend boundary curve to a pair of conjugate harmonic functions



DISCRETIZATION
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Discretization

Discretize surface as a manifold triangle mesh with disk topology




Discretization

Discretize surface as a manifold triangle mesh with disk topology




Discretization

Discretize surface as a manifold triangle mesh with disk topology




Discretizing the Yamabe Problem

Smooth Yamabe Problem is nonlinear

Au =K — e*K on M

— =K —e"K on oM



Discretizing the Yamabe Problem

Smooth Yamabe Problem is nonlinear

Integration over dual volumes yields linear relationships

Au =K — e*K Au = € — Q) on M

integrating

— =Kk — e’k h=k—%k on oM



Discretizing the Yamabe Problem

Smooth Yamabe Problem is nonlinear

Integration over dual volumes yields linear relationships

~yy

Au:K_ezuK Au = Q — Q on VI
integrating cItan
ﬁ Laplace matrix
ou . k
— =k — Uk h=k—k on oM



Discretizing the Yamabe Problem

Smooth Yamabe Problem is nonlinear

Integration over dual volumes yields linear relationships

Au = K — e*K Au =
integrating T \ \
cotan old new
ﬁ Laplace matrix angle defects angle defects
ou o -
— =Kk —e"K h=k—k on oM



Discretizing the Yamabe Problem

Smooth Yamabe Problem is nonlinear

Integration over dual volumes yields linear relationships

Au =K — e?"K Au =
integrating ot old\ Cew
ﬁ Laplace matrix angle defects angle defects
ou o -
— =Kk —e"K h=k—k on oM
on T
Neumann

boundary data



Discretizing the Yamabe Problem

Smooth Yamabe Problem is nonlinear

Integration over dual volumes yields linear relationships

Au =K — e?"K Au =
integrating T \ \
cotan old new
ﬁ Laplace matrix angle defects angle defects
ou o -
— =Kk —e"K h=k—k on oM
Neumann old

boundary data exterior angles exterlor angles



Discretizing the Yamabe Problem

Smooth Yamabe Problem is nonlinear

Integration over dual volumes yields linear relationships

0
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Discretizing the Yamabe Problem

Smooth Yamabe Problem is nonlinear

Integration over dual volumes yields linear relationships

2U
Au=K—-e"K Au = € —
integrating T \ \
cotan old new
ﬁ Laplace matrix angle defects angle defects
ou o -
— =Kk —¢e"k h=k—k on oM
_ _ _ _ Neumann old

Can prescribe either exterior angles or scaling, boundary data exterior angles exter.or angles

but not both!




Poincare Steklov Operators

How do we switch between angles and scale factors?

Au = € on M

h=k—k on oM
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Poincare Steklov Operators

How do we switch between angles and scale factors?

Rewrite integrated Yamabe Problem in block matrix form

NEUMANN TO DIRICHLET MAP DIRICHLET TO NEUMANN MAP
Given k Given ug
Solve Neumann system above for u Solve Dirichlet Problem Aju; = € — Ajzug for u;

Read off ug k=k + AIYI;MI + Applip



Poincare Steklov Operators

How do we switch between angles and scale factors?

Rewrite integrated Yamabe Problem in block matrix form

NEUMANN TO DIRICHLET MAP DIRICHLET TO NEUMANN MAP
Given k Given ug
Solve Neumann system above for u Solve Dirichlet Problem Aju; = € — Ajzug for u;
Read off uy k=k + Aty + Aggitp

Angles exactly sum to 2rt!
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Curve Integration

Rescale boundary edge lengths using scale factors u
Extremely small discretization errors prevent curve from closing

Formulate small least squares problem to adjust only lengths to close curve

Exterior angles are exactly preserved

REALLY
SMALL!

14/-0.001 _——_
r——N—
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Aa=0s.t.al, = Re(y)
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Ab=0s.t.— = Ha
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Harmonic Extension and Conjugation

Basic Idea: Fix one coordinate of ¥, minimize discrete conformal energy
w.r.t. other coordinate

Aa=0s.t.al, = Re(y)

Ab=0s.t1 0 H S a
=0s.1.— = Ha
on T ‘.

Hilbert Transform

= o~ a \/ OO@

b f=a+b

“as conjugate as possible”



Algorithm Outline

Given a surface with either scale or curvature of target boundary curve
1. Solve Yamabe Problem to get complementary data (curvature or scale)

2. Integrate boundary data to get boundary curve

3. Extend boundary curve to a pair of conjugate harmonic functions
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Automatic Flattening

User does not have to specify boundary curve: automatically pick flattening
with minimal scale distortion

Theorem. [Springborn, Schroder, Pinkall] Let (M, g) be a surface with boundary. Then
among all conformalbrequiyalent flat metrics § = e“! g the ones with least area distortion
are obtained § u|z),; = const.}

p— o U
Results indistinguishable - 0 T
from CETM
Better preservation of symmetry CRTM

compared to LSCM and SCP BFF



Direct Editing

Spline based curve editor
to manipulate target angles
and lengths

Interactively and nonrigidly
tweak a texture layout
while remaining conformal




Exact Preservation of Sharp Corners

Harmonically extend both
coordinates of ¥ to exactly
interpolate angles




Exact Preservation of Sharp Corners

Harmonically extend both
coordinates of ¥ to exactly
interpolate angles

Converges to conformal map
under refinement since 7
Is approximately conformal

—— increasing resolution —m8 ——»
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Seamless Cone Parameterization

Cone singularities in BFF

Solve Yamabe Problem with modified source term

Ap Al [w] [Q (0]
;I o ! — \ cone
AIB ABB Up —(k — angles
Cut through cones, prescribing 1 along cut
Maps are seamless by construction
Allow interactive editing of cone angles T LEGEEnE
4




Seamless Cone Parameterization

Cone singularities in BFF

Solve Yamabe Problem with modified source term

Ap A [W] B [Q —@ e

AIYI;’ ABB Up —(k — angles

Cut through cones, prescribing 1 along cut

Maps are seamless by construction

Allow interactive editing of cone angles Raas Z

Results indistinguishable from CETM *




Uniformization and Arbitrary Target Shapes

CETM BFF (initial map) iteration 1 iteration 2 iteration 3
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Uniformization and Arbitrary Target Shapes
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Uniformization and Arbitrary Target Shapes

CETM BFF (initial map) iteration 1 iteration 2 iteration 3

<l H »

Qavg =1.22 Qavg =1.23 iteration 10 (co‘n;ferged) (target)

Iterative procedure converges in fewer than 10 iterations

Prescribing exterior angles does not work

To uniquely prescribe target shape, need to control
change In angle per unit length




EVALUATION



Performance
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Fast Computation

Single Sparse Cholesky Factorization

A App [LII 0 ] Ly Ly t e sten in entire Alaorith
= most expensive step in entire algorithm
Alp Apg Lp; Lggl | 0 Lj,

m— AII — LIIL}; ‘“for free”

Backsubtitution
Ax; = b,
Ax, = b,
Axy = b,

Prefactor ~20x
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Numerical Robustness

Principled discretization of Poincare Steklov
operators guarantees exact integrability of
exterior angles

Integrability of edge lengths enforced only
along boundary
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Injectivity (No Flipped Triangles)

BFF provides no guarantees, but maps are usually injective:;



Injectivity (No Flipped Triangles)

FF provides no guarantees, but maps are usually injective:

SHREC: 6/588 meshes; 1-2 flipped triangles
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Price of Guaranteed Injectivity

Editing can be 100’s of times
slower with injective methods

SLIM + PARDISO - 15.9s BFF - 0.12s (126x faster)
[Rabinovich et al 2016] [Sawhney & Crane 2017]



Price of Guaranteed Injectivity

Editing can be 100’s of times
slower with injective methods

Best of both worlds:
use fast method like BFF
fallback if necessary

SLIM + PARDISO - 15.9s BFF - 0.12s (126x faster)
[Rabinovich et al 2016] [Sawhney & Crane 2017]
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Boundary First Flattening

Boundary First Flattening (BFF) is a free and open source application for surface parameterization. Unlike other tools for UV mapping, BFF
allows free-form editing of the flattened mesh, providing users direct control over the shape of the flattened domain—rather than being stuck
with whatever the software provides. The initial flattening is fully automatic, with distortion mathematically guaranteed to be as low or lower than
any other conformal mapping tool. The tool also provides some state-of-the art flattening techniques not available in standard UV mapping
software such as cone singularities, which can dramatically reduce area distortion, and seamless maps, which help eliminate artifacts by
ensuring identical texture resolution across all cuts. BFF is highly optimized, allowing interactive editing of meshes with millions of triangles.

The BFF application is based on the paper, “Boundary First Flattening” by Rohan Sawhney and Keenan Crane.

geometry.cs.cmu.edu/bff



http://geometry.cs.cmu.edu/bff
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2D Shape Editing & Uniformization

Apply 2D conformal deformations to initial flattening?

Piecewise linear conformal maps do not compose

Composition of methods offers no clear advantage in terms of speed or simplicity

Controllable Conformal Maps for Shape Deformation and Interpolation
[Weber et al 2010]



Topology

For multiply connected domains like annulus, Hilbert transform is not valid

Fill holes with virtual faces to flatten

Cut surface into one or more disks




Harmonic vs Holomorphic Extension

Harmonic and holomophic extension of ¥ converge to the same solution
under refinement

Holomorphic Extension Harmonic Extension



Harmonic vs Holomorphic Extension

Harmonic and holomophic extension of ¥ converge to the same solution
under refinement

Holomorphic Extension Harmonic Extension



More Detalils on Discretizing the Yamabe Problem (1)

Multiply Yamabe equation by dA and its boundary conditions by ds

Au = K — e?“K Au.dA = K.dA — Ke** . dA on M
V
; dA
ou 3 ou 3
— =Kk -2 —.ds =x.ds — Ke" .ds on oM
on on ~—

ds



More Details on Discretizing the Yamabe Problem (2)

Integrate over dual volumes

~y/

Au.dA =K.dA —K.dA on M

ou o
—.ds = Kk.ds — Kds on oM
on



More Details on Discretizing the Yamabe Problem (2)

Integrate over dual volumes

~y/ ~/

Au.dA =K.dA —K.dA Au = Q — Q) on M

0 ~
a—u.ds=1<.ds—f<'d§ h=k—k on oM
n



Modification to CPMS

High Level ldea:

Employ Yamabe Equation to obtain scale information

Seek edge lengths that describe a flat surface via least squares layout

Modification:

Add boundary control with Cherrier boundary conditions

Comparison with BFF:

Least Squares layout does not respect boundary constraints

Amortized cost of editing a map with BFF is 30x faster compared to CPMS
(Layout matrix cannot be prefactored)



Modification to LINABF

High Level ldea:

Optimize corner angles fto find near flat metric

Find planar vertex positions approximating angles via least squares layout

Modification:

~J

. . - : : k
To prescribe exterior angles K, add linear boundary constraints Z ﬁ;’ ==K

i ~ .. sin ﬁl]k Zi—l l
To prescribe boundary lengths /.;, add boundary condition H — == :
ik S Bl i

Comparison with BFF:

Artifacts due to linearization and least squares layout

Neither least squares matrix nor angle constraint matrix can be prefactored



| don’t know...




