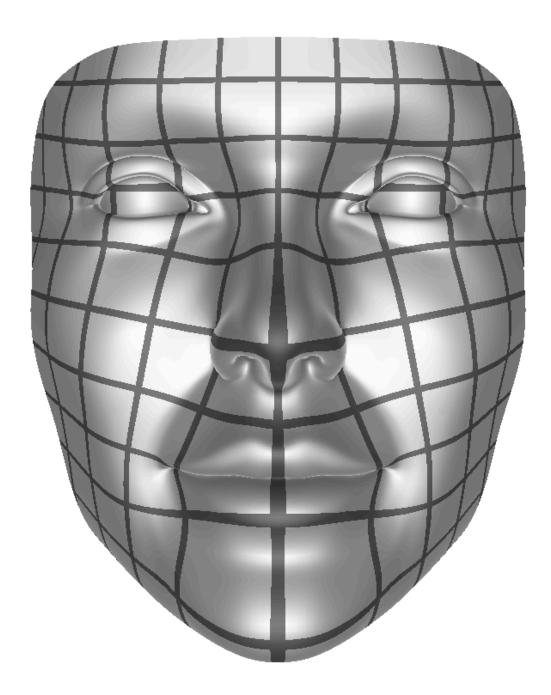
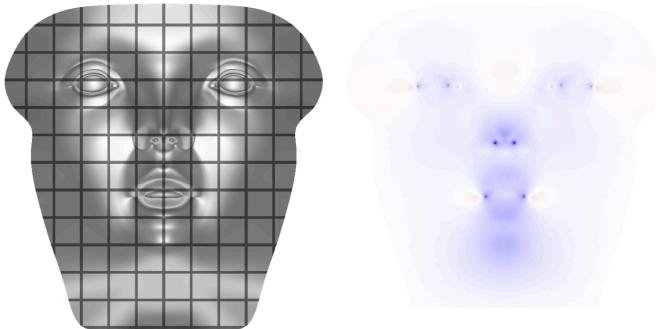
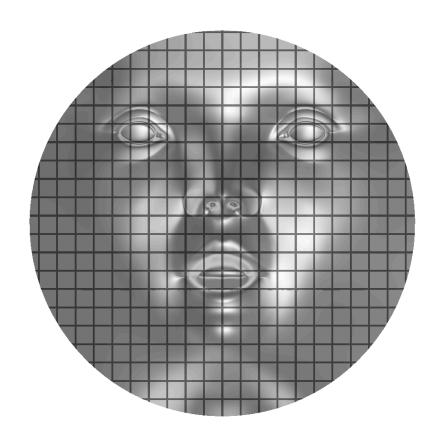
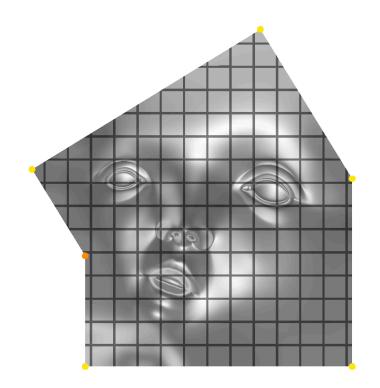
Boundary First Flattening (BFF)



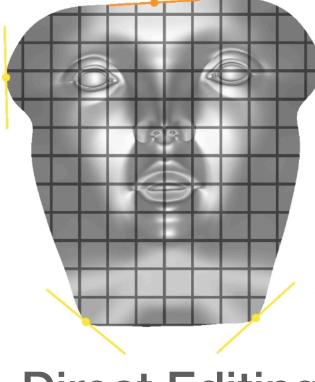




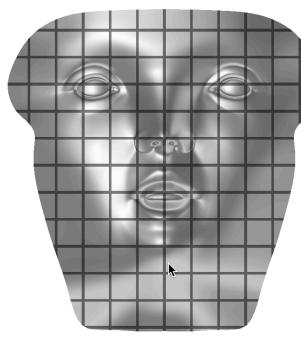
Minimal Area Distortion (Fully Automatic)



Sharp Corners



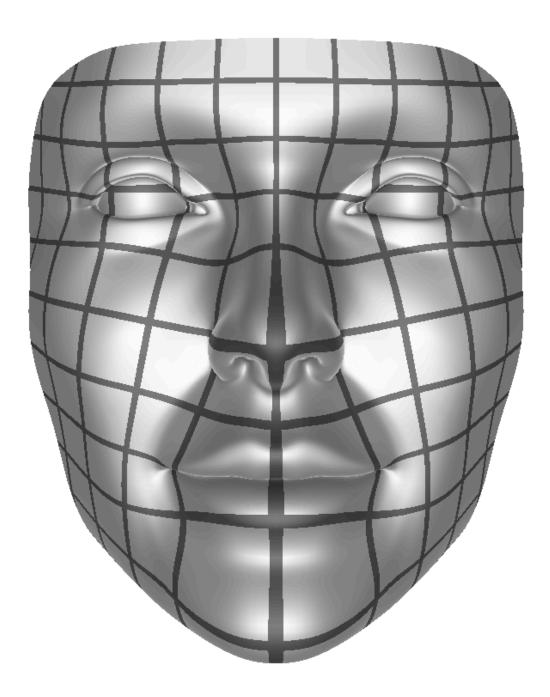
Direct Editing

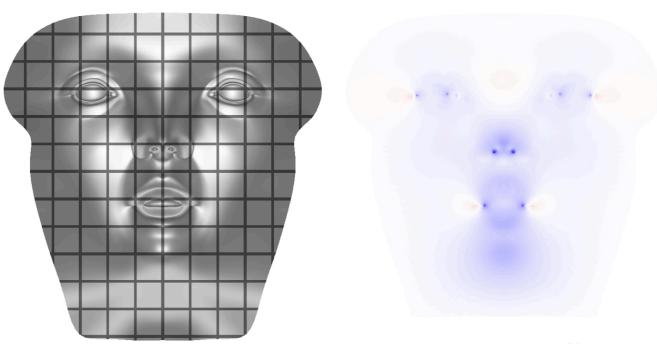


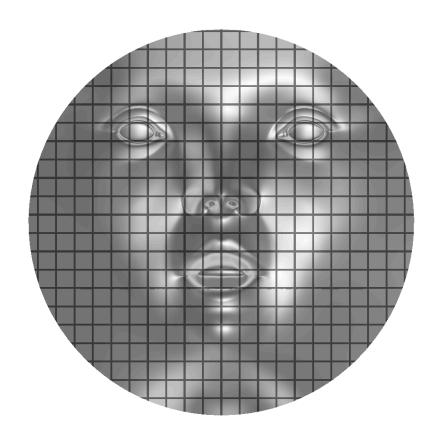
Cone Singularities

Arbitrary Target Shapes

BFF: A New Paradigm for Conformal Parameterization

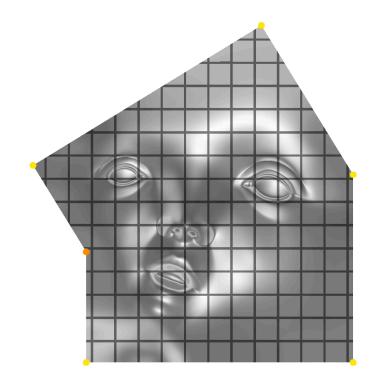




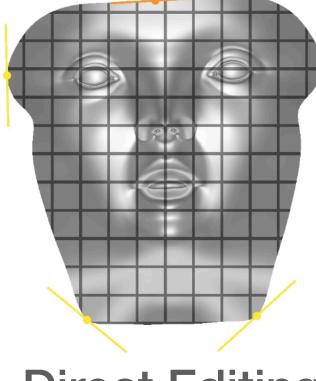




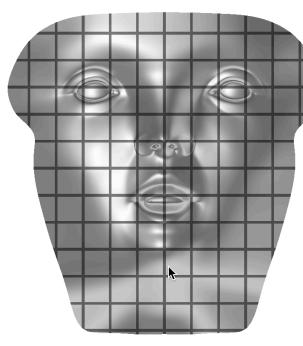
Minimal Area Distortion (Fully Automatic)



Sharp Corners



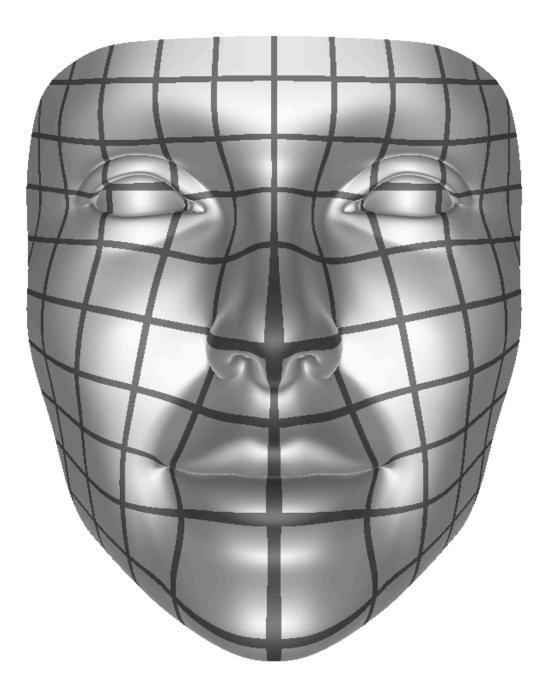
Direct Editing

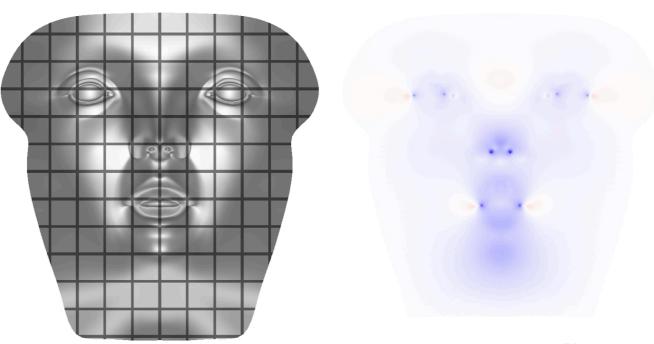


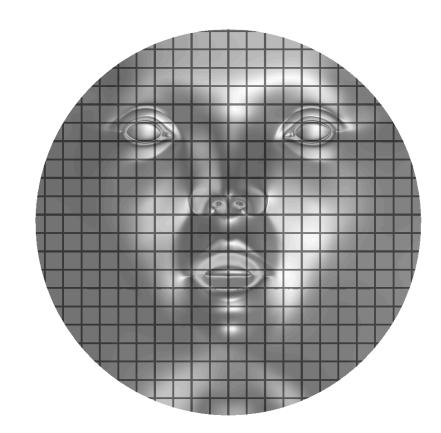
Cone Singularities

Arbitrary Target Shapes

BFF: A New Paradigm for Conformal Parameterization





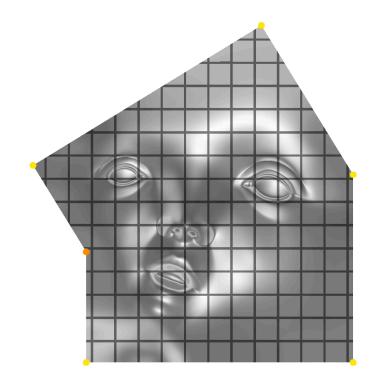


Quality of nonlinear methods

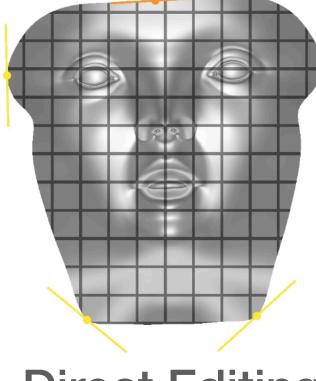
Faster than existing linear schemes



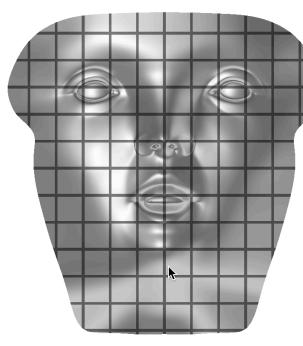
Minimal Area Distortion (Fully Automatic)



Sharp Corners



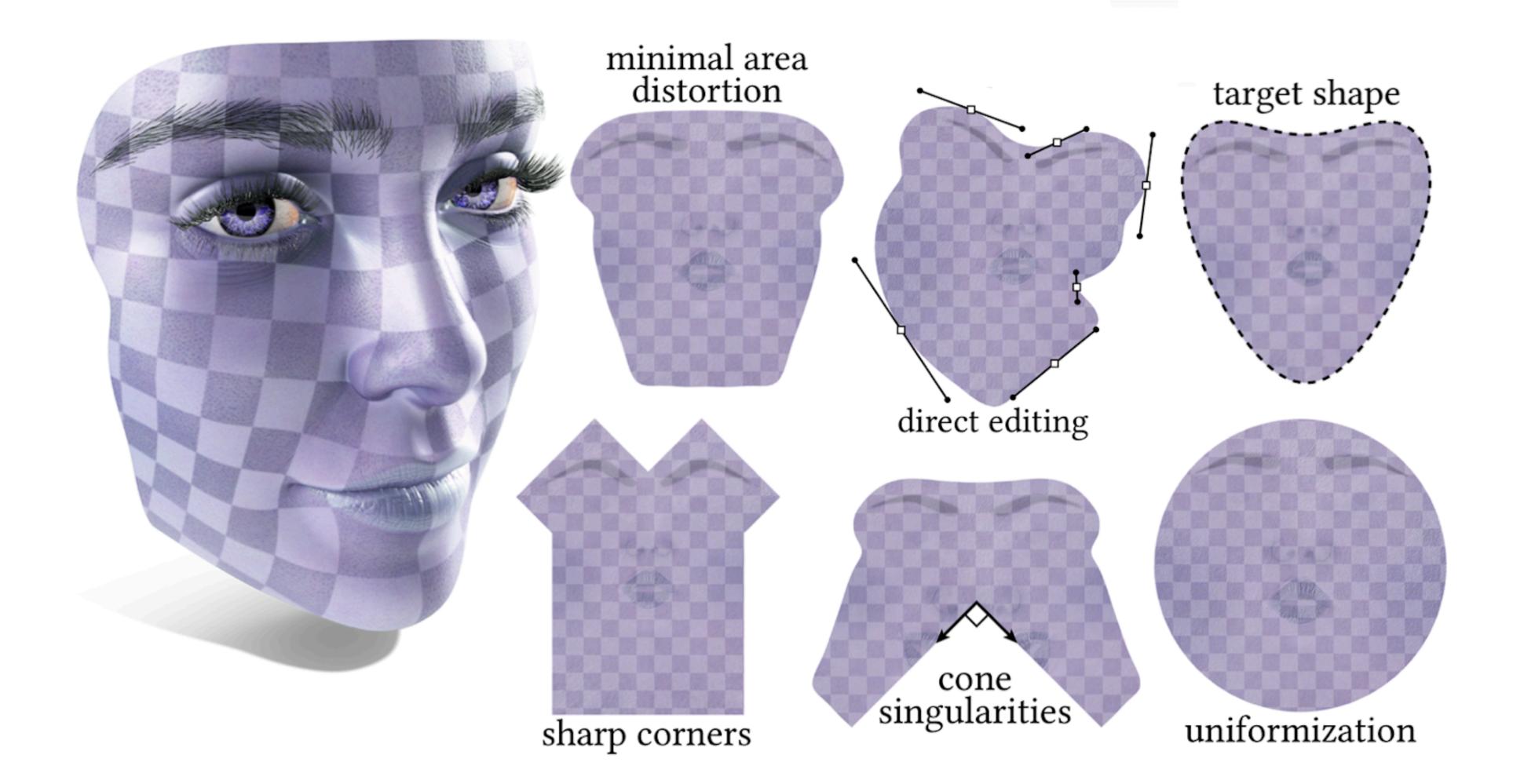
Direct Editing



Cone Singularities

Arbitrary Target Shapes

Boundary First Flattening (BFF)



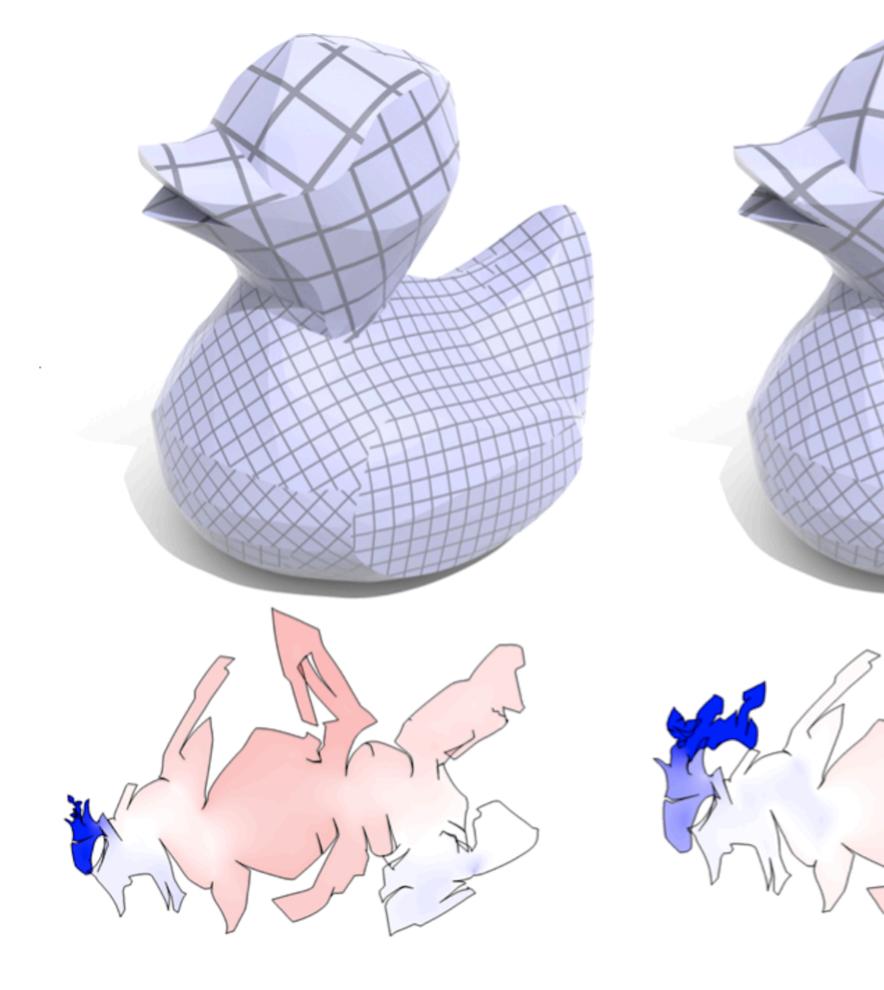
Full Control Over Target Shape

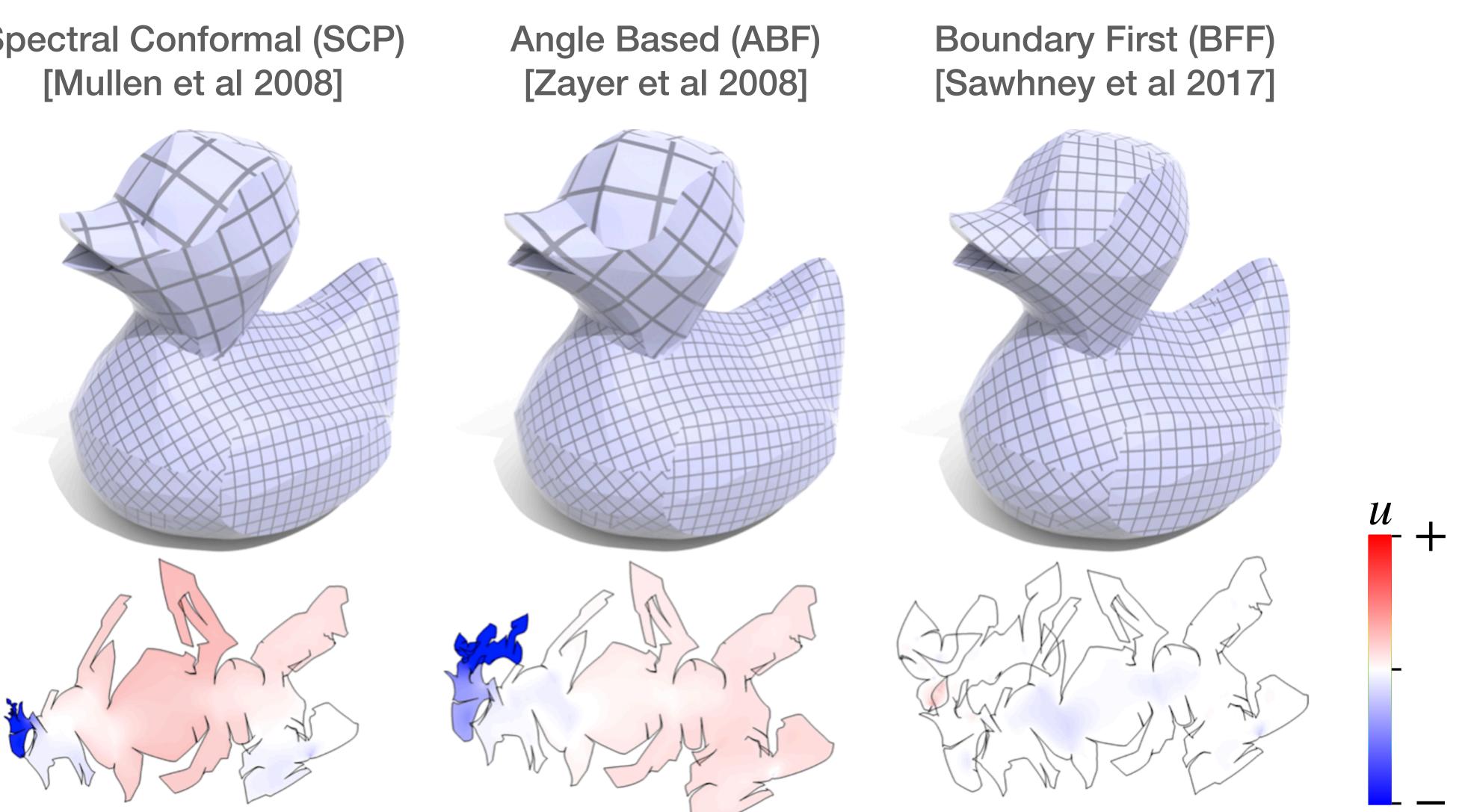
Real Time/ Scalable

Robust

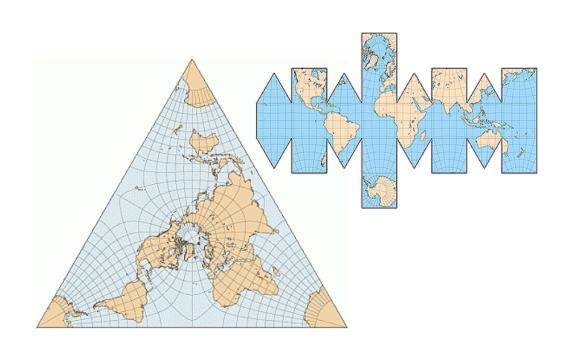
BFF is Robust

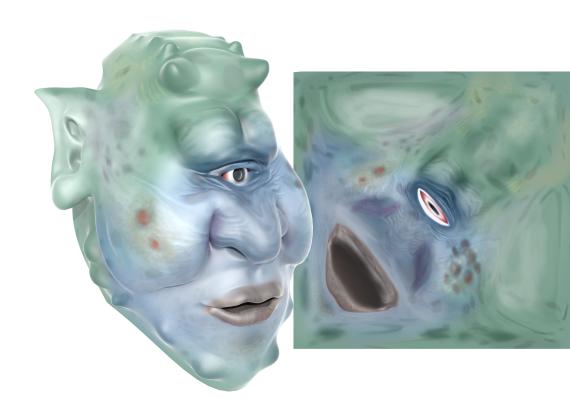
Spectral Conformal (SCP) [Mullen et al 2008]





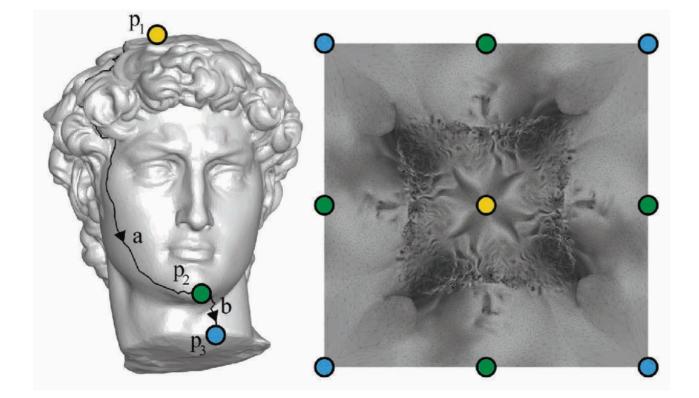
Conformal Flattening Applications



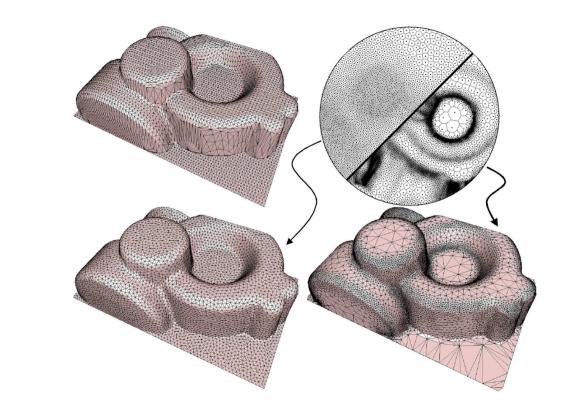


Cartography

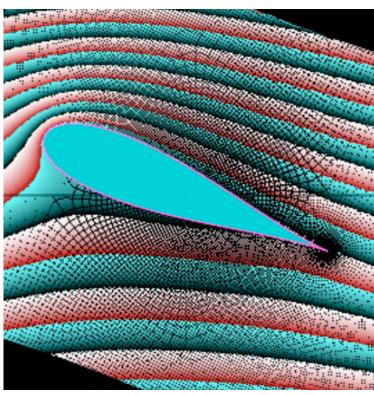
Texture Mapping



Computational Design

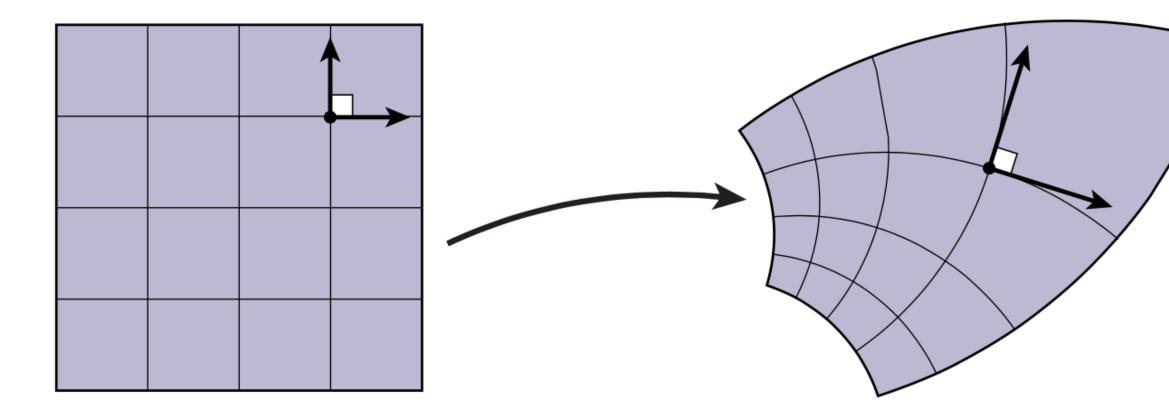


Remeshing



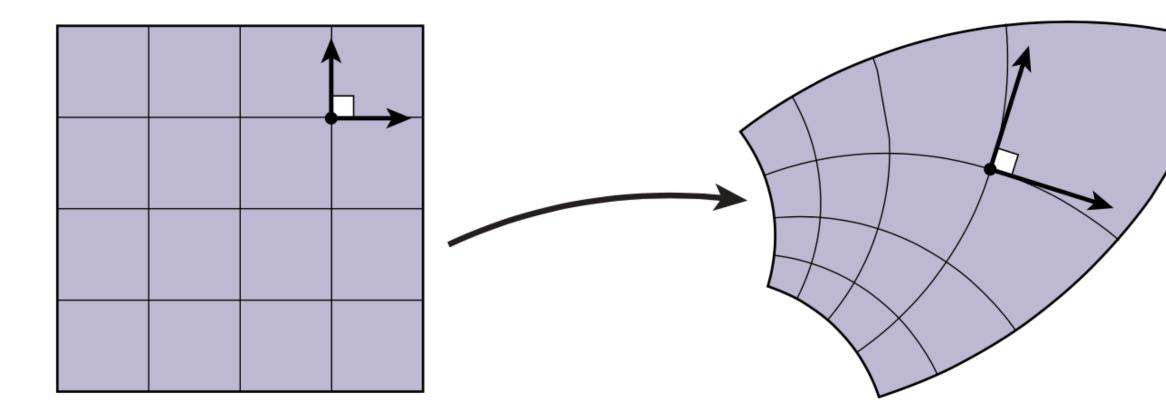
Physical Simulation

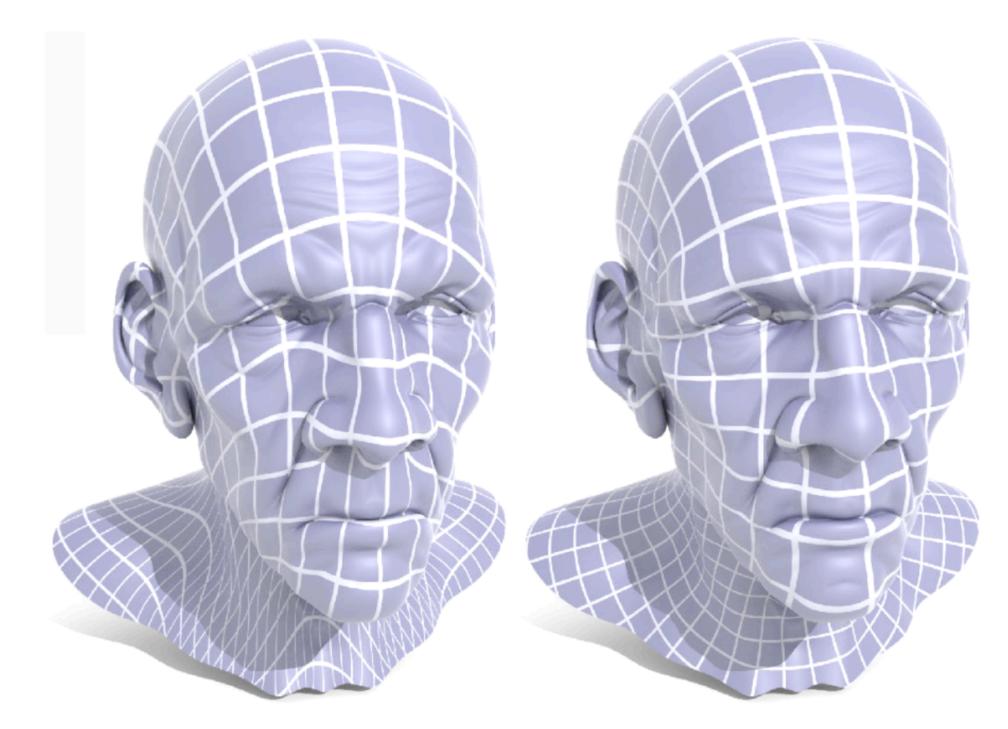
Why so much interest in maps that preserve angles?



Why so much interest in maps that preserve angles?

QUALITY: Often comparable to nonlinear schemes



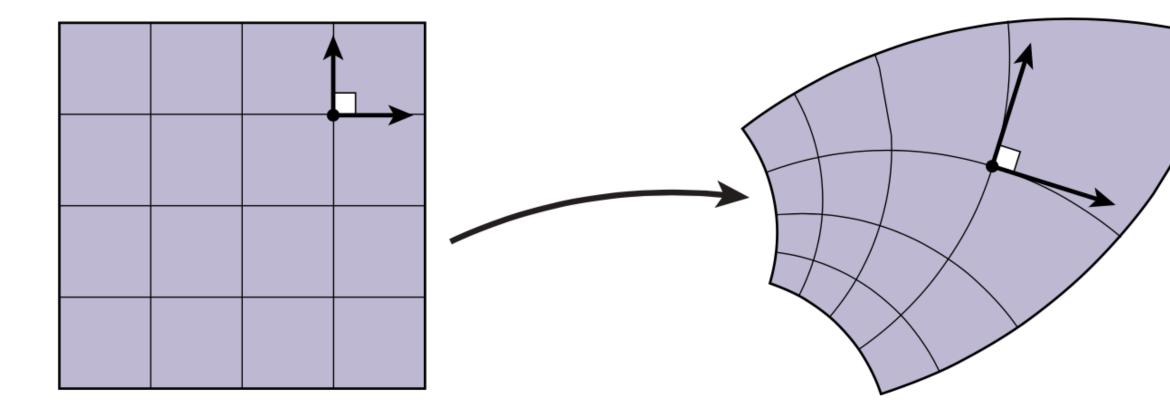


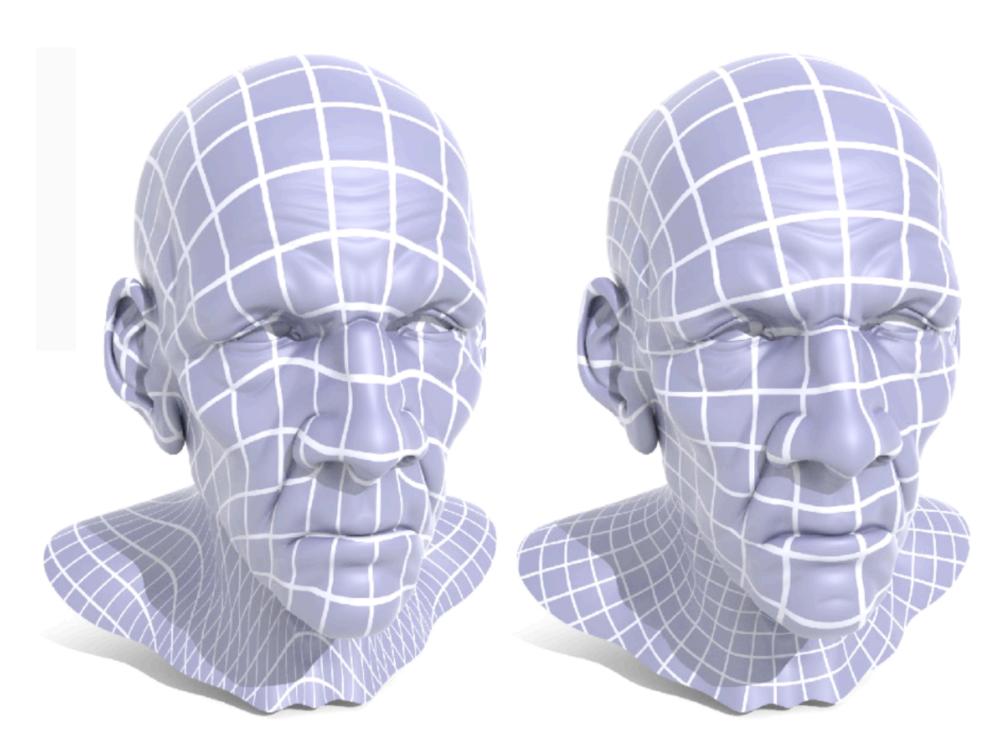
BFF SLIM + PARDISO [Rabinovich et al 2016] [Sawhney & Crane 2017]

Why so much interest in maps that preserve angles?

QUALITY: Often comparable to nonlinear schemes

EFFICIENCY: Often <u>only one</u> sparse factorization!



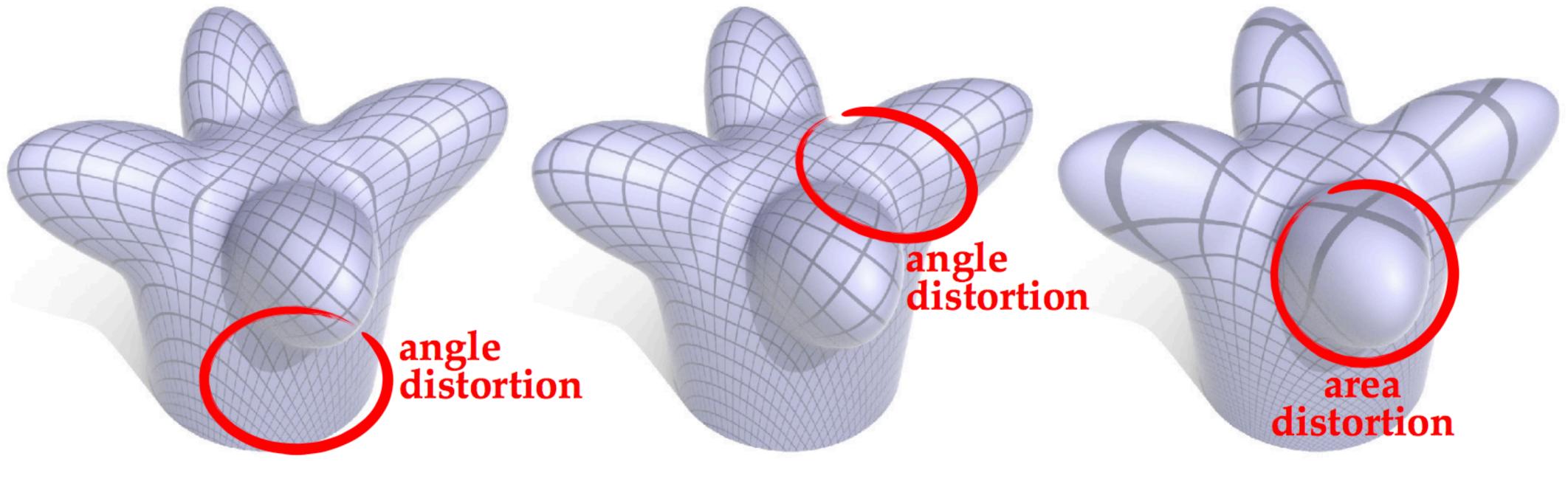


BFF SLIM + PARDISO [Rabinovich et al 2016] [Sawhney & Crane 2017] 0.12s (126x faster) 15.9s

What about other energies like ARAP, Symmetric Dirichlet, ...?

What about other energies like ARAP, Symmetric Dirichlet, ...?

Distortion is inevitable



As Rigid As Possible

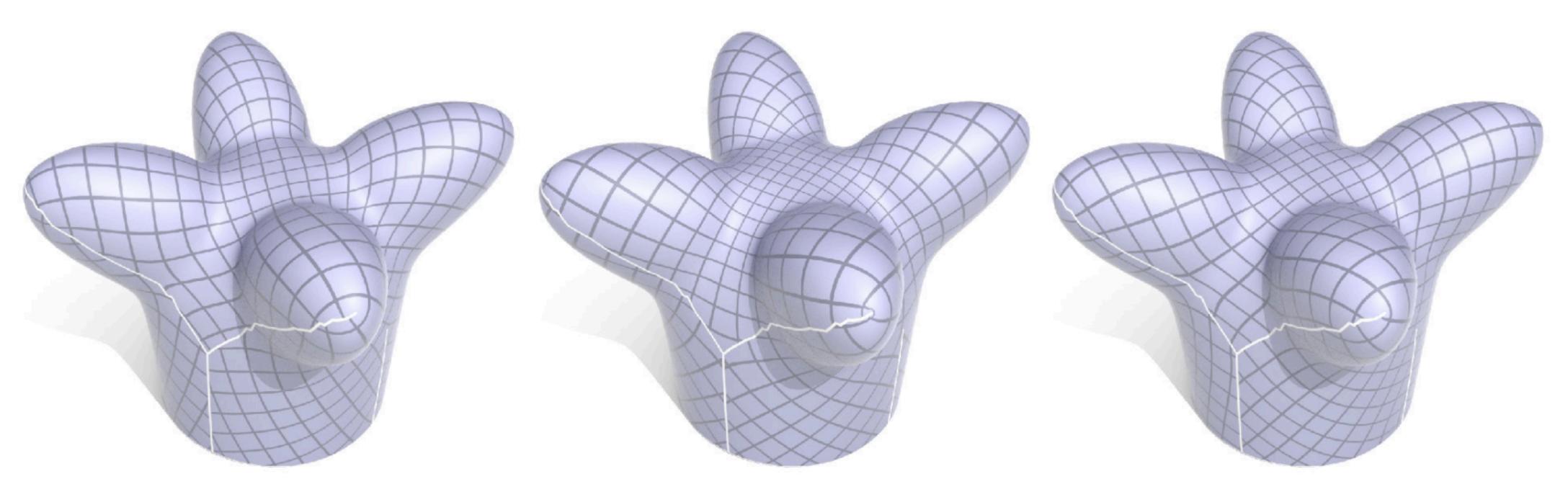
Symmetric Dirichlet

Conformal

What about other energies like ARAP, Symmetric Dirichlet, ...?

Distortion is inevitable

Choice of cuts is far more important, with conformal energies much cheaper to minimize



As Rigid As Possible

Symmetric Dirichlet

Conformal

Current linear conformal methods have two major shortcomings:

Current linear conformal methods have two major shortcomings:

NO BOUNDARY CONTROL

- User obtains a single, automatic flattening
- Must "take it or leave it," irrespective of quality



Current linear conformal methods have two major shortcomings:

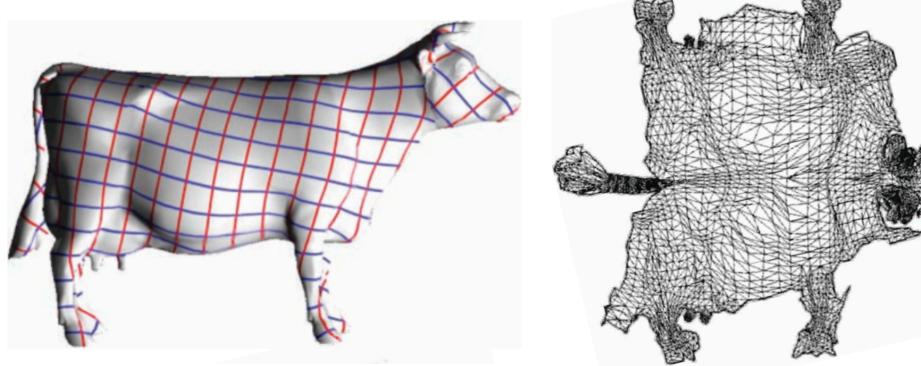
NO BOUNDARY CONTROL

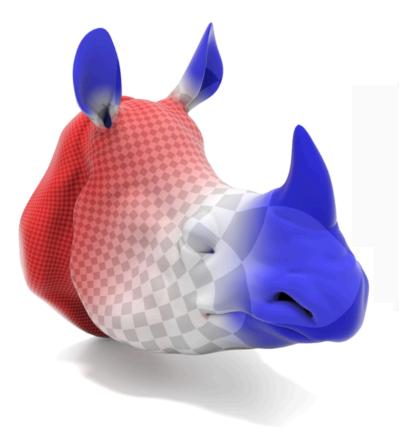
User obtains a single, automatic flattening

Must "take it or leave it," irrespective of quality

SCALE DISTORTION

Conformal maps can scale arbitrarily





Current linear conformal methods have two major shortcomings:

NO BOUNDARY CONTROL

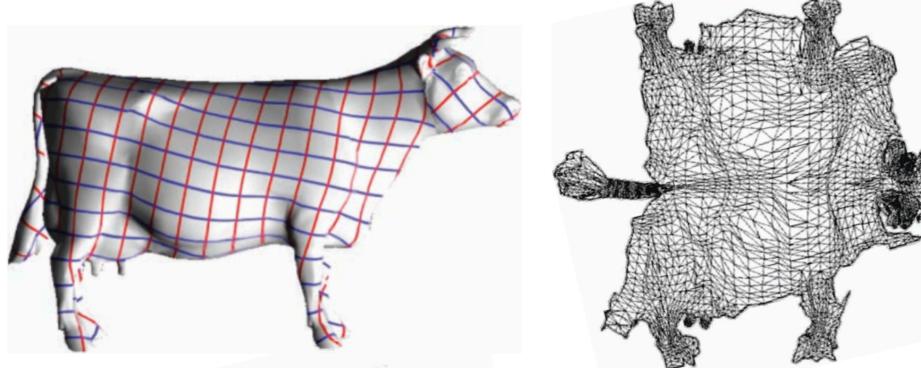
User obtains a single, automatic flattening

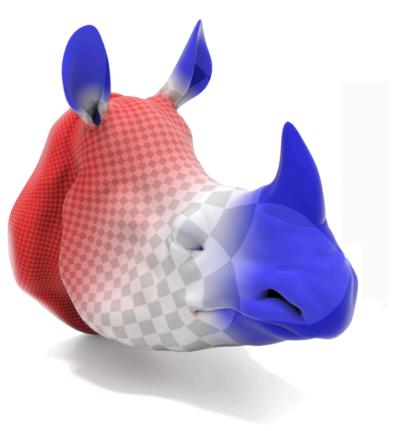
Must "take it or leave it," irrespective of quality

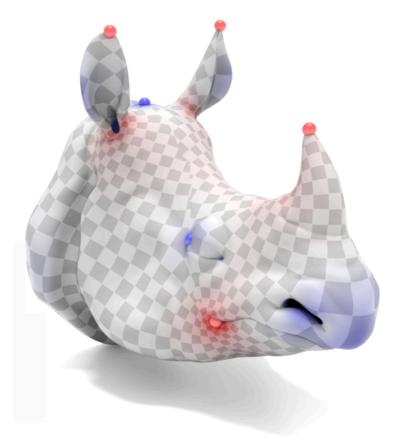
SCALE DISTORTION

Conformal maps can scale arbitrarily

Cone singularities mitigate scale distortion







Current linear conformal methods have two major shortcomings:

NO BOUNDARY CONTROL

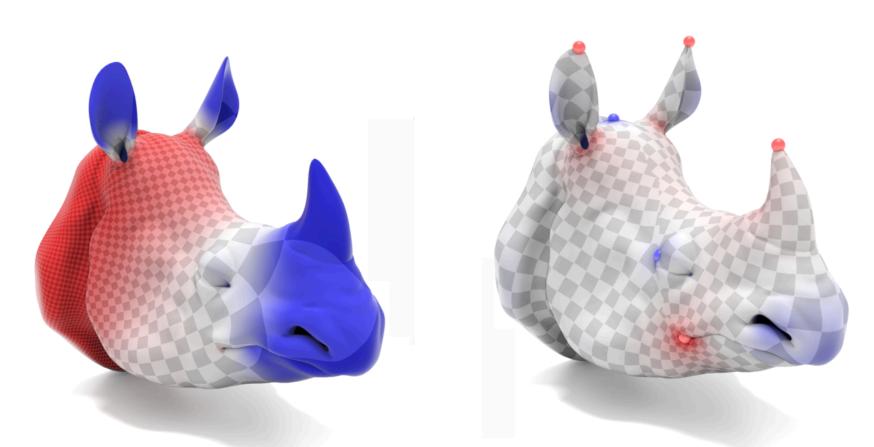
User obtains a single, automatic flattening

Must "take it or leave it," irrespective of quality

SCALE DISTORTION

Conformal maps can scale arbitrarily

Cone singularities mitigate scale distortion



Optimal Cone Singularities for Conformal Flattening [Soliman et al 2018]

"Free" Boundary Methods

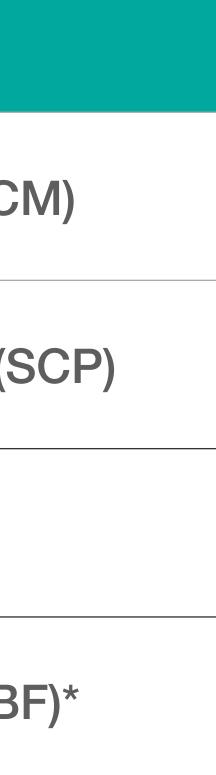
ALGORITHM

Least Squares Conformal Maps (LSCM)

Spectral Conformal Parameterization (SCP)

Angle Based Flattening (ABF)

Linear Angle Based Flattening (LinABF)*



"Free" Boundary Methods

Least Squares Conformal Maps (LSC

Spectral Conformal Parameterization (

Angle Based Flattening (ABF)

Linear Angle Based Flattening (LinAE

	BOUNDARY CONTROL
CM)	
(SCP)	
BF)*	

"Free" Boundary Methods

Least Squares Conformal Maps (LSC

Spectral Conformal Parameterization (

Angle Based Flattening (ABF)

Linear Angle Based Flattening (LinAE

Minimize discrete energy without explicit boundary constraints

	BOUNDARY CONTROL
CM)	
(SCP)	
BF)*	

"Free" Boundary Conditions are Meaningless

Solution has no meaningful interpretation in the smooth setting!

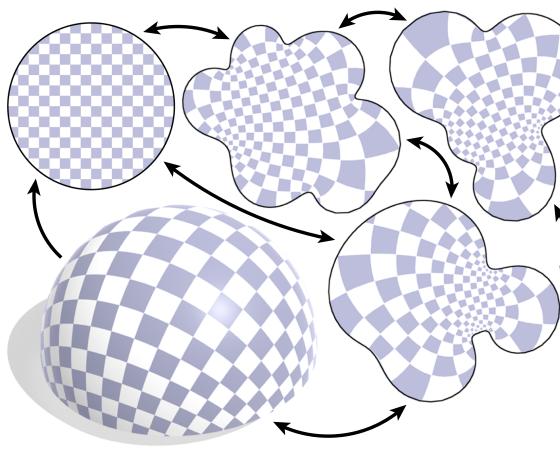
"Free" Boundary Conditions are Meaningless

Solution has no meaningful interpretation in the smooth setting!

SMOOTH SETTING

Enormous space of perfect conformal flattenings

Obtained by flattening and then applying in-plane maps



"Free" Boundary Conditions are Meaningless

Solution has no meaningful interpretation in the smooth setting!

SMOOTH SETTING

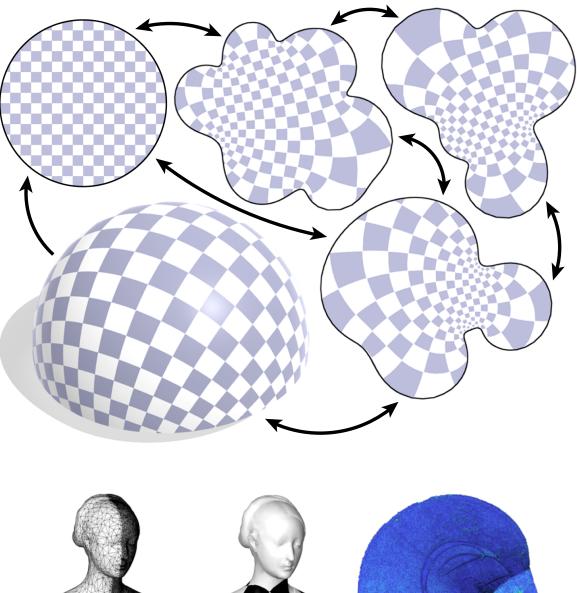
Enormous space of perfect conformal flattenings

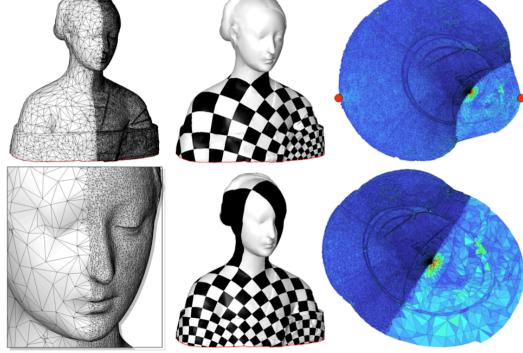
Obtained by flattening and then applying in-plane maps

DISCRETE SETTING

Unique solution <u>must</u> depend on discretization

Results change based on mesh or numerical treatment





Special Conformal Parameterization [Mullen et al 2008]

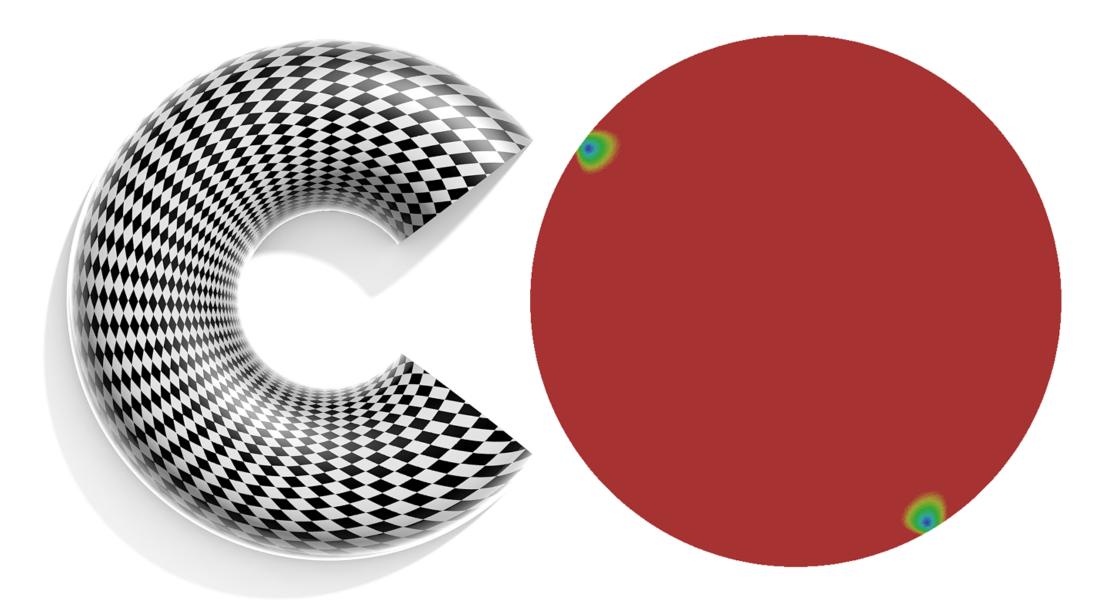
Forcing the Boundary

First attempt: Pin all boundary points to get desired shape

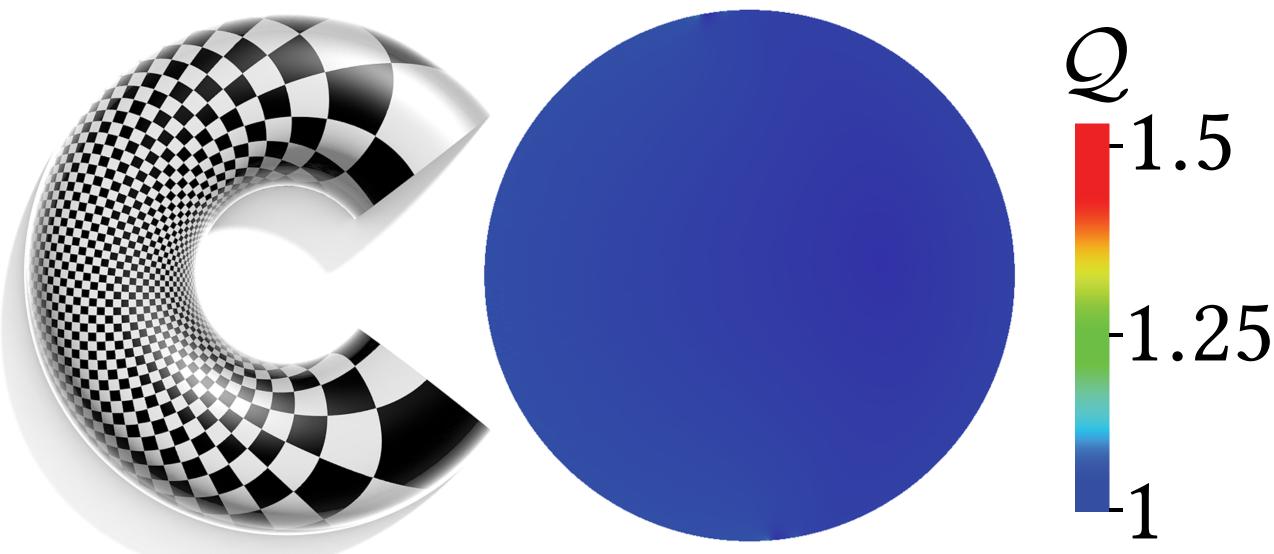
Forcing the Boundary

First attempt: Pin all boundary points to get desired shape

Least squares yields harmonic map with severe angle distortion:



Harmonic



Conformal

Prescribed Lengths and Angles

ALGORITHM

Circle Patterns (CP)

Conformal Equivalence (CETM)

Curvature Prescription (CPMS)*

Boundary First Flattening (BFF)

COMPLEXITY	BOUNDARY CONTROL
Nonlinear	(only angles)
Nonlinear	
Linear	
Linear	

Prescribed Lengths and Angles

ALGORITHM

Circle Patterns (CP)

Conformal Equivalence (CETM)

Curvature Prescription (CPMS)*

Boundary First Flattening (BFF)

COMPLEXITY	BOUNDARY CONTROL
Nonlinear	(only angles)
Nonlinear	
Linear	
Linear	

Prescribed Lengths and Angles

ALGORITHM

Circle Patterns (CP)

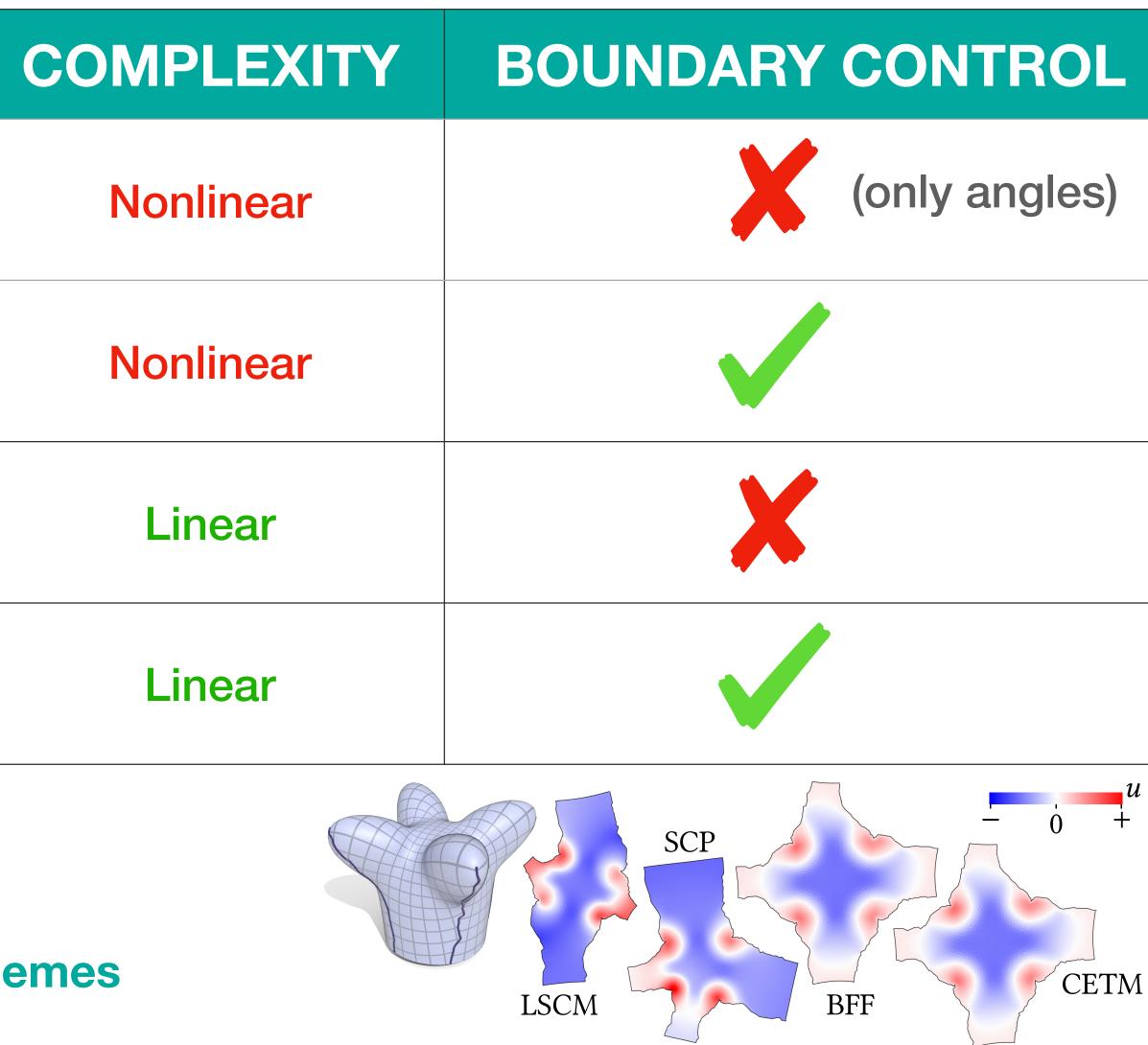
Conformal Equivalence (CETM)

Curvature Prescription (CPMS)*

Boundary First Flattening (BFF)

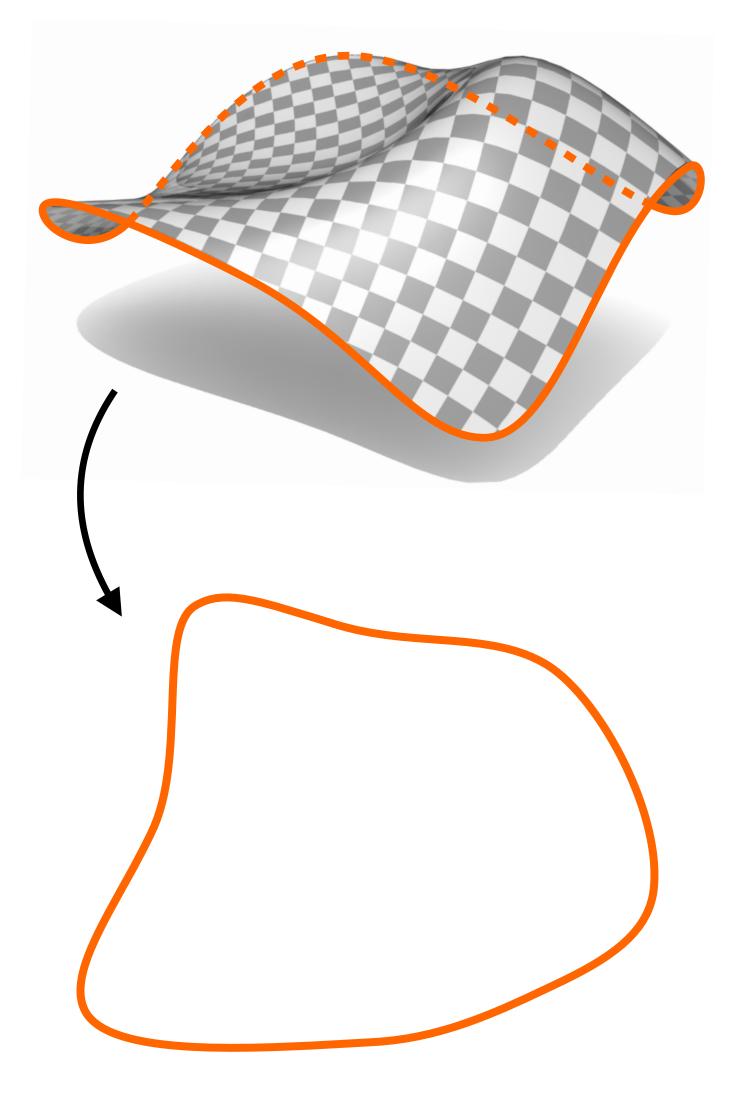
BFF is faster than existing linear methods

Quality & control comparable to nonlinear schemes

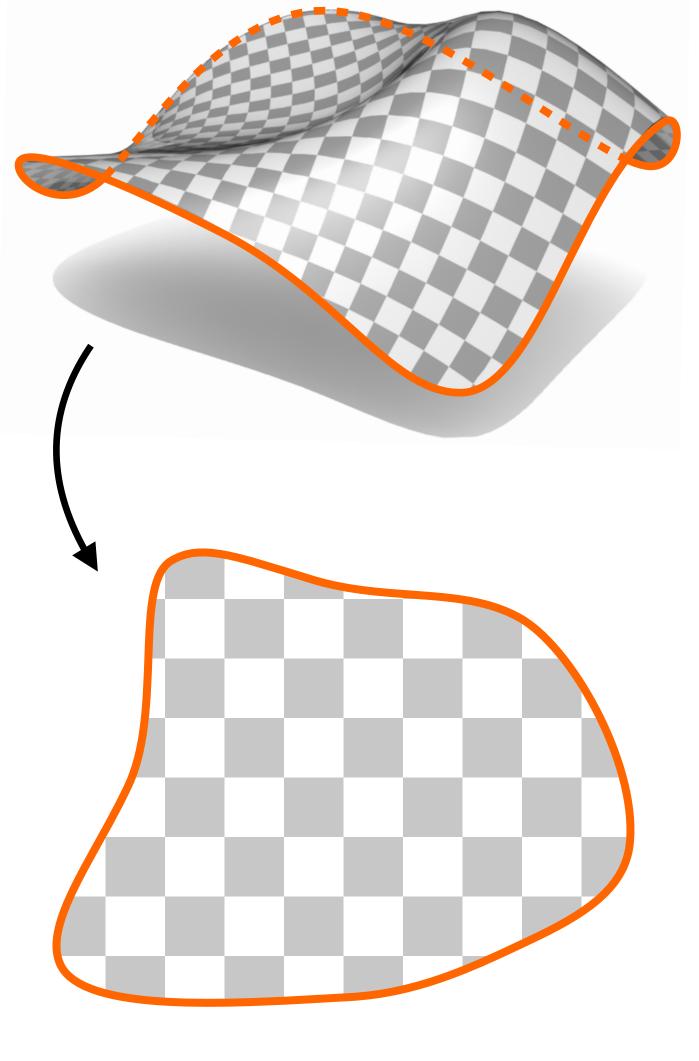


SMOOTH THEORY

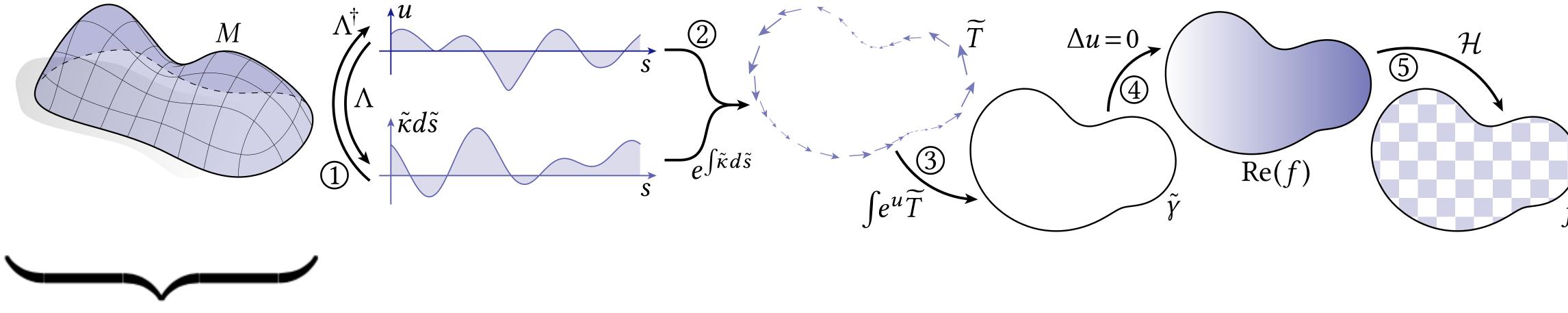
If you know the boundary of a conformal map,



If you know the boundary of a conformal map, then extension to the interior is easy

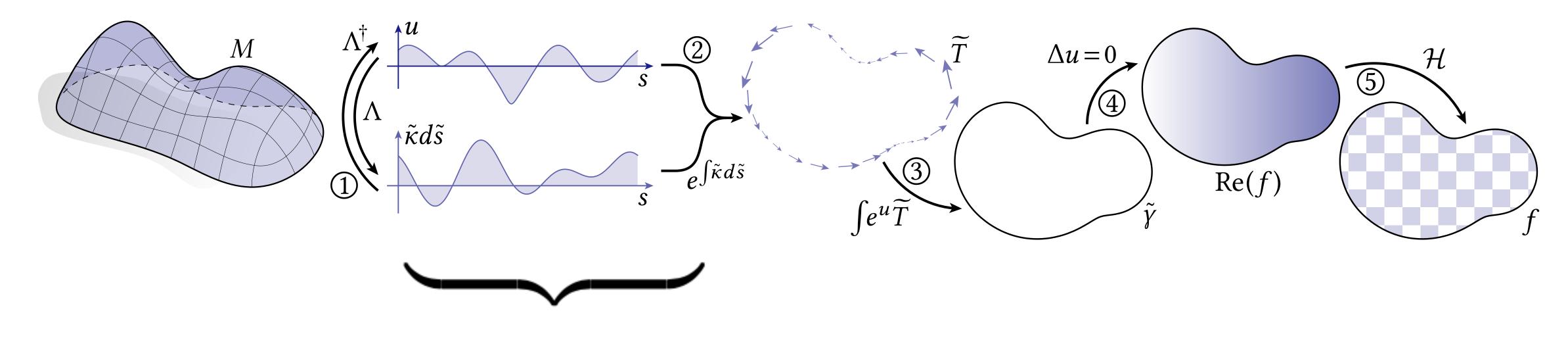


Algorithm Outline



Given a surface with either scale or curvature of target boundary curve

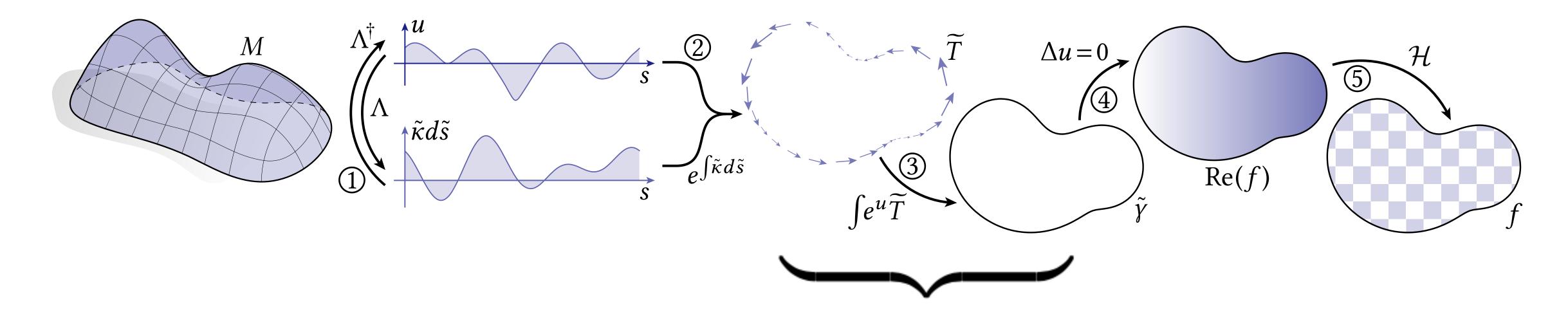
Algorithm Outline



Given a surface with either scale or curvature of target boundary curve

1. Solve Yamabe Problem to get complementary data (curvature or scale)

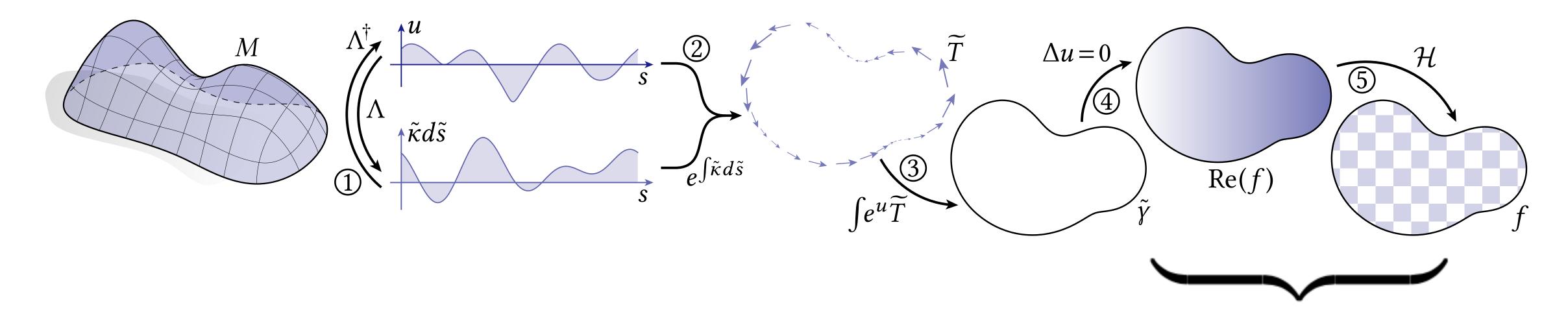
Algorithm Outline



Given a surface with either scale or curvature of target boundary curve

- 1. Solve Yamabe Problem to get complementary data (curvature or scale)
- 2. Integrate boundary data to get boundary curve

Algorithm Outline



Given a surface with either scale or curvature of target boundary curve

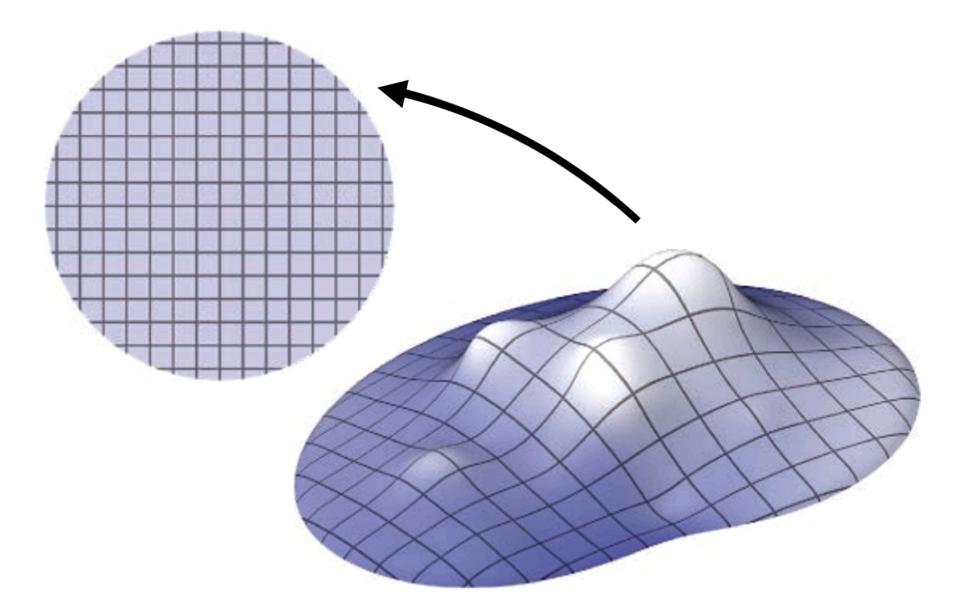
- 1. Solve Yamabe Problem to get complementary data (curvature or scale)
- 2. Integrate boundary data to get boundary curve
- 3. Extend boundary curve to a pair of conjugate harmonic functions

Compatibility of Boundary Data

Not every parameterized curve is the boundary of a conformal map!

Yamabe equation provides explicit relationship between conformal scaling and change in curvature:

$$\Delta u = K - e^{2u} \tilde{K} \qquad on \ M$$

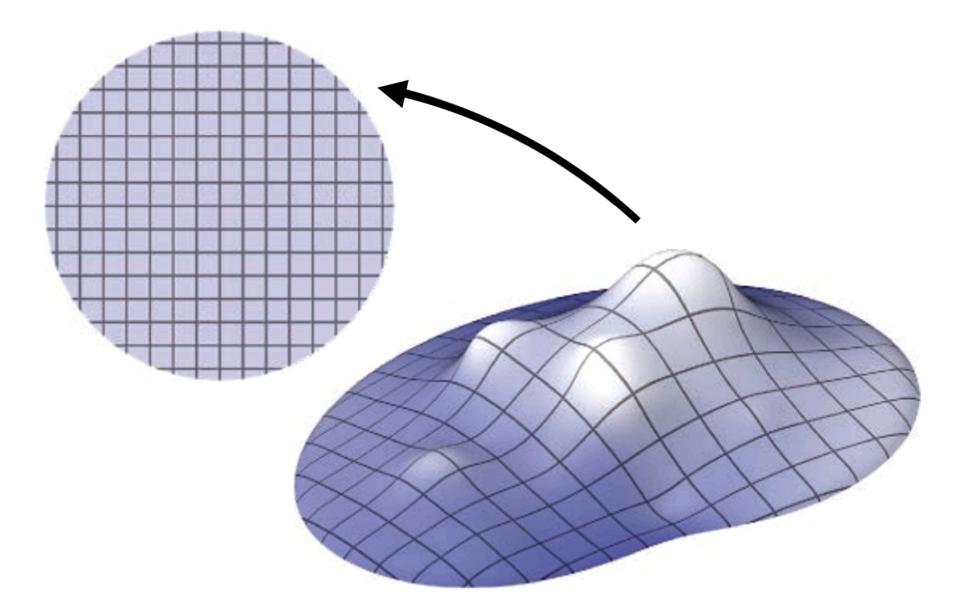


Yamabe equation provides explicit relationship between conformal scaling and change in curvature:

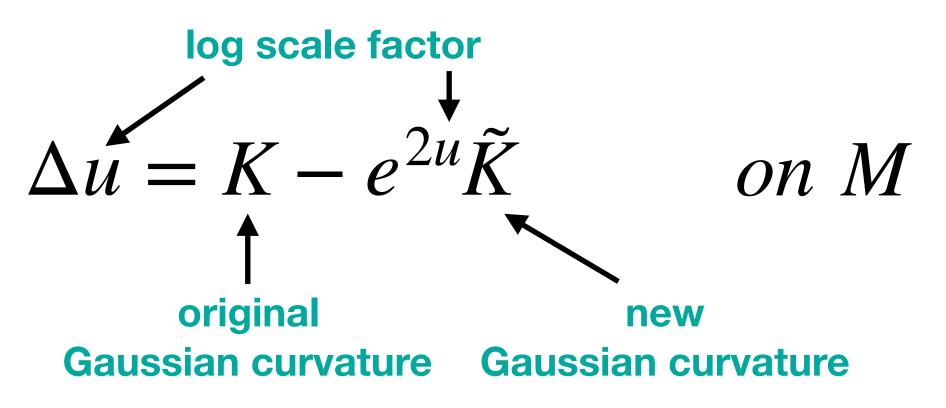
log scale factor

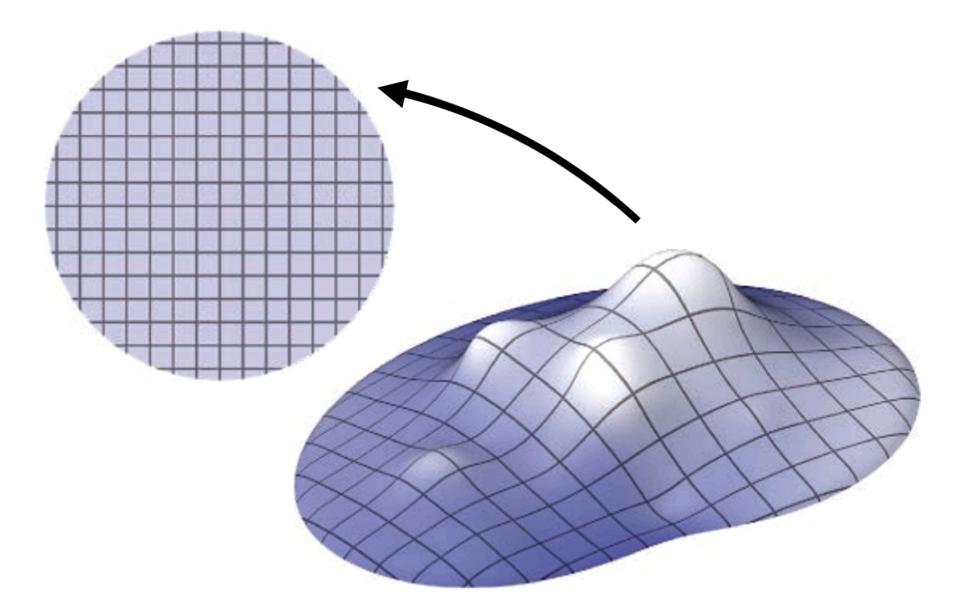
 $\Delta u = K - e^{2u} \tilde{K}$

on M

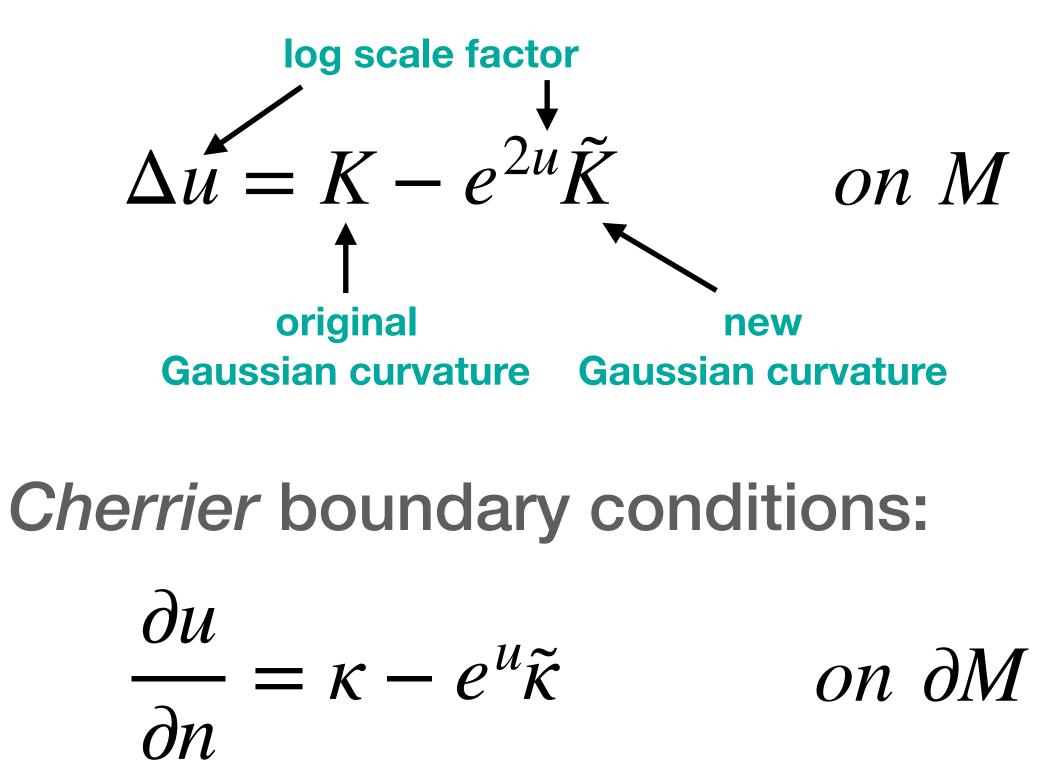


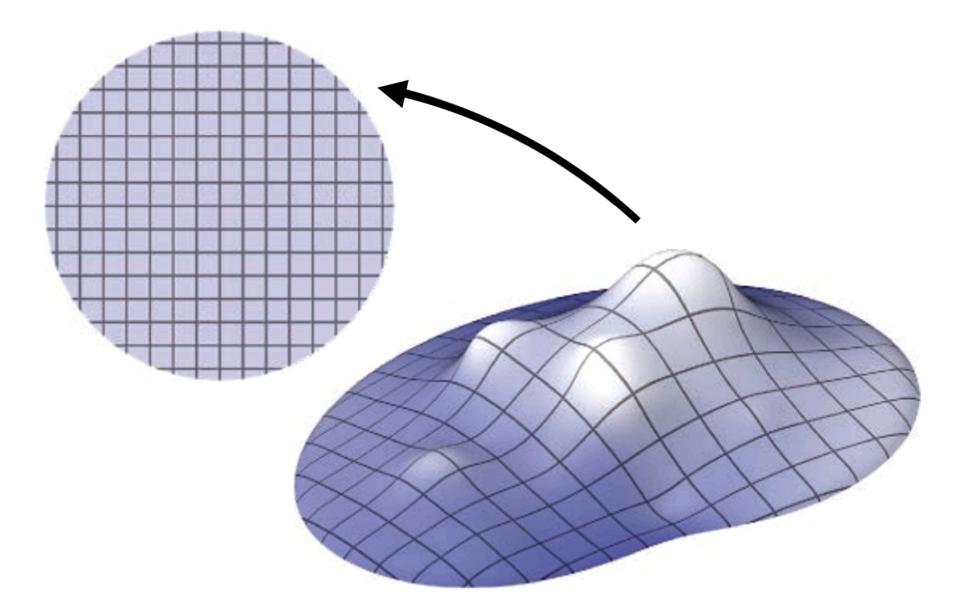
Yamabe equation provides explicit relationship between conformal scaling and change in curvature:



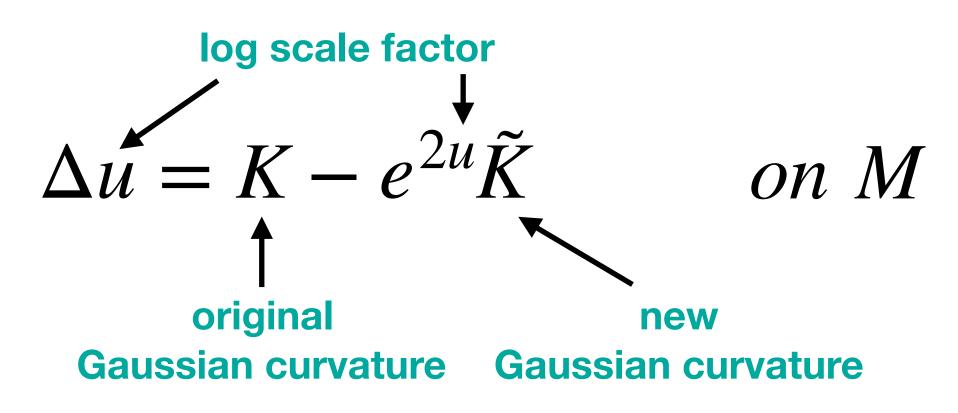


Yamabe equation provides explicit relationship between conformal scaling and change in curvature:

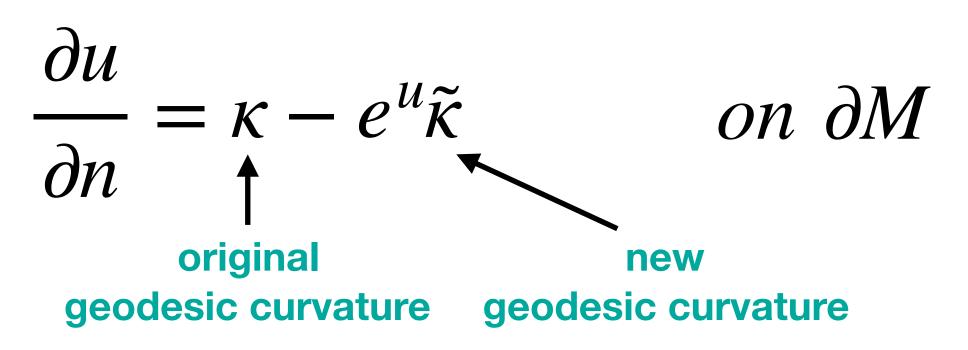


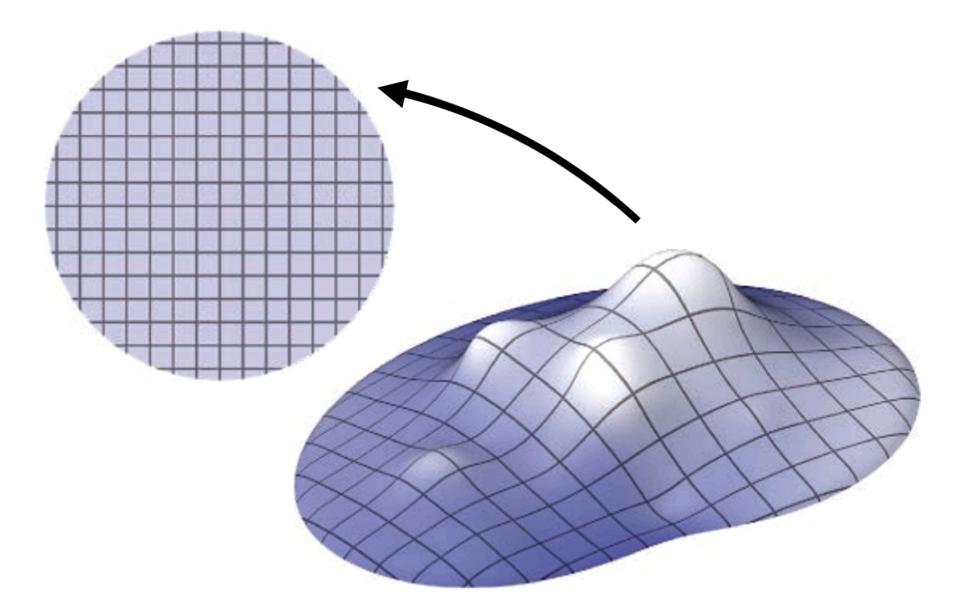


Yamabe equation provides explicit relationship between conformal scaling and change in curvature:

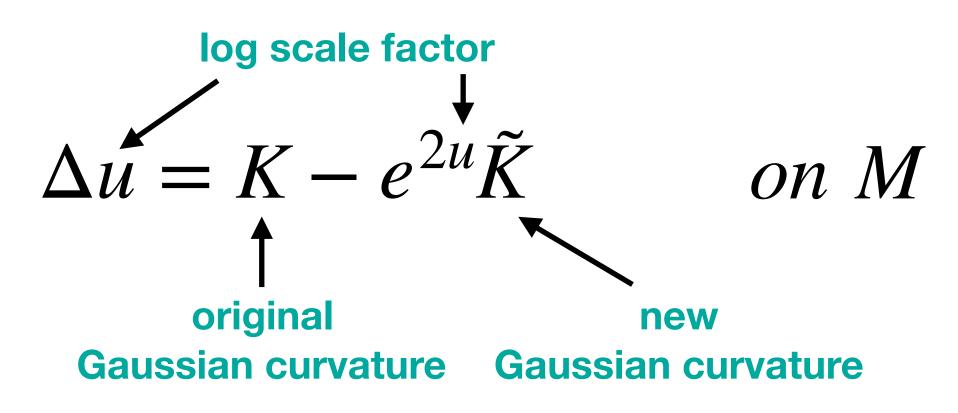


Cherrier boundary conditions:

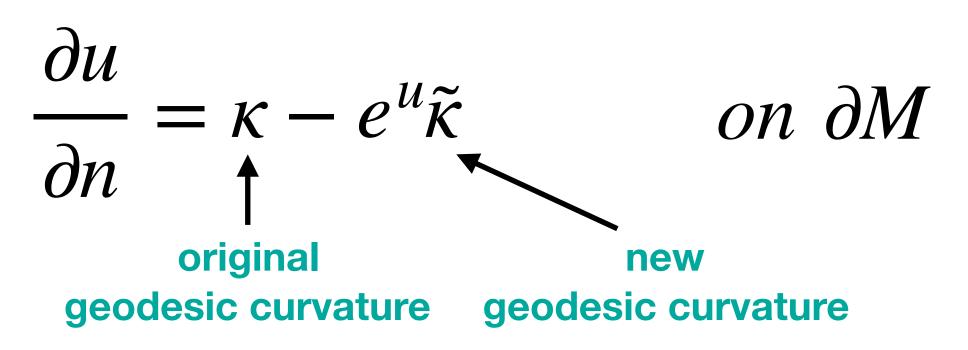


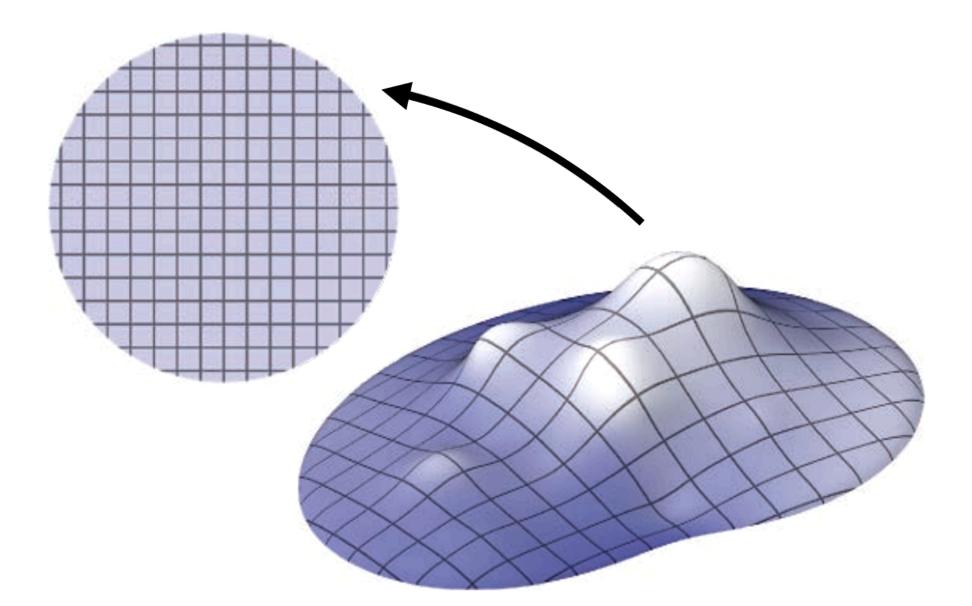


Yamabe equation provides explicit relationship between conformal scaling and change in curvature:



Cherrier boundary conditions:





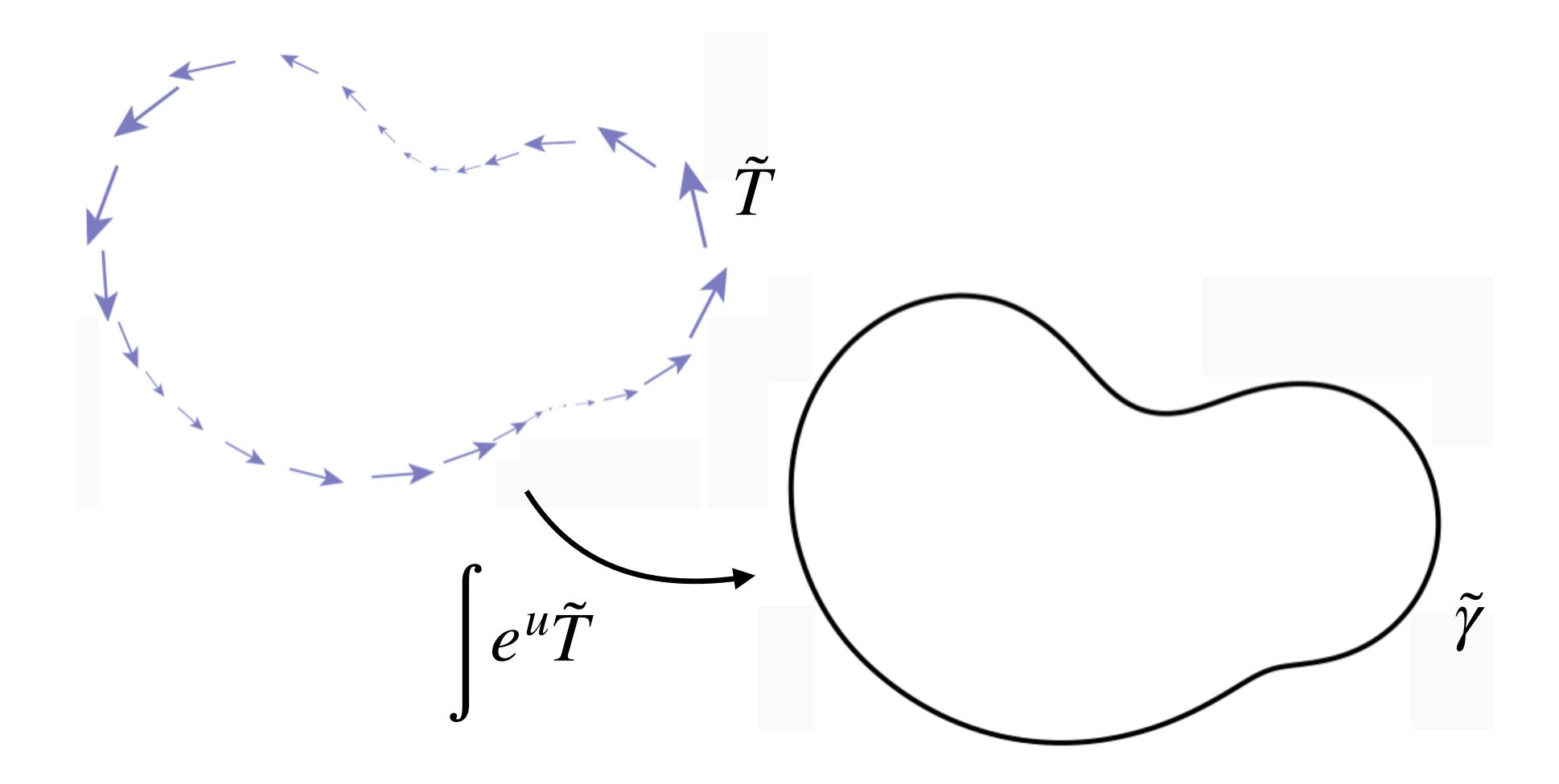
Can prescribe either curvature or scaling, but not both!

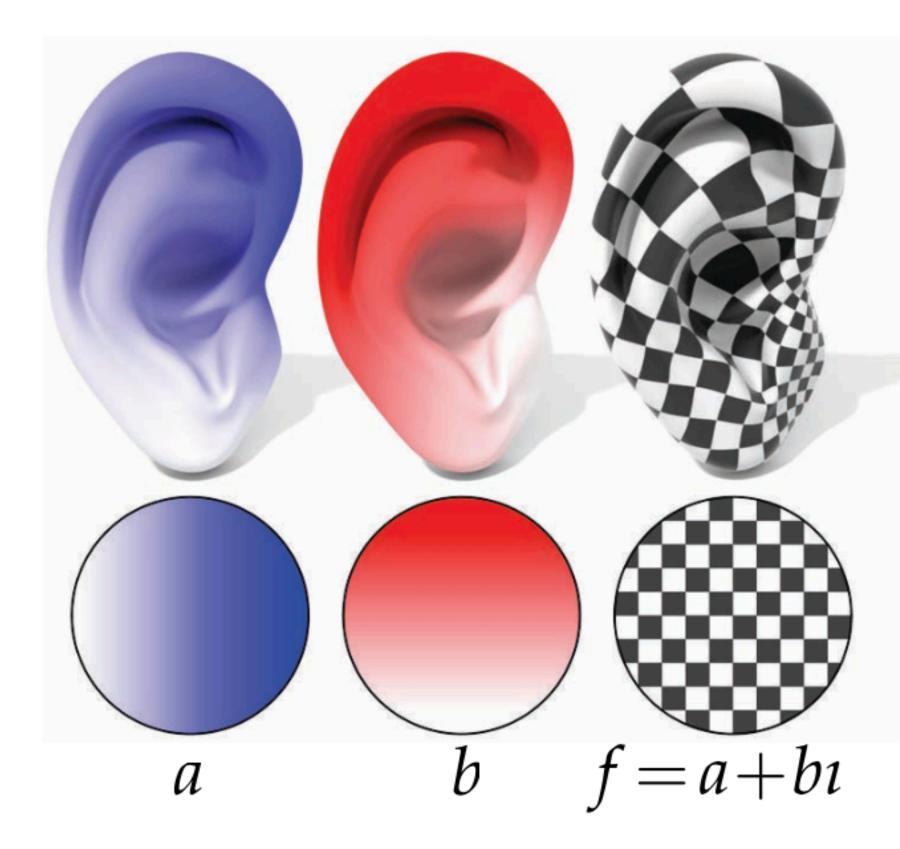
Curve Integration

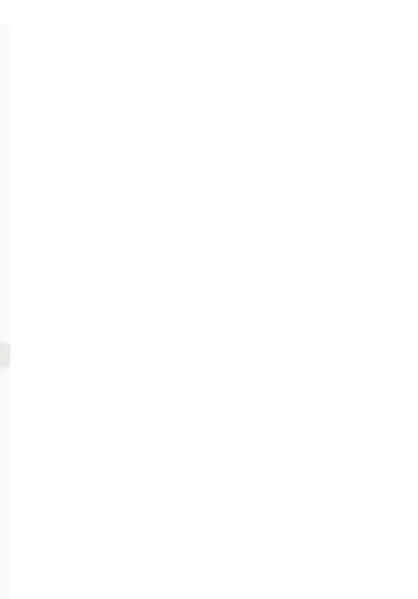
Curvature and scaling determine a closed curve up to rigid transformation

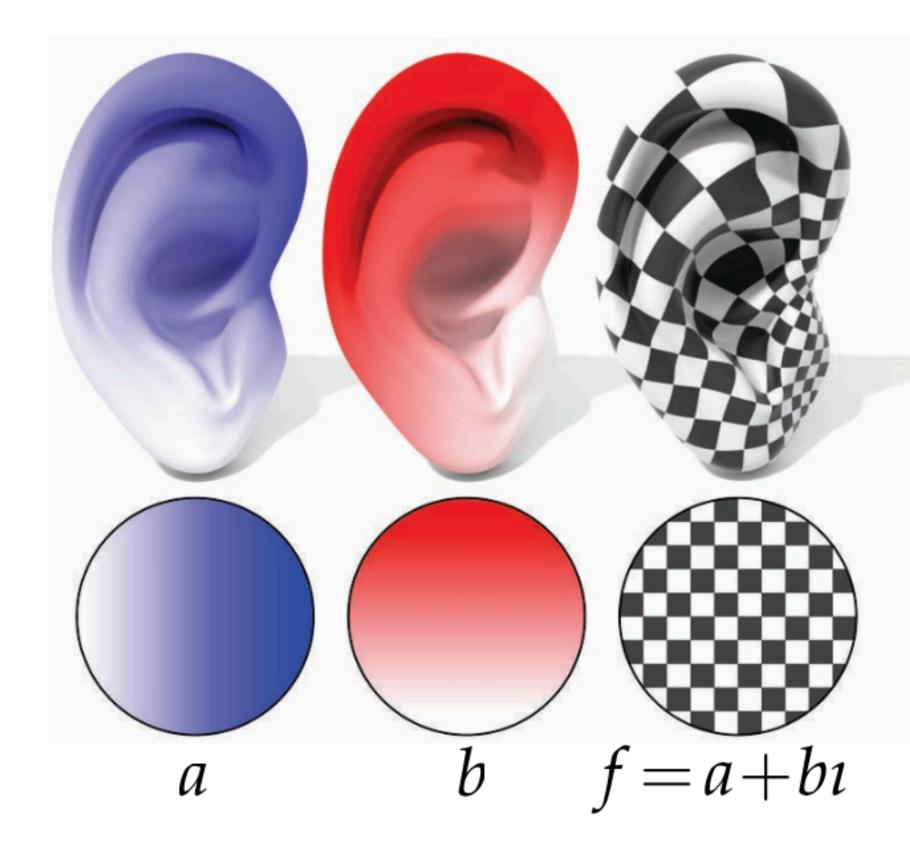
Curve Integration

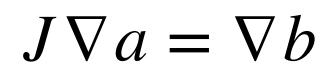
Curvature and scaling determine a closed curve up to rigid transformation

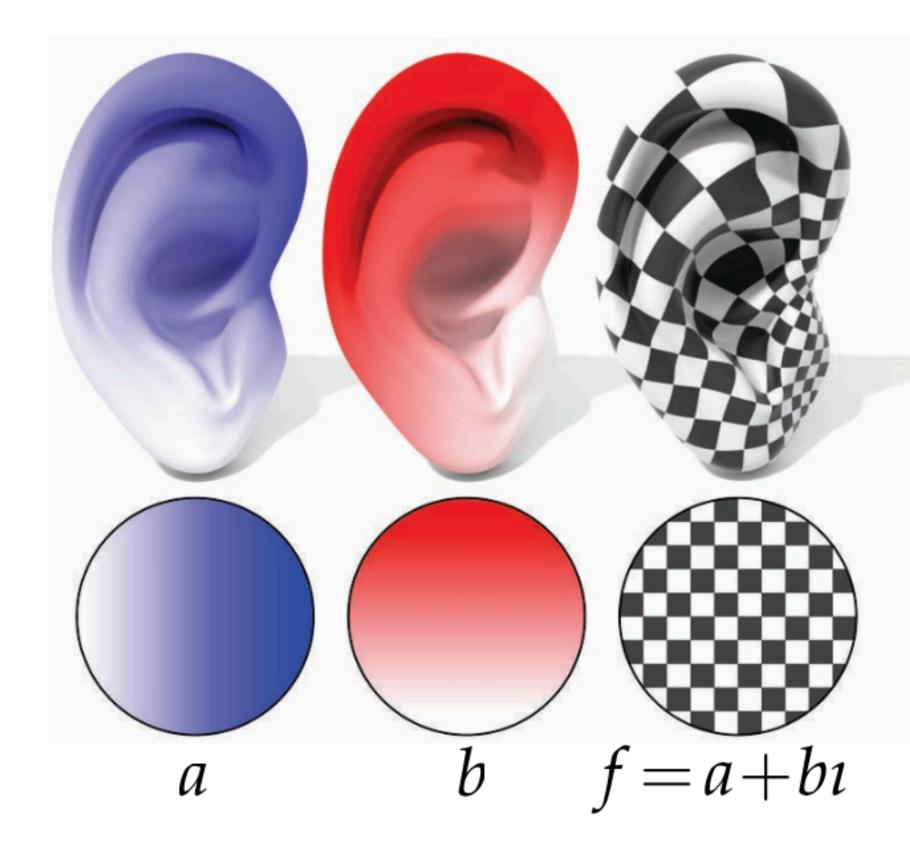


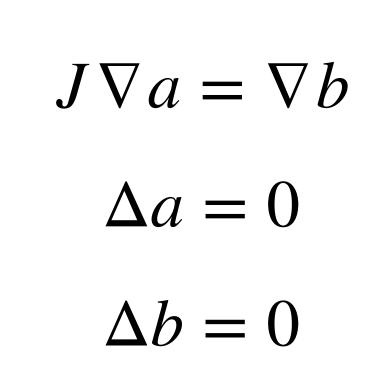




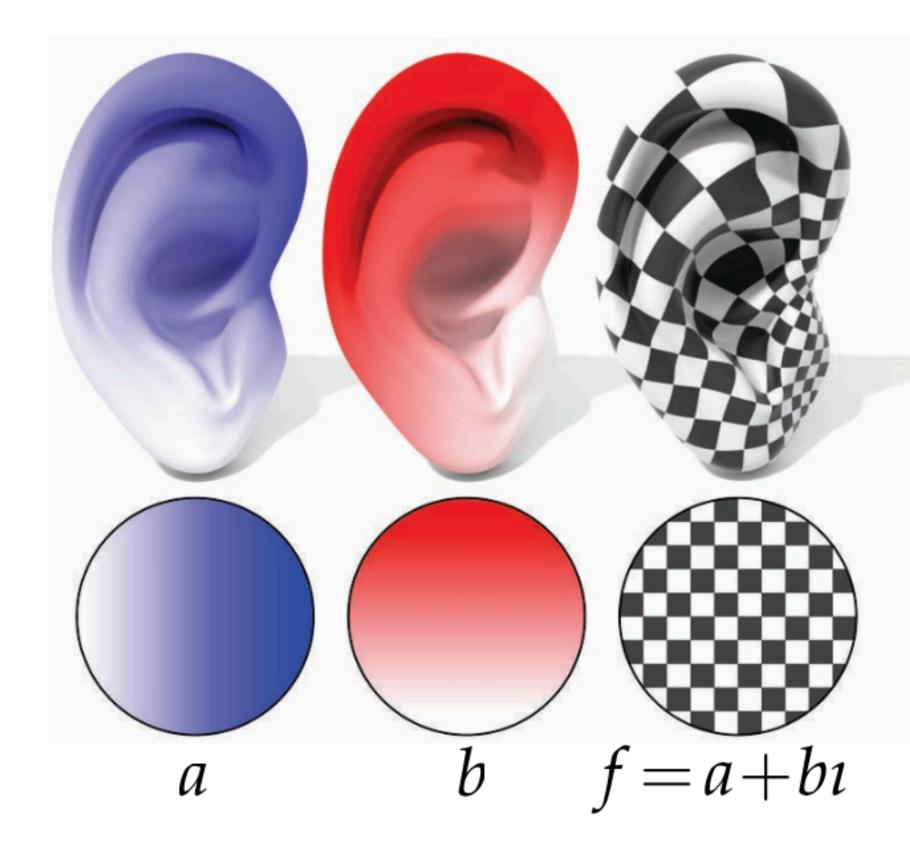








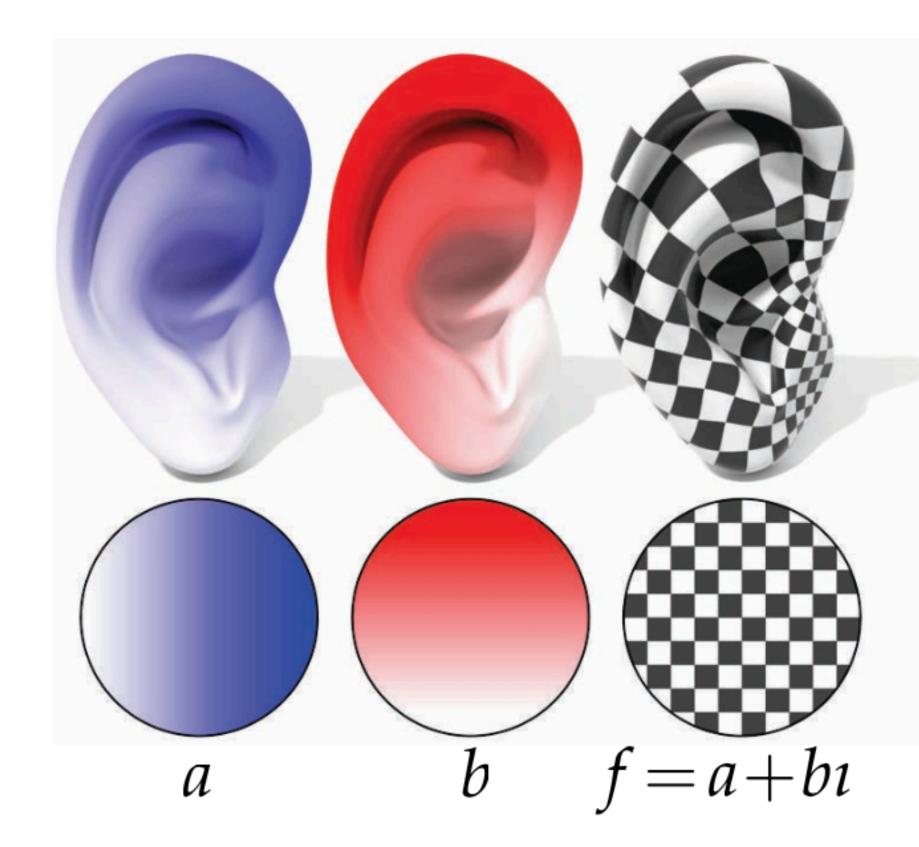
How do we find the solution on the interior?



$$J \nabla a = \nabla b$$
$$\Delta a = 0$$
$$\Delta b = 0$$

CONJUGATE HARMONIC PAIR

How do we find the solution on the interior?

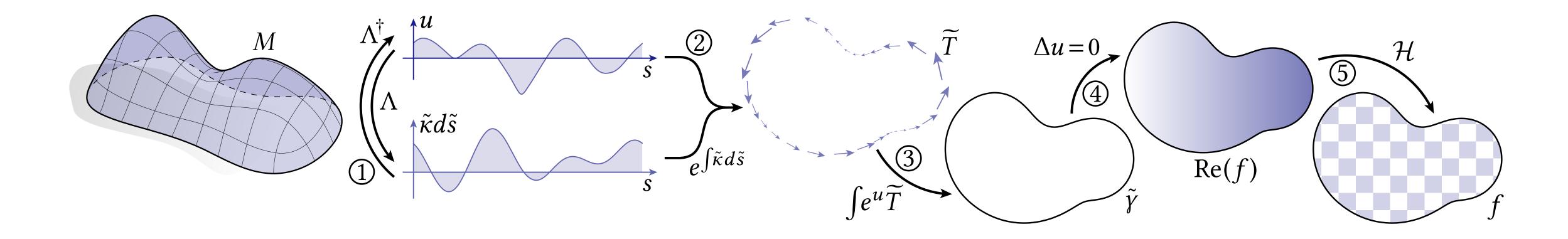


Fix a along the boundary and minimize conformal energy w.r.t. b (easy linear problem!)

$$J \nabla a = \nabla b$$
$$\Delta a = 0$$
$$\Delta b = 0$$

CONJUGATE HARMONIC PAIR

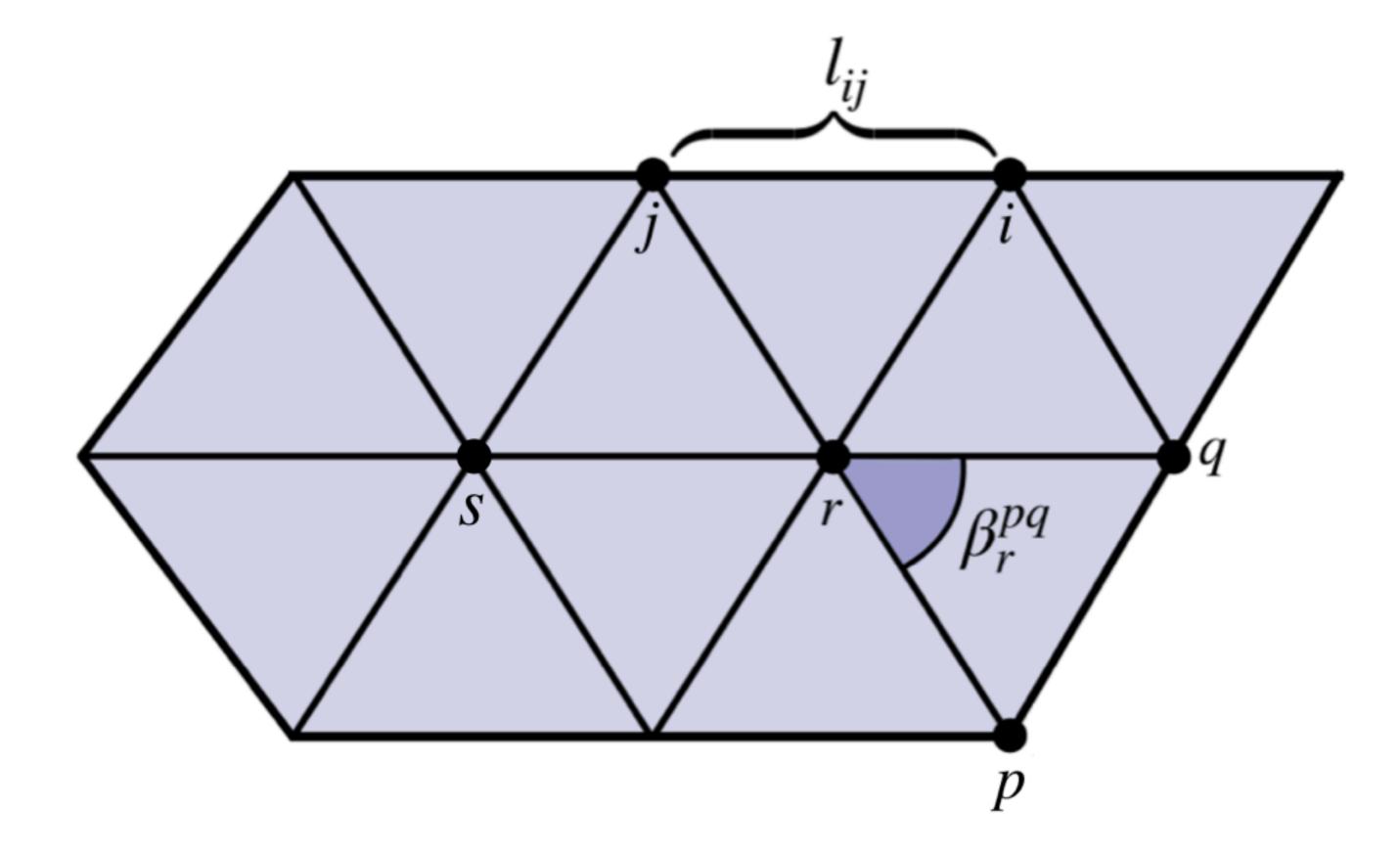
Algorithm Outline

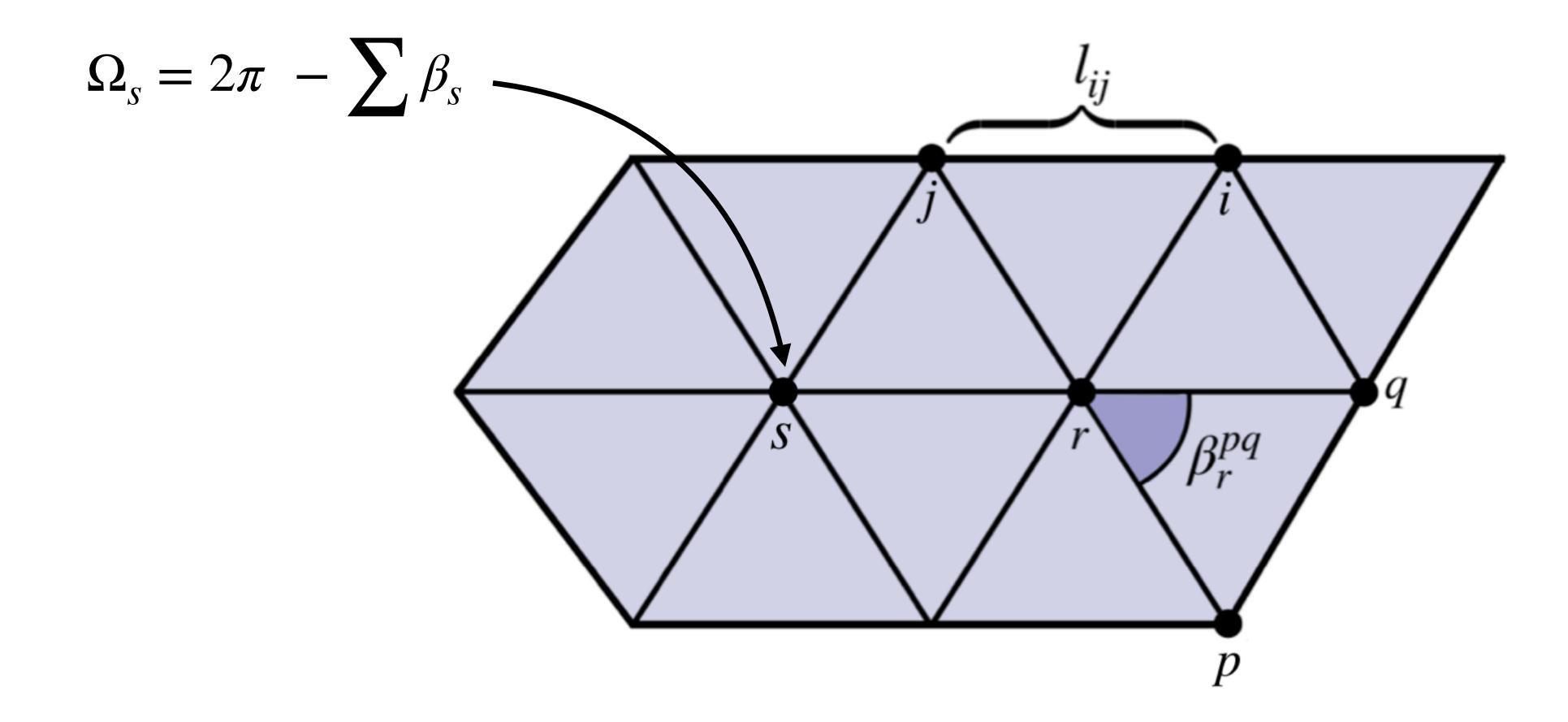


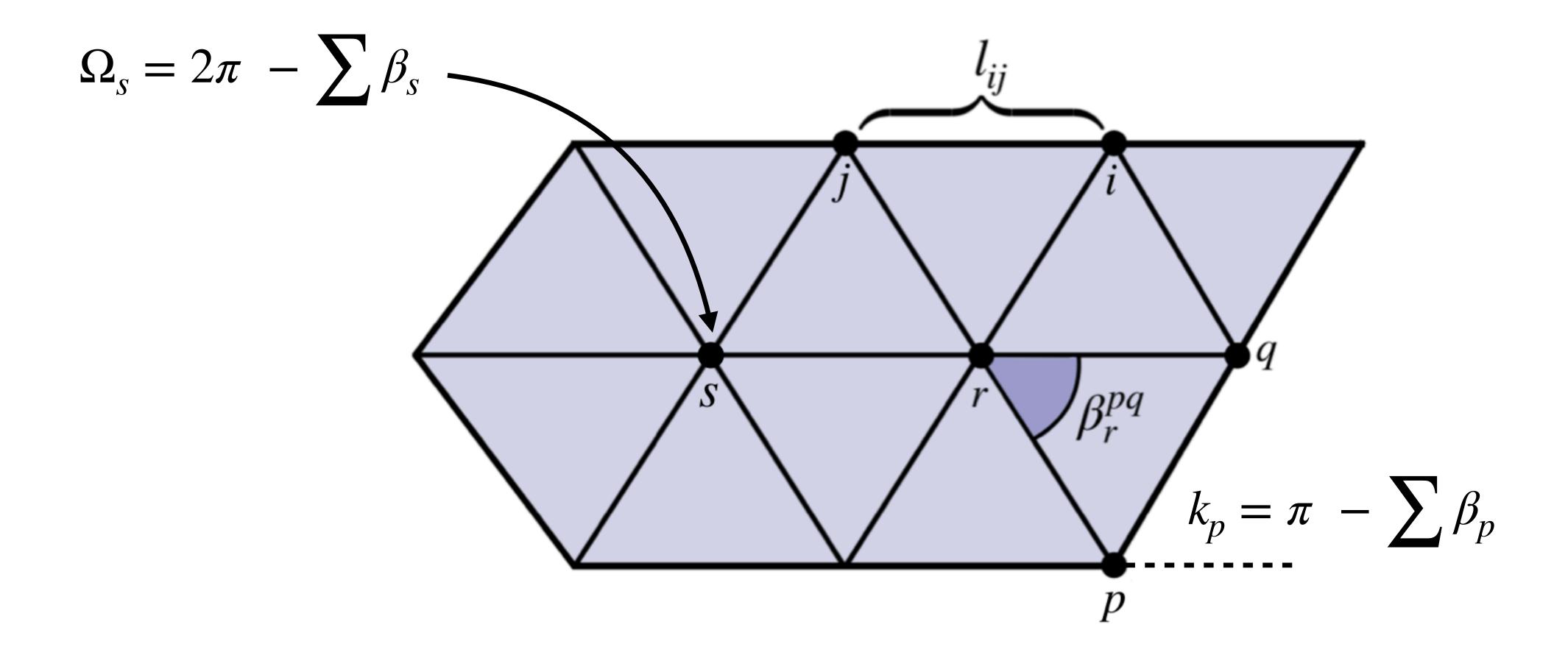
Given a surface with either scale or curvature of target boundary curve

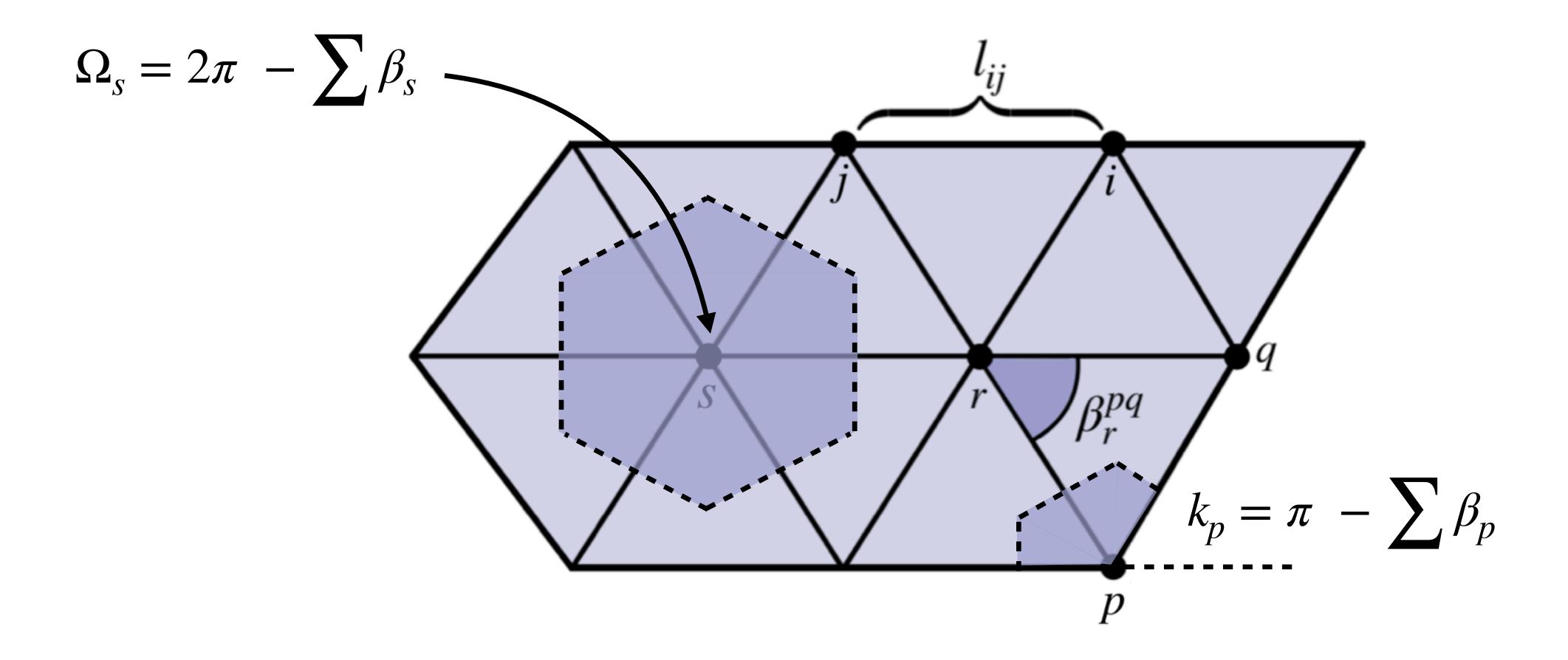
- 1. Solve Yamabe Problem to get complementary data (curvature or scale)
- 2. Integrate boundary data to get boundary curve
- 3. Extend boundary curve to a pair of conjugate harmonic functions

Discretization









Smooth Yamabe Problem is nonlinear

 $\Delta u = K - e^{2u} \tilde{K}$

$$\frac{\partial u}{\partial n} = \kappa - e^u \tilde{\kappa}$$

on M

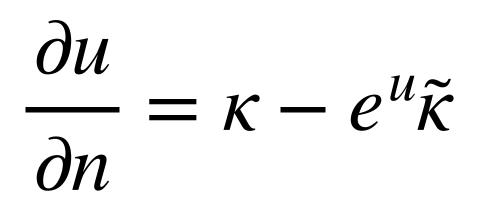
on ∂M

Smooth Yamabe Problem is nonlinear

Integration over *dual volumes* yields linear relationships

 $\Delta u = K - e^{2u} \tilde{K}$

integrating



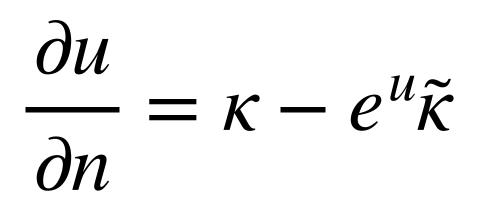
$Au = \Omega - \tilde{\Omega}$ on M

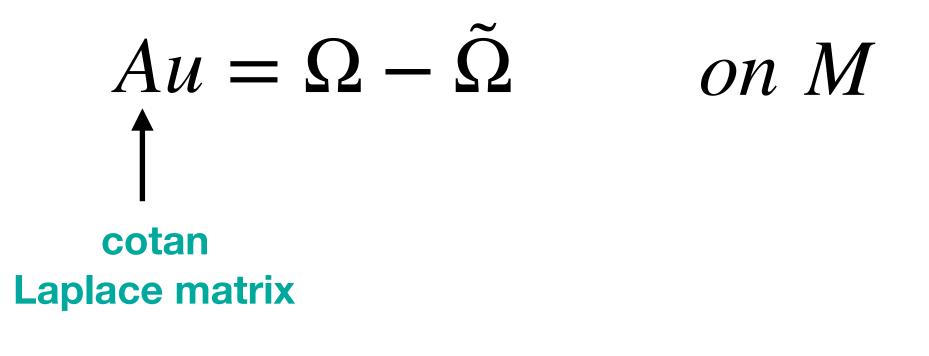
$h = k - \tilde{k}$ on ∂M

Smooth Yamabe Problem is nonlinear

Integration over *dual volumes* yields linear relationships

 $\Delta u = K - e^{2u} \tilde{K}$



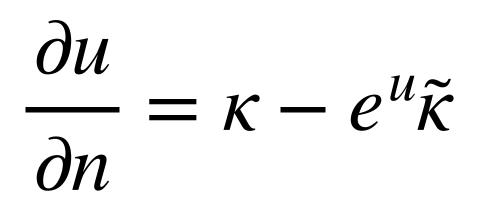


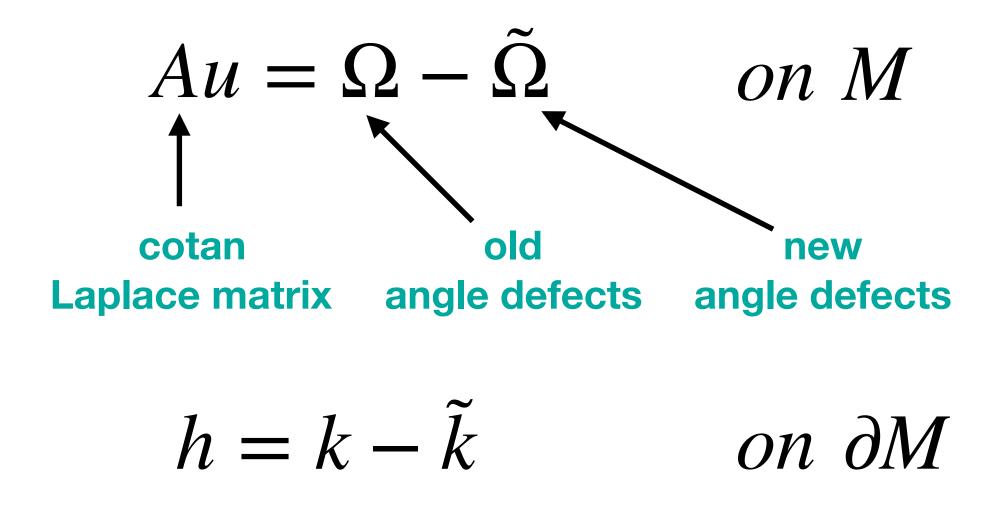
$$h = k - \tilde{k} \qquad on \ \partial M$$

Smooth Yamabe Problem is nonlinear

Integration over *dual volumes* yields linear relationships

 $\Delta u = K - e^{2u} \tilde{K}$

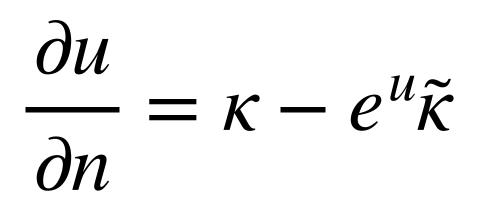


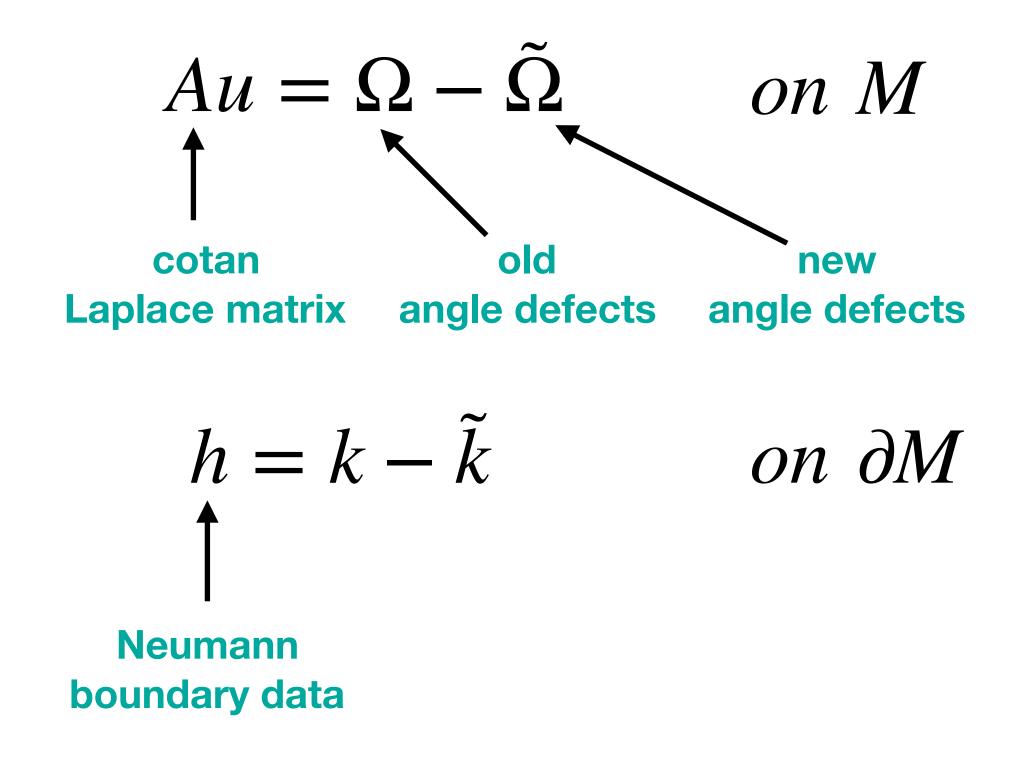


Smooth Yamabe Problem is nonlinear

Integration over *dual volumes* yields linear relationships

 $\Delta u = K - e^{2u} \tilde{K}$

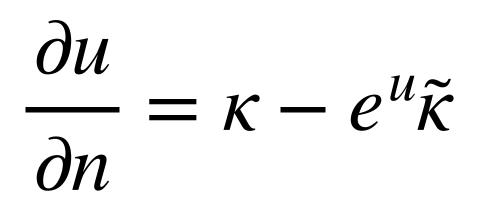


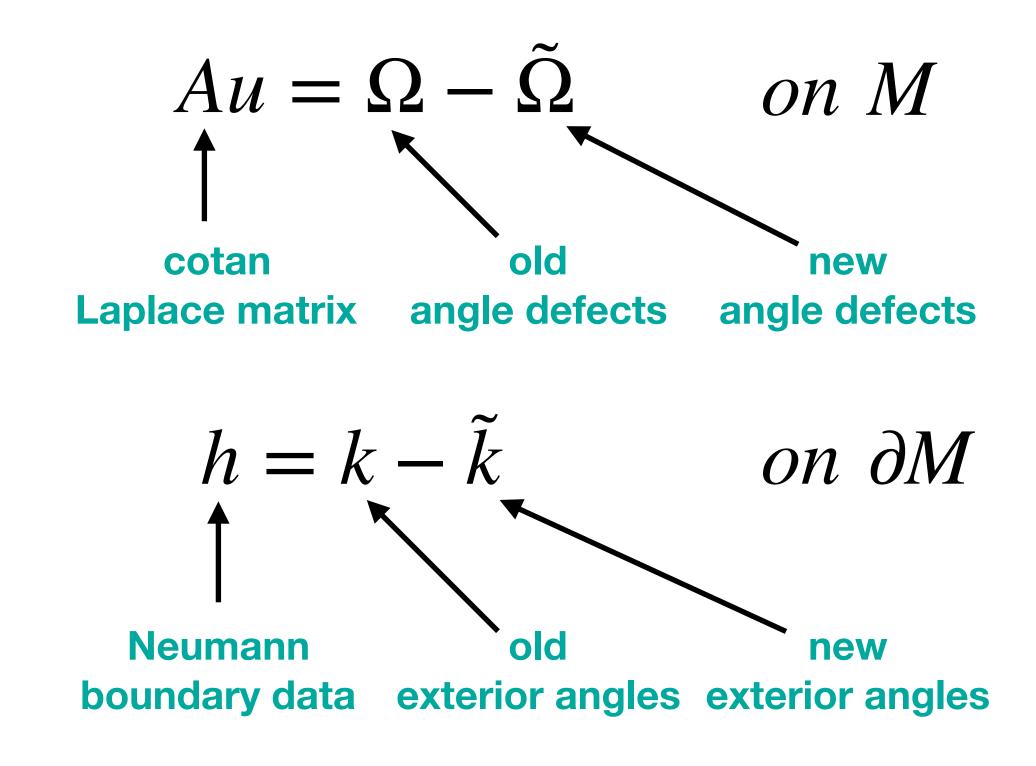


Smooth Yamabe Problem is nonlinear

Integration over *dual volumes* yields linear relationships

 $\Delta u = K - e^{2u} \tilde{K}$

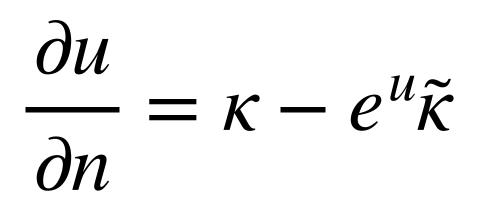


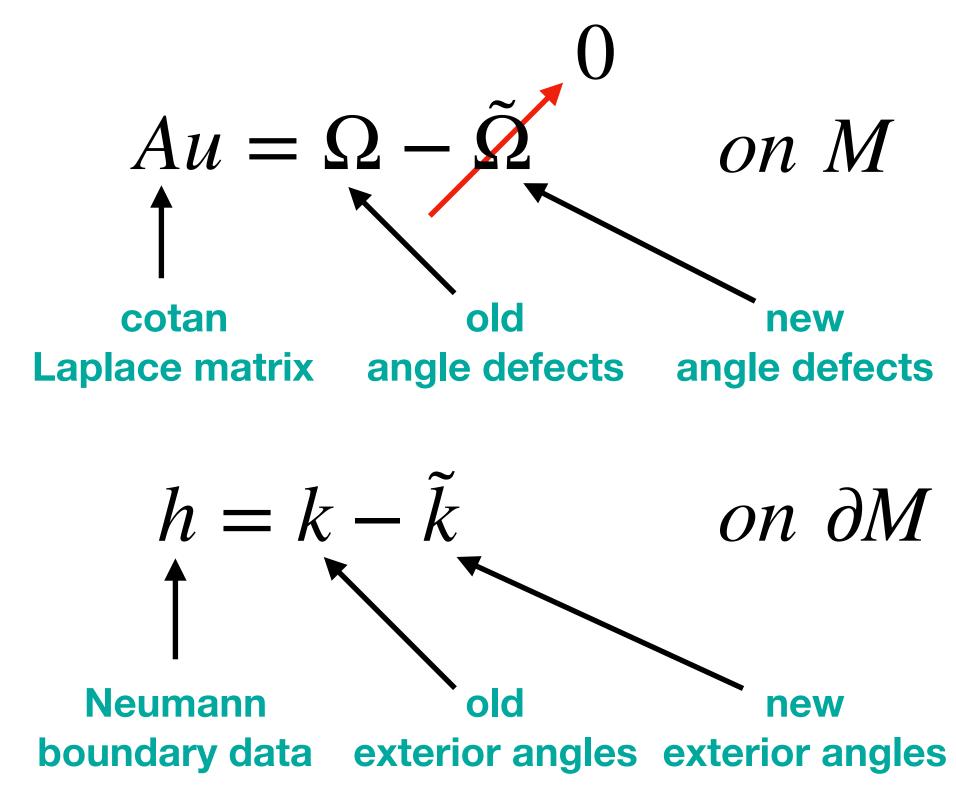


Smooth Yamabe Problem is nonlinear

Integration over *dual volumes* yields linear relationships

 $\Delta u = K - e^{2u} \tilde{K}$





Smooth Yamabe Problem is nonlinear

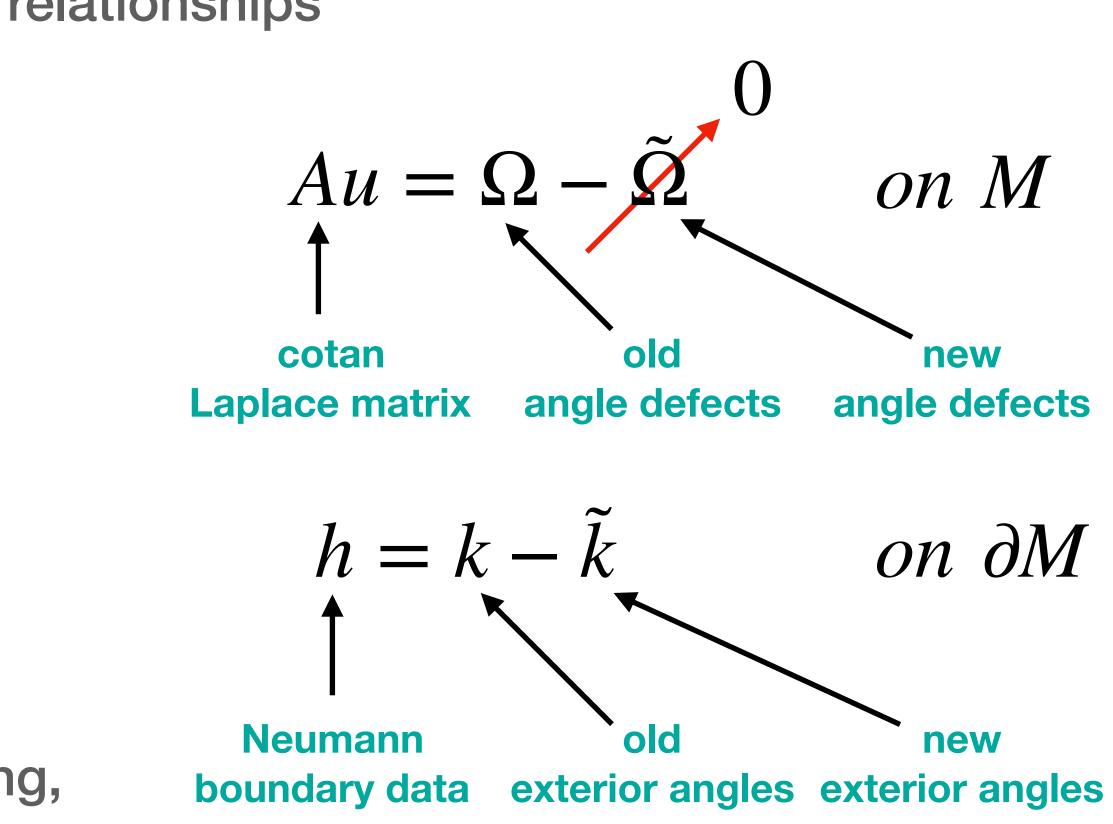
Integration over *dual volumes* yields linear relationships

$$\Delta u = K - e^{2u} \tilde{K}$$

integrating

$$\frac{\partial u}{\partial n} = \kappa - e^u \tilde{\kappa}$$

Can prescribe either exterior angles or scaling, **but not both!**



How do we switch between angles and scale factors?

 $Au = \Omega$

 $h = k - \tilde{k}$

on M

on ∂M

How do we switch between angles and scale factors?

Rewrite integrated Yamabe Problem in block matrix form

 $\begin{bmatrix} A_{II} & A_{IB} \\ A_{IB}^T & A_{BB} \end{bmatrix} \begin{bmatrix} I \\ I \\ I \end{bmatrix}$

$$\begin{bmatrix} u_I \\ u_B \end{bmatrix} = \begin{bmatrix} \Omega \\ -(k - \tilde{k}) \end{bmatrix}$$

How do we switch between angles and scale factors?

Rewrite integrated Yamabe Problem in block matrix form

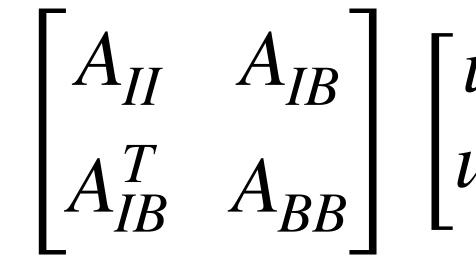
 $\begin{bmatrix} A_{II} & A_{IB} \\ A_{IB}^T & A_{BB} \end{bmatrix} \begin{bmatrix} u \\ u \end{bmatrix}$

NEUMANN TO DIRICHLET MAP

$$\begin{bmatrix} u_I \\ u_B \end{bmatrix} = \begin{bmatrix} \Omega \\ -(k - \tilde{k}) \end{bmatrix}$$

How do we switch between angles and scale factors?

Rewrite integrated Yamabe Problem in block matrix form



NEUMANN TO DIRICHLET MAP Given \tilde{k}

$$\begin{bmatrix} u_I \\ u_B \end{bmatrix} = \begin{bmatrix} \Omega \\ -(k - \tilde{k}) \end{bmatrix}$$

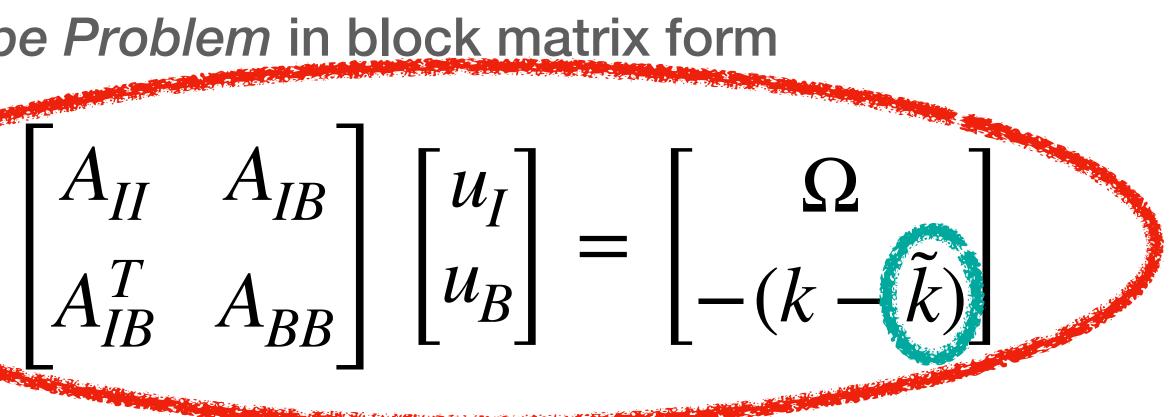
How do we switch between angles and scale factors?

Rewrite integrated Yamabe Problem in block matrix form

NEUMANN TO DIRICHLET MAP

Given \tilde{k}

Solve Neumann system above for *u*

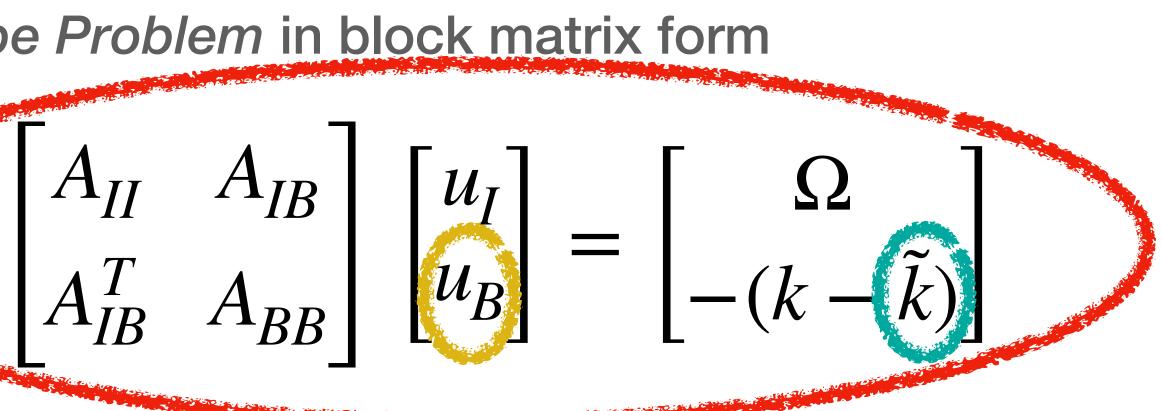


How do we switch between angles and scale factors?

Rewrite integrated Yamabe Problem in block matrix form

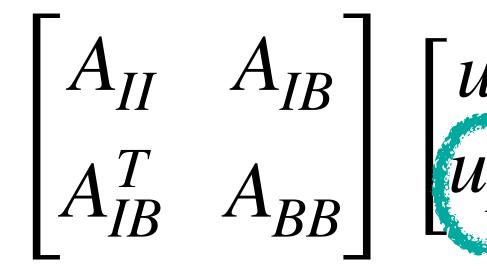
NEUMANN TO DIRICHLET MAP

- Given \tilde{k}
- Solve Neumann system above for *u*
- Read off u_B



How do we switch between angles and scale factors?

Rewrite integrated Yamabe Problem in block matrix form



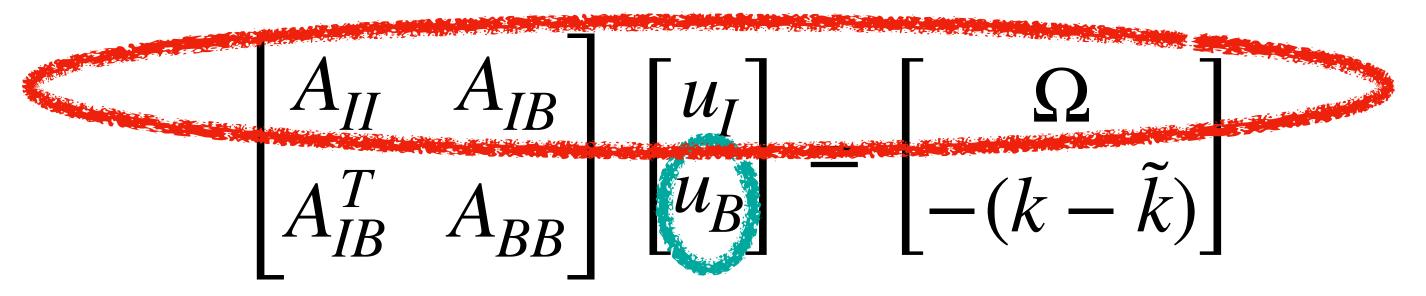
NEUMANN TO DIRICHLET MAP Given \tilde{k} Solve Neumann system above for *u* Read off u_B

$$\begin{bmatrix} u_I \\ u_B \end{bmatrix} = \begin{bmatrix} \Omega \\ -(k-\tilde{k}) \end{bmatrix}$$

- **DIRICHLET TO NEUMANN MAP**
- Given u_B

How do we switch between angles and scale factors?

Rewrite integrated Yamabe Problem in block matrix form



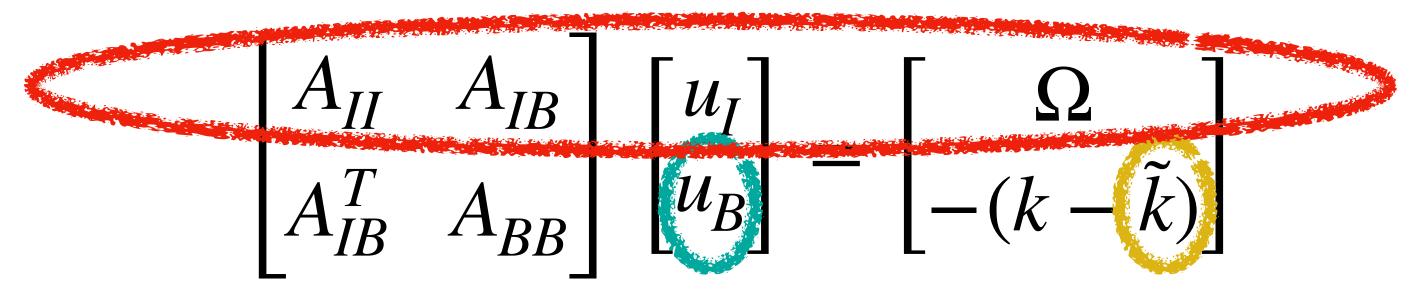
NEUMANN TO DIRICHLET MAP Given \tilde{k} Solve Neumann system above for *u* Read off u_{R}

DIRICHLET TO NEUMANN MAP

- Given u_{R}
- Solve Dirichlet Problem $A_{II}u_I = \Omega A_{IB}u_B$ for u_I

How do we switch between angles and scale factors?

Rewrite integrated Yamabe Problem in block matrix form



NEUMANN TO DIRICHLET MAP Given \tilde{k} Solve Neumann system above for *u* Read off u_{R}

DIRICHLET TO NEUMANN MAP

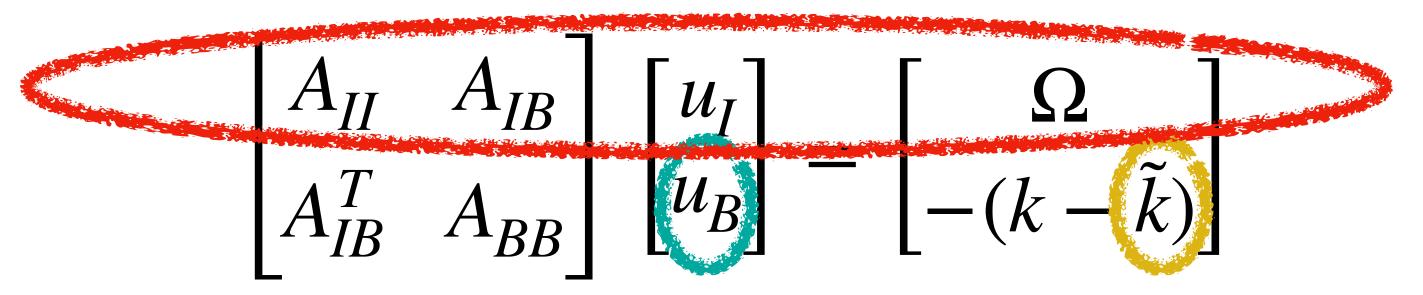
Given u_B

Solve Dirichlet Problem $A_{II}u_I = \Omega - A_{IB}u_B$ for u_I

 $\tilde{k} = k + A_{IB}^T u_I + A_{BB} u_B$

How do we switch between angles and scale factors?

Rewrite integrated Yamabe Problem in block matrix form



NEUMANN TO DIRICHLET MAP Given \tilde{k} Solve Neumann system above for *u* Read off u_R

DIRICHLET TO NEUMANN MAP

Given u_B

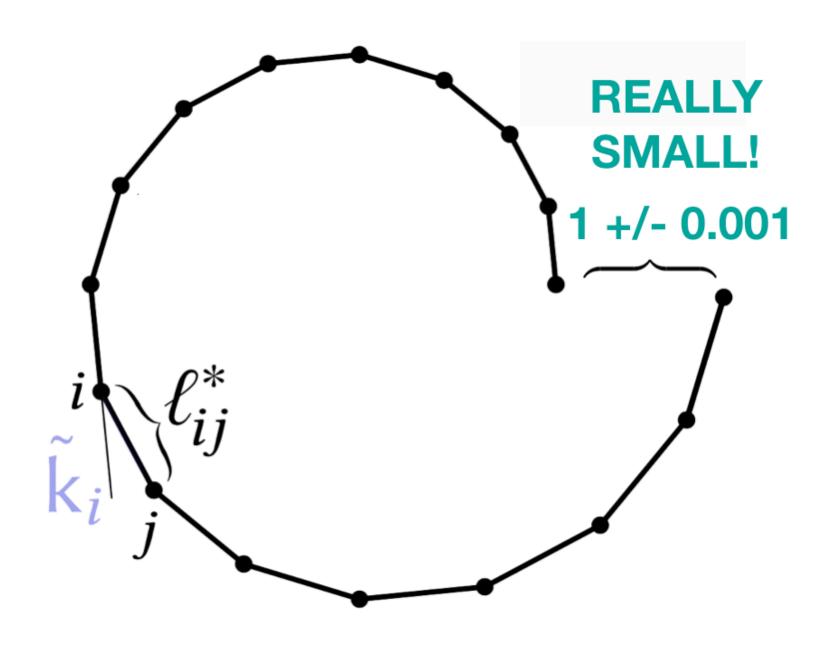
Solve Dirichlet Problem $A_{II}u_I = \Omega - A_{IB}u_B$ for u_I

- $\tilde{k} = k + A_{IB}^T u_I + A_{BB} u_B$
- Angles exactly sum to $2\pi!$

Rescale boundary edge lengths using scale factors u

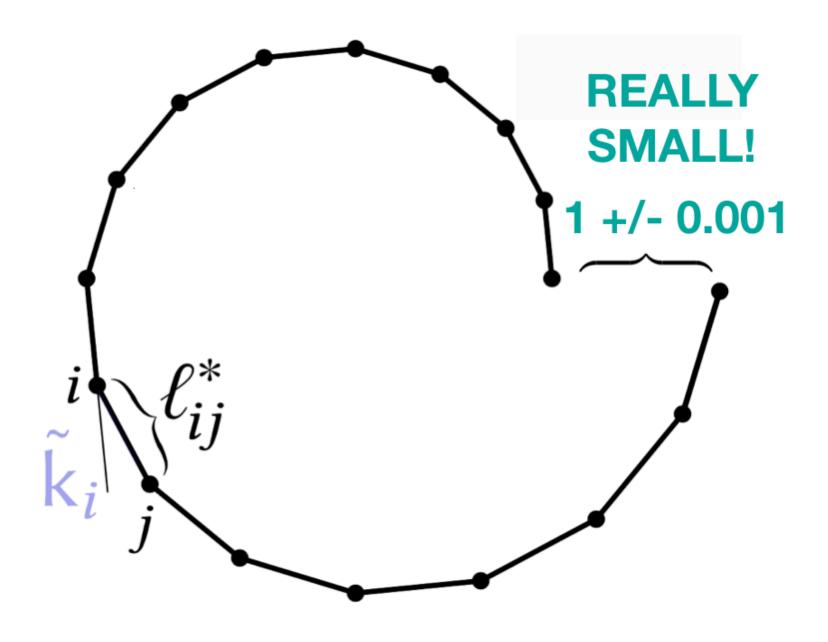
Rescale boundary edge lengths using scale factors u

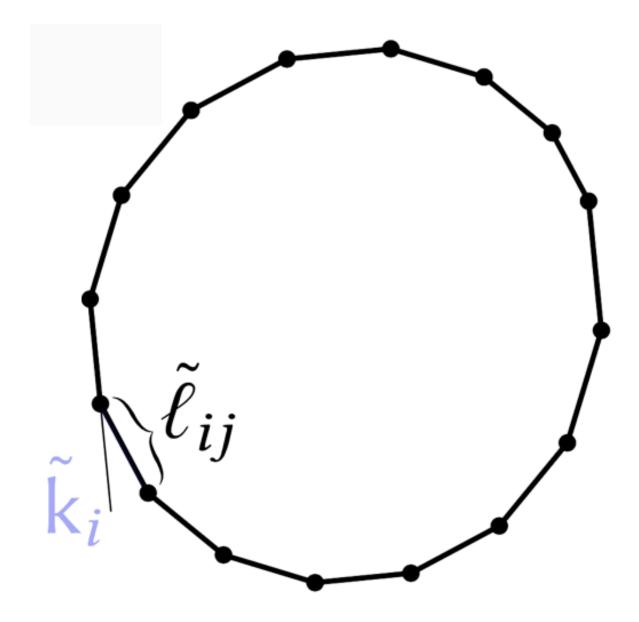
Extremely small discretization errors prevent curve from closing



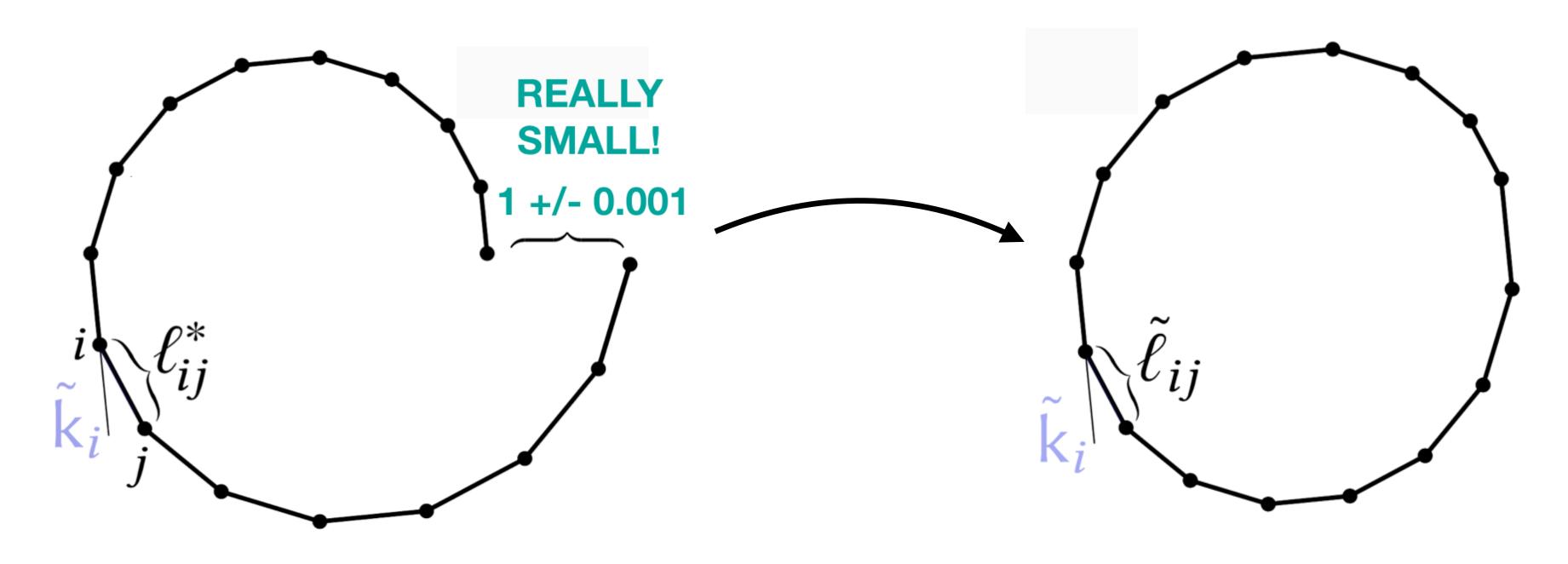
Rescale boundary edge lengths using scale factors *u*

- Extremely small discretization errors prevent curve from closing
- Formulate small least squares problem to adjust only lengths to close curve

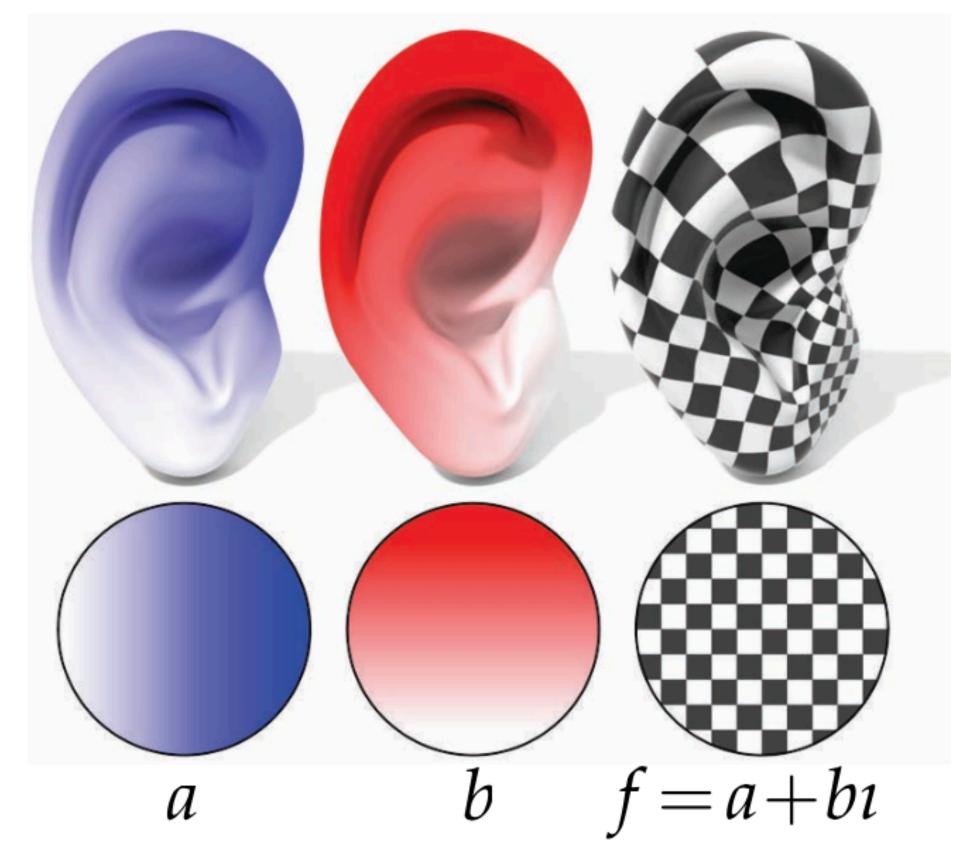




- Rescale boundary edge lengths using scale factors u
 - Extremely small discretization errors prevent curve from closing
 - Formulate small least squares problem to adjust <u>only</u> lengths to close curve
 - Exterior angles are <u>exactly</u> preserved

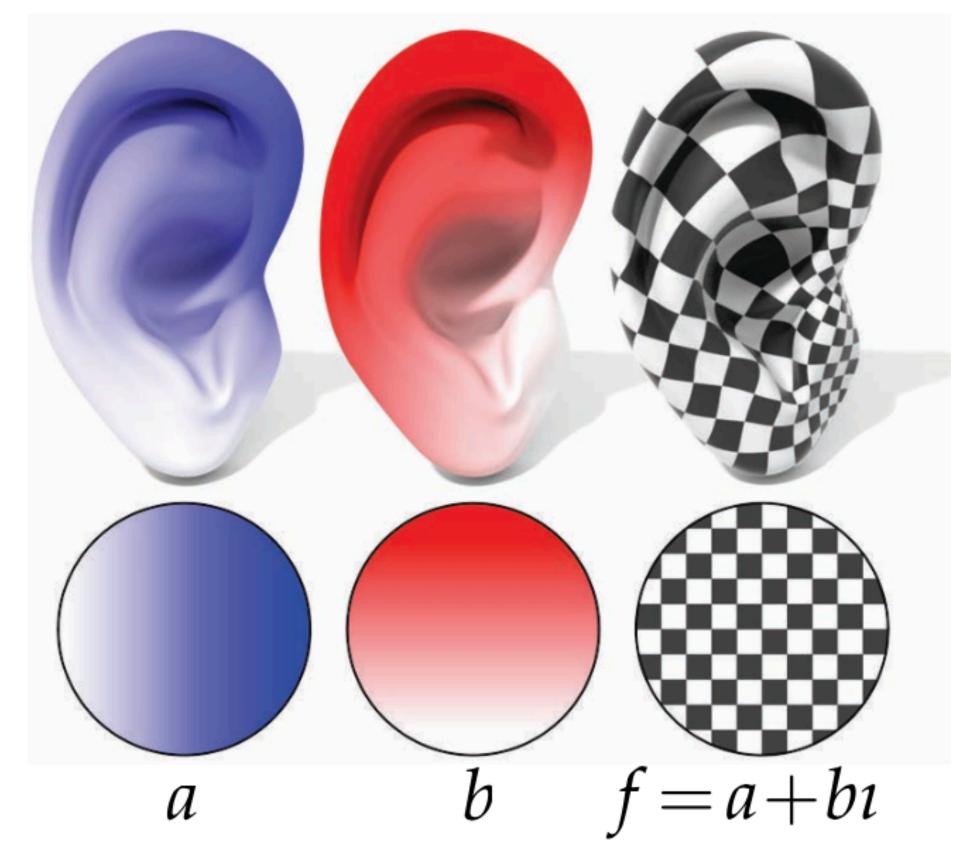


Basic Idea: Fix one coordinate of $\tilde{\gamma}$, minimize discrete conformal energy w.r.t. other coordinate



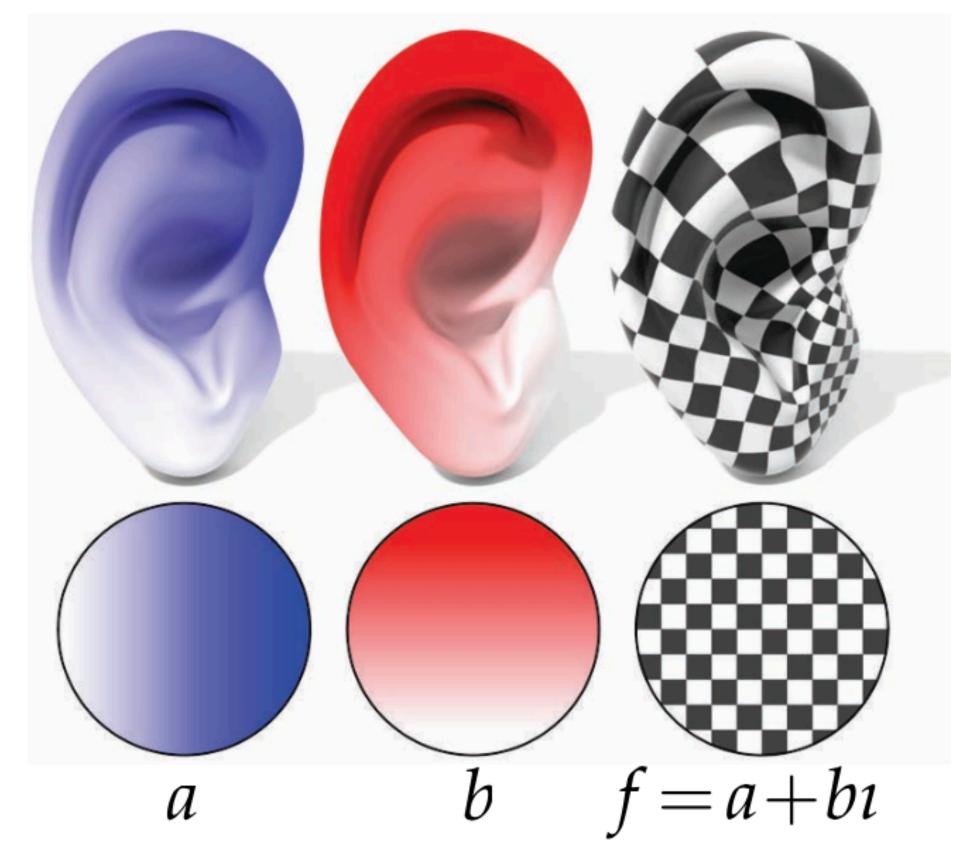
Basic Idea: Fix one coordinate of $\tilde{\gamma}$, minimize discrete conformal energy w.r.t. other coordinate

$$\Delta a = 0 \ s \ t \ a |_{\partial M} = Re(\tilde{\gamma})$$
$$\Delta b = 0 \ s \ t \ \frac{\partial b}{\partial n} = Ha$$



Basic Idea: Fix one coordinate of $\tilde{\gamma}$, minimize discrete conformal energy w.r.t. other coordinate

 $\Delta a = 0 \ s \, . \, t \, . \ a \mid_{\partial M} = Re(\tilde{\gamma})$ $\Delta b = 0 \ s \, . \, t \, . \ \frac{\partial b}{\partial n} = Ha$ $\stackrel{\uparrow}{\uparrow}$ Hilbert Transform



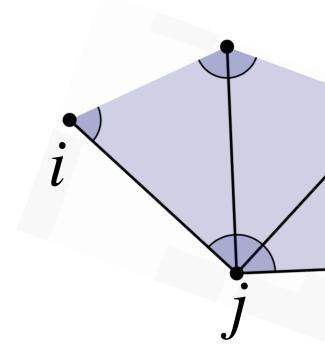
Basic Idea: Fix one coordinate of $\tilde{\gamma}$, minimize discrete conformal energy w.r.t. other coordinate

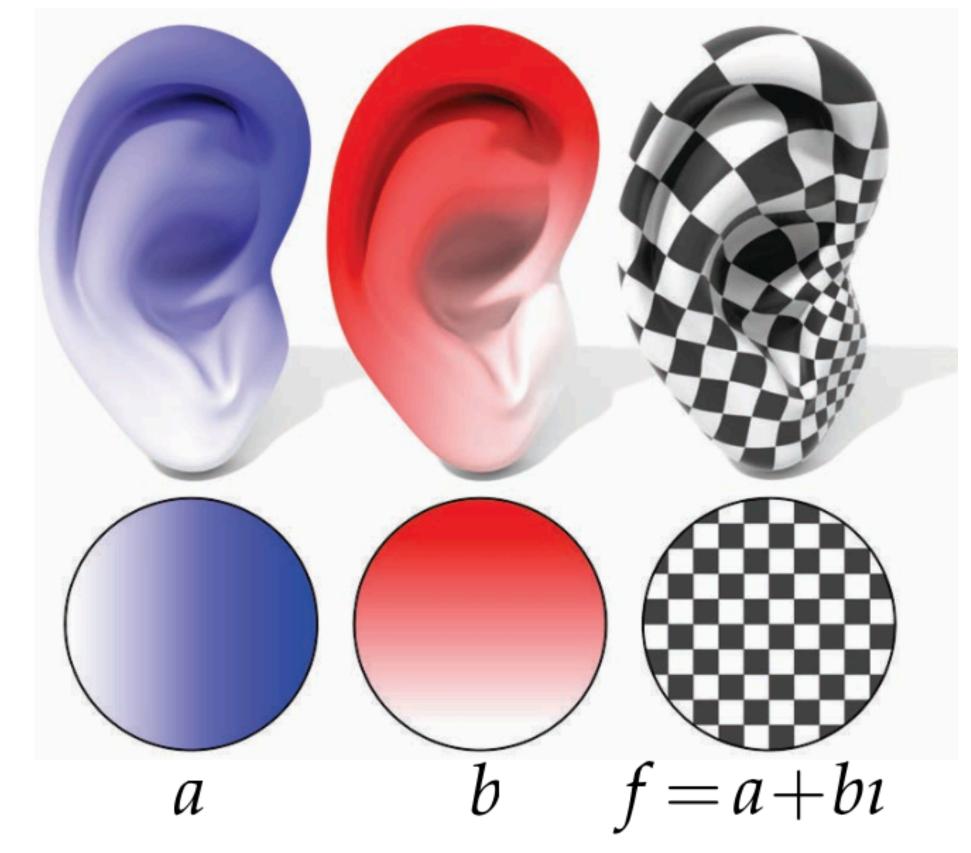
K

$$\Delta a = 0 \ s \, t \, a \mid_{\partial M} = Re(\tilde{\gamma})$$
$$\Delta b = 0 \ s \, t \, \frac{\partial b}{\partial n} = Ha$$

Hilbert Transform

$$h_j = \frac{1}{2}(a_k - a_i)$$





Basic Idea: Fix one coordinate of $\tilde{\gamma}$, minimize discrete conformal energy w.r.t. other coordinate

K

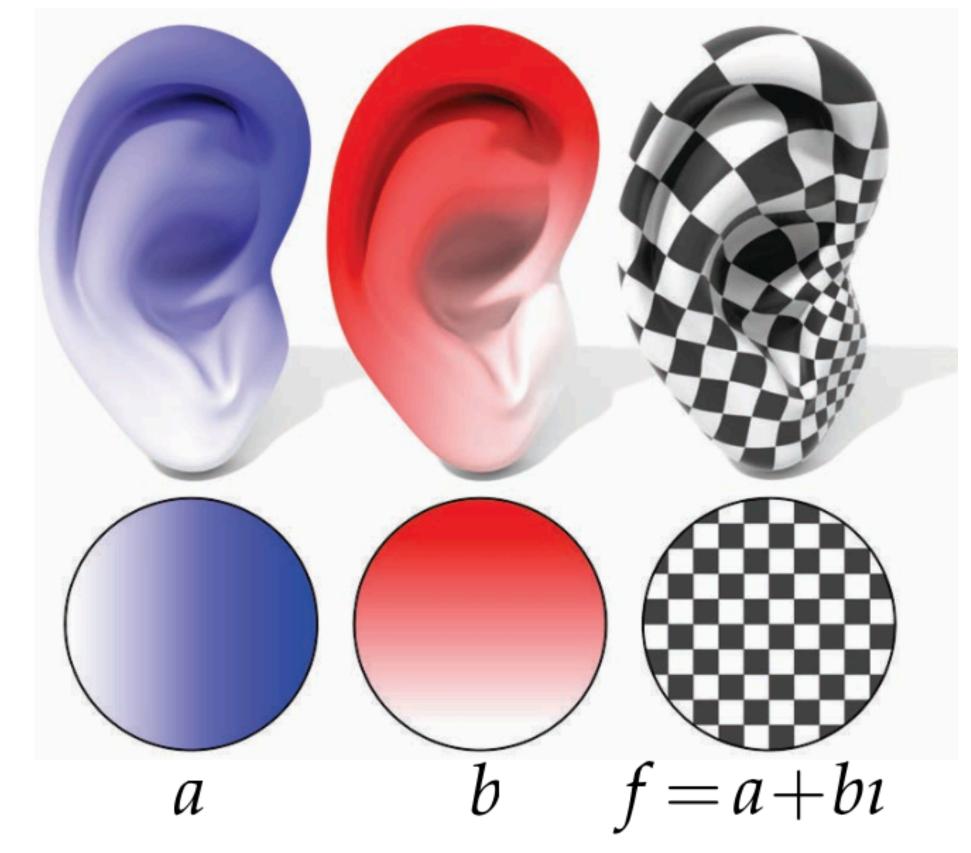
$$\Delta a = 0 \, s \, t \, a \, |_{\partial M} = Re(\tilde{\gamma})$$

$$\Delta b = 0 \ s \ t \ \frac{\partial b}{\partial n} = Ha$$

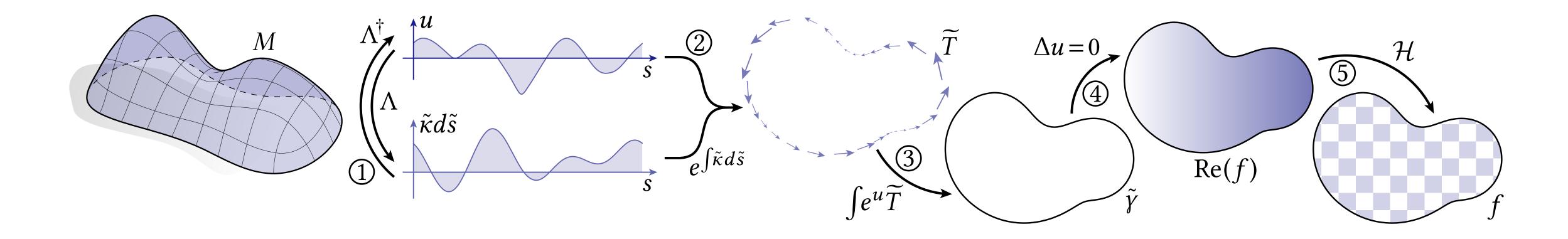
Hilbert Transform

$$h_j = \frac{1}{2}(a_k - a_i)$$

"as conjugate as possible"



Algorithm Outline



Given a surface with either scale or curvature of target boundary curve

- 1. Solve Yamabe Problem to get complementary data (curvature or scale)
- 2. Integrate boundary data to get boundary curve
- 3. Extend boundary curve to a pair of conjugate harmonic functions

Automatic Flattening

with minimal scale distortion

User does <u>not</u> have to specify boundary curve: automatically pick flattening

Automatic Flattening

with minimal scale distortion

Theorem. [Springborn, Schröder, Pinkall] Let (M,g) be a surface with boundary. Then among all conformally equivalent flat metrics $\tilde{g} = e^{2u}g$, the ones with least area distortion are obtained $\int u|_{\partial M} = \text{const.}$

User does <u>not</u> have to specify boundary curve: automatically pick flattening

Automatic Flattening

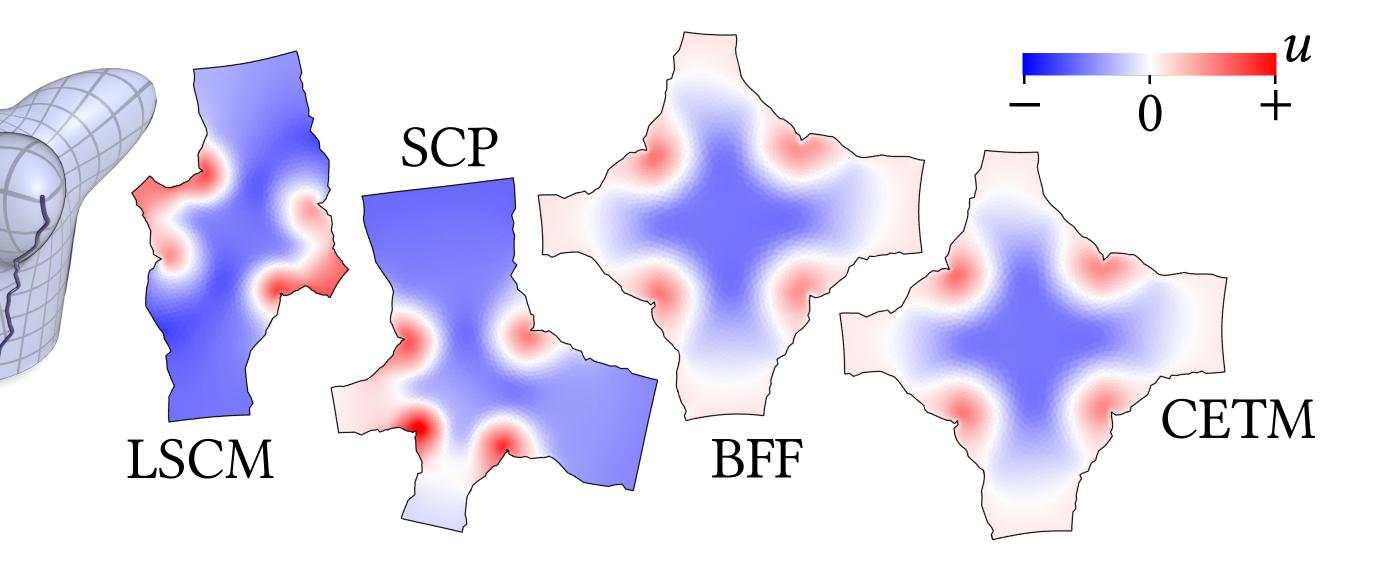
with minimal scale distortion

Theorem. [Springborn, Schröder, Pinkall] Let (M, g) be a surface with boundary. Then among all conformally equivalent flat metrics $\tilde{g} = e^{2u}g$, the ones with least area distortion are obtained $\int u|_{\partial M} = \text{const.}$

Results indistinguishable from **CETM**

Better preservation of symmetry compared to LSCM and SCP

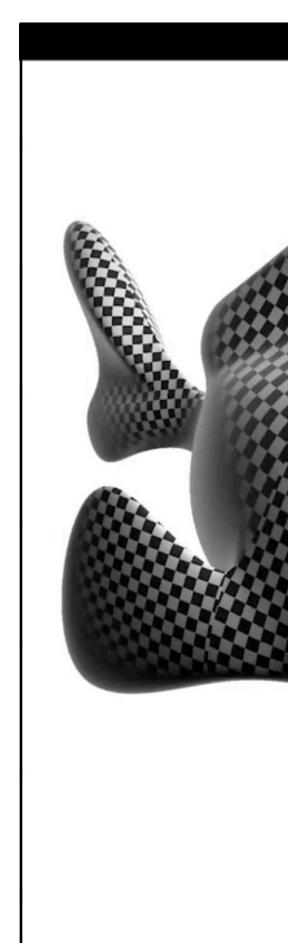
User does <u>not</u> have to specify boundary curve: automatically pick flattening

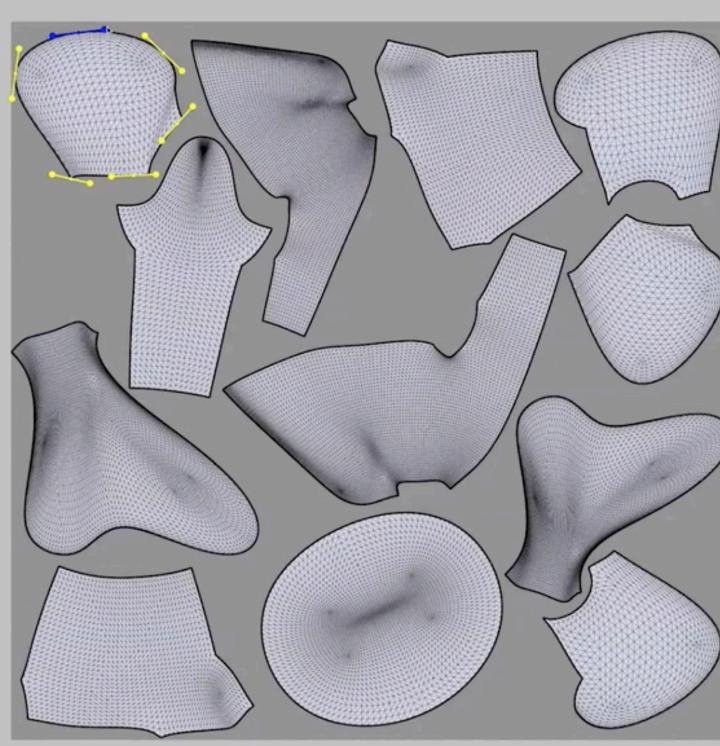


Direct Editing

Spline based curve editor to manipulate target angles and lengths

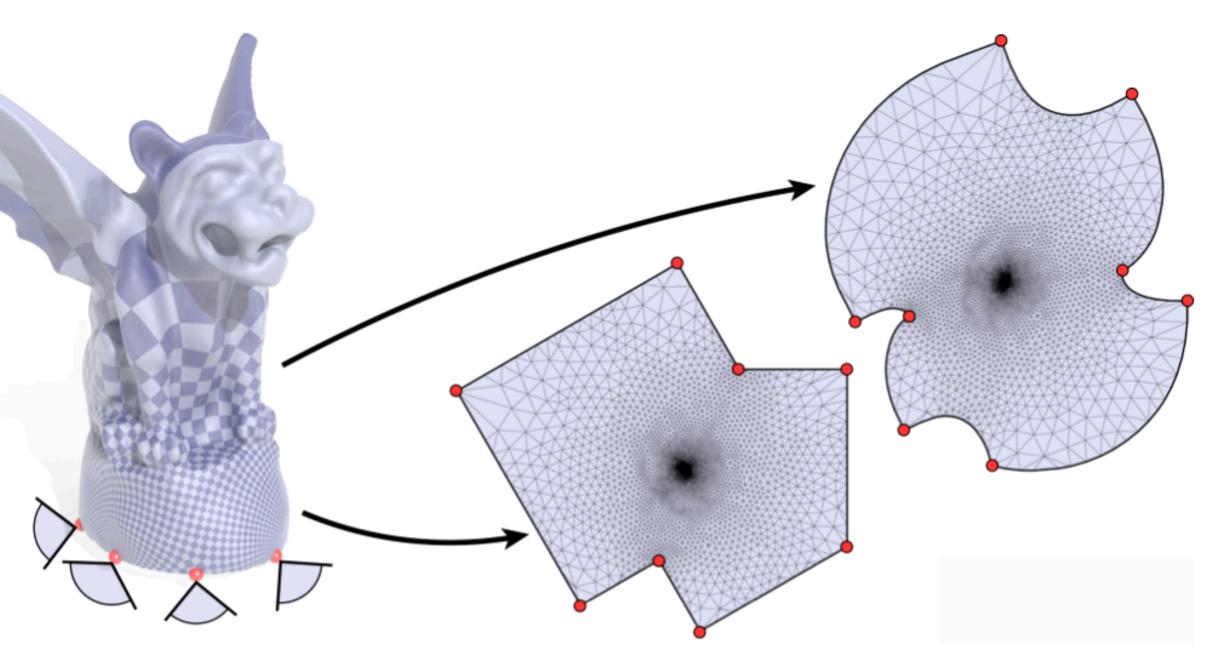
Interactively and nonrigidly tweak a texture layout while <u>remaining conformal</u>





Exact Preservation of Sharp Corners

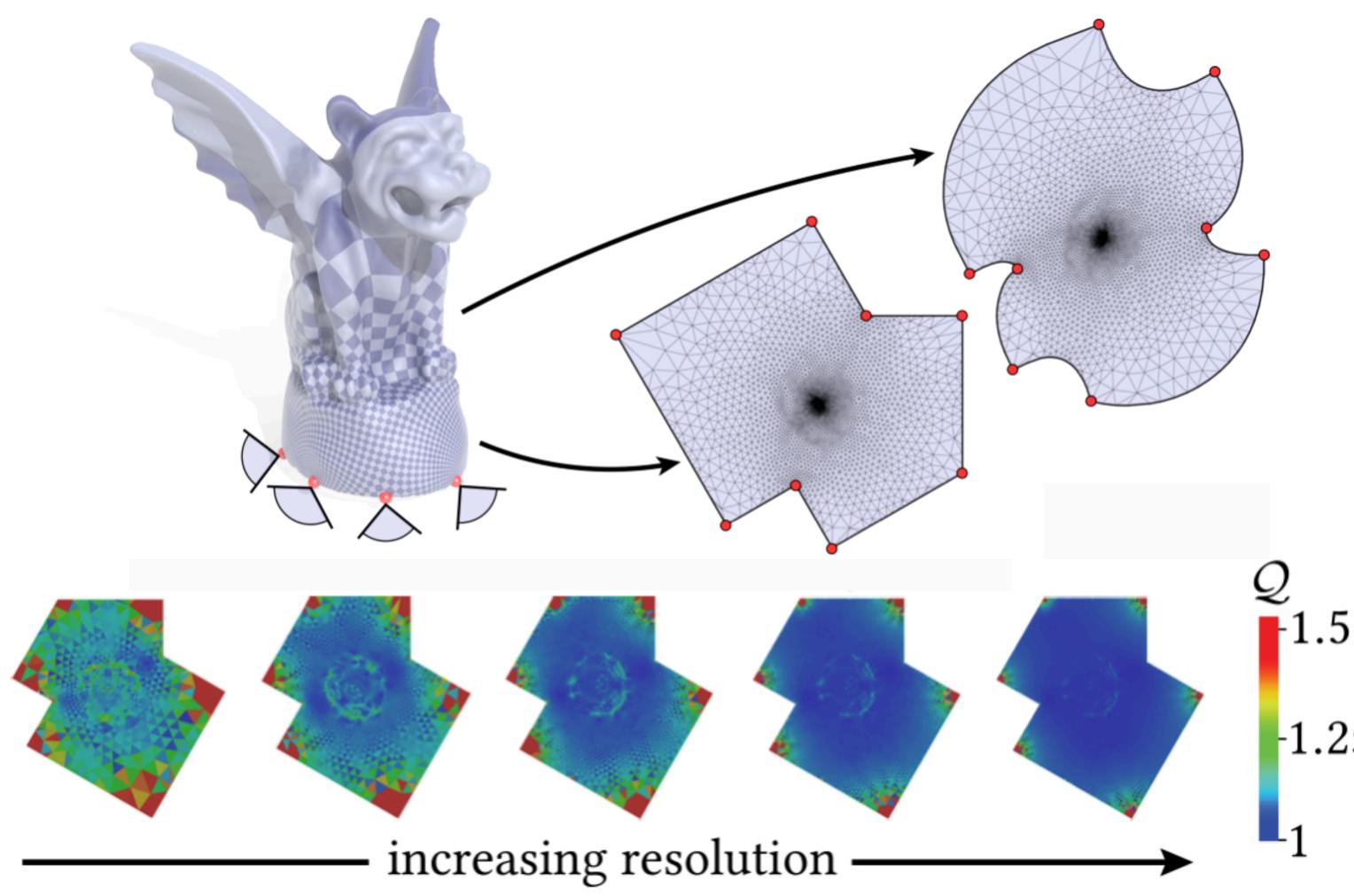
Harmonically extend both coordinates of $\tilde{\gamma}$ to <u>exactly</u> interpolate angles

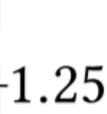


Exact Preservation of Sharp Corners

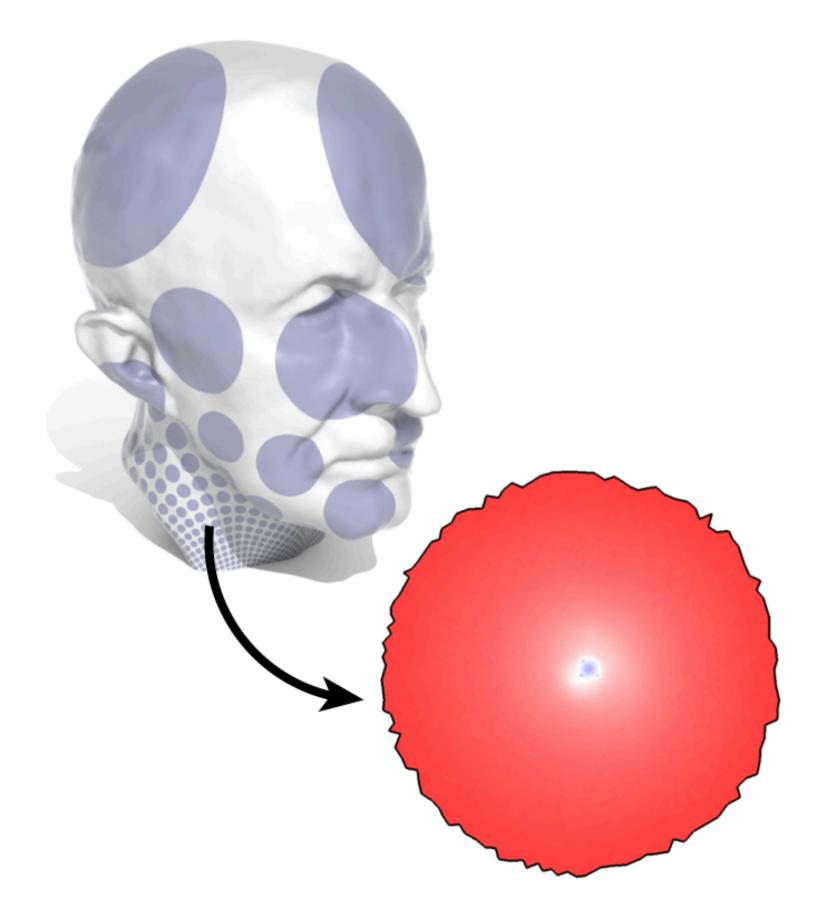
Harmonically extend both coordinates of $\tilde{\gamma}$ to <u>exactly</u> interpolate angles

Converges to conformal map under refinement since $\tilde{\gamma}$ is approximately conformal

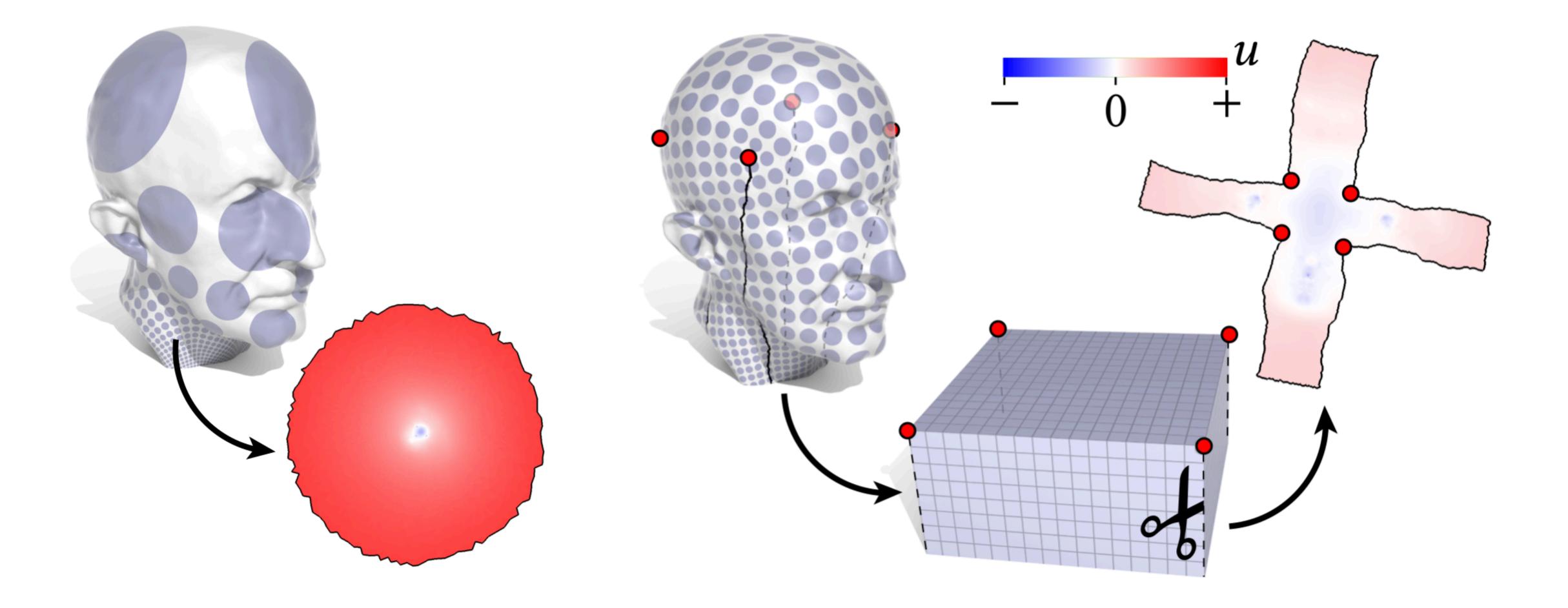




Cone singularities offer a powerful technique for mitigating scale distortion



Cone singularities offer a powerful technique for mitigating scale distortion



Cone singularities in BFF

Cone singularities in BFF

Solve Yamabe Problem with modified source term

$$\begin{bmatrix} A_{II} & A_{IB} \\ A_{IB}^T & A_{BB} \end{bmatrix} \begin{bmatrix} u_I \\ u_B \end{bmatrix} = \begin{bmatrix} \Omega & -\Theta \\ -(k - \tilde{k}) \end{bmatrix} \checkmark$$

Solve Yamabe Problem with modified source term

$$\begin{bmatrix} A_{II} & A_{IB} \\ A_{IB}^T & A_{BB} \end{bmatrix} \begin{bmatrix} u_I \\ u_B \end{bmatrix} = \begin{bmatrix} \Omega & -\Theta \\ -(k - \tilde{k}) \end{bmatrix} \checkmark$$

Cut through cones, prescribing *u* along cut

Solve Yamabe Problem with modified source term

$$\begin{bmatrix} A_{II} & A_{IB} \\ A_{IB}^T & A_{BB} \end{bmatrix} \begin{bmatrix} u_I \\ u_B \end{bmatrix} = \begin{bmatrix} \Omega & -\Theta \\ -(k - \tilde{k}) \end{bmatrix} \checkmark$$

Cut through cones, prescribing *u* along cut

Maps are <u>seamless</u> by construction

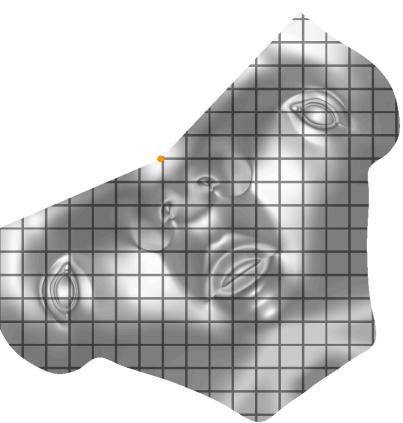
Solve Yamabe Problem with modified source term

$$\begin{bmatrix} A_{II} & A_{IB} \\ A_{IB}^T & A_{BB} \end{bmatrix} \begin{bmatrix} u_I \\ u_B \end{bmatrix} = \begin{bmatrix} \Omega & -\Theta \\ -(k - \tilde{k}) \end{bmatrix} \checkmark$$

Cut through cones, prescribing *u* along cut

Maps are <u>seamless</u> by construction

Allow interactive editing of cone angles



Solve Yamabe Problem with modified source term

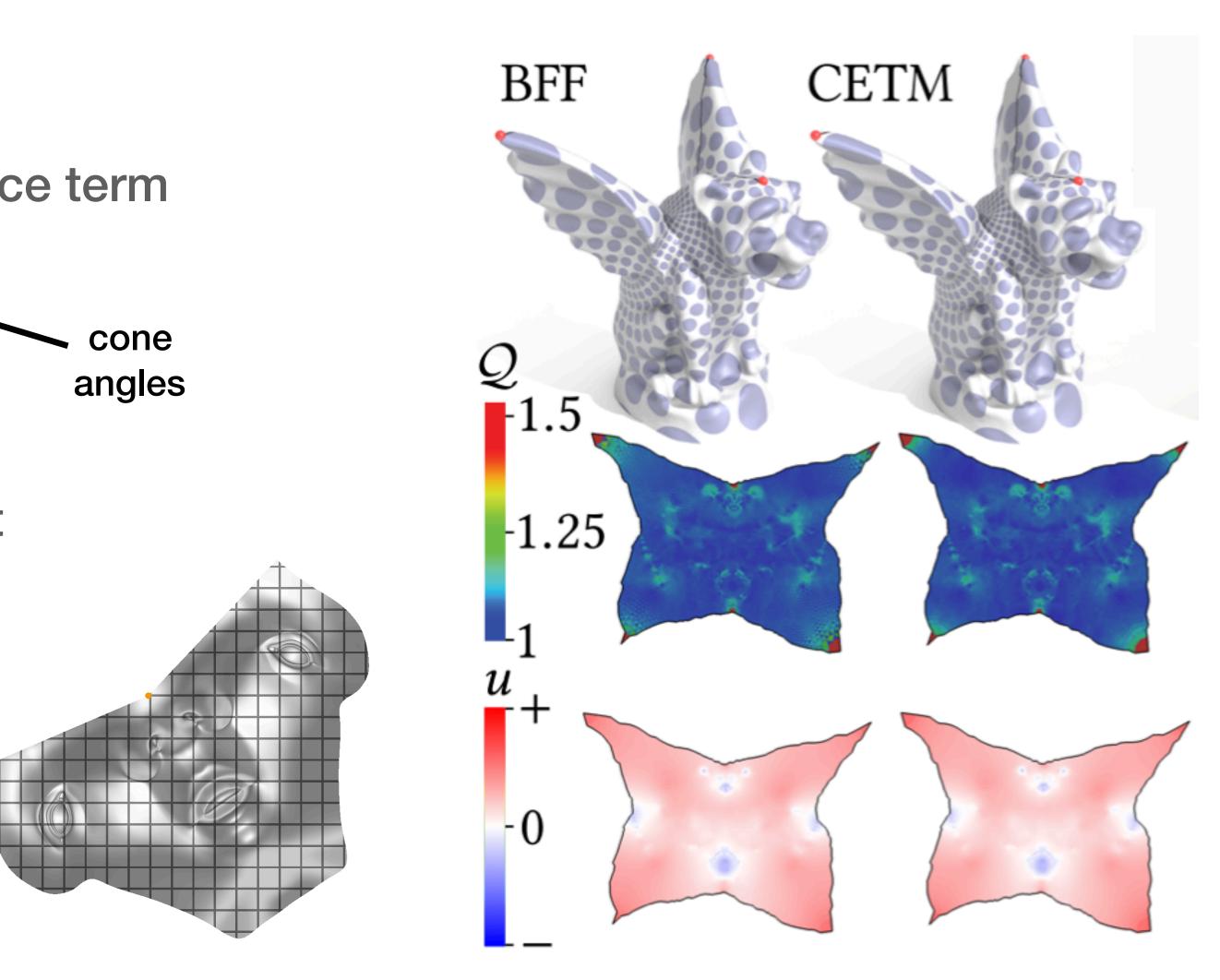
$$\begin{bmatrix} A_{II} & A_{IB} \\ A_{IB}^T & A_{BB} \end{bmatrix} \begin{bmatrix} u_I \\ u_B \end{bmatrix} = \begin{bmatrix} \Omega & -\Theta \\ -(k - \tilde{k}) \end{bmatrix} \checkmark$$

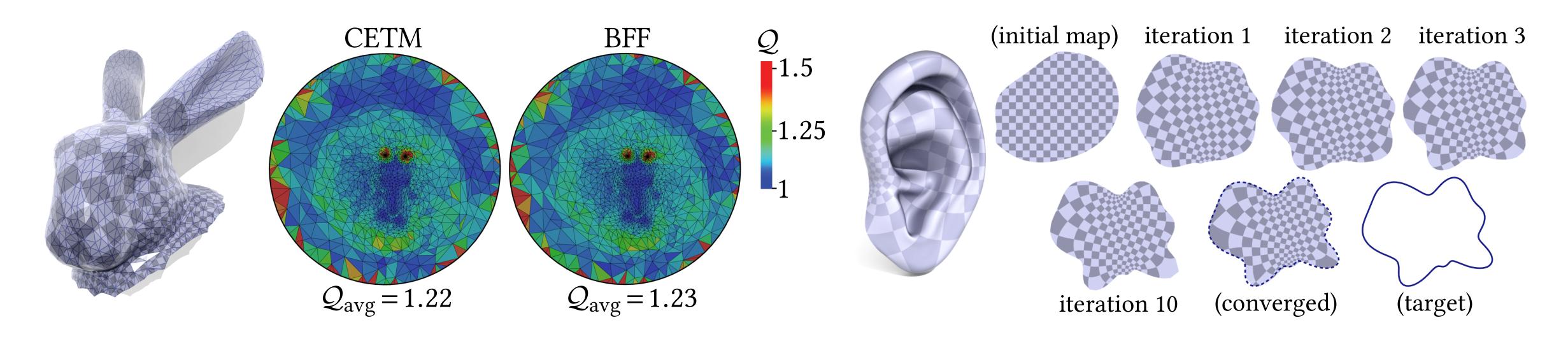
Cut through cones, prescribing *u* along cut

Maps are <u>seamless</u> by construction

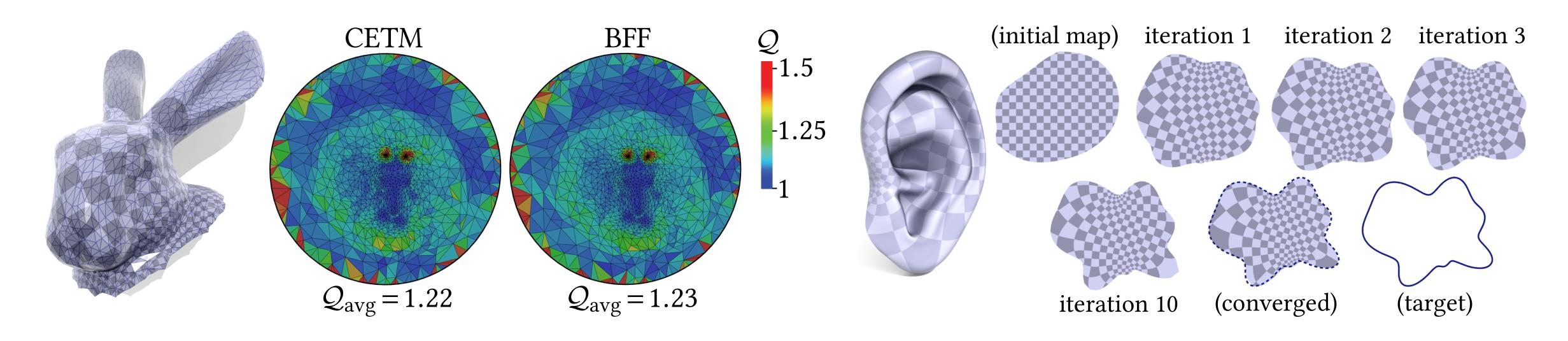
Allow interactive editing of cone angles

Results indistinguishable from CETM



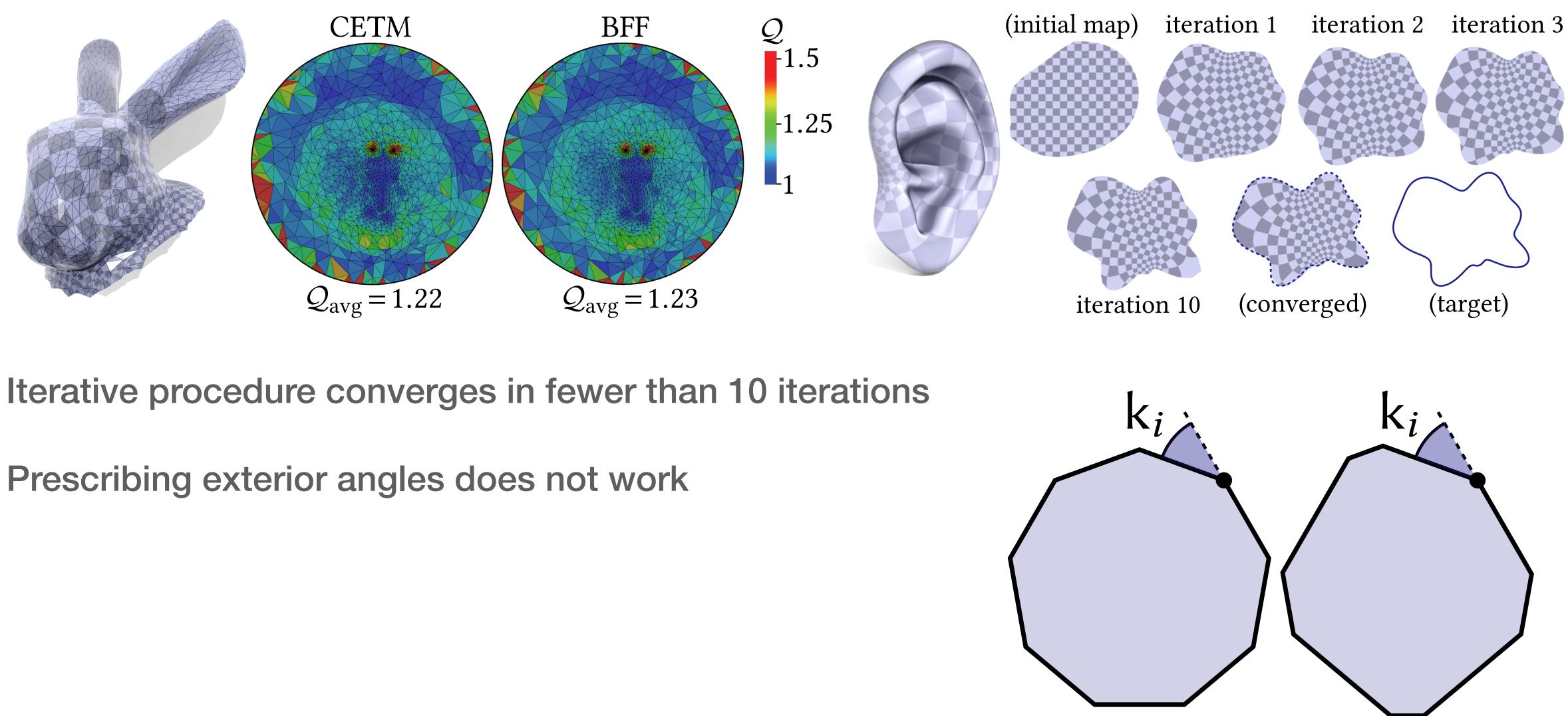


Iterative procedure converges in fewer than 10 iterations

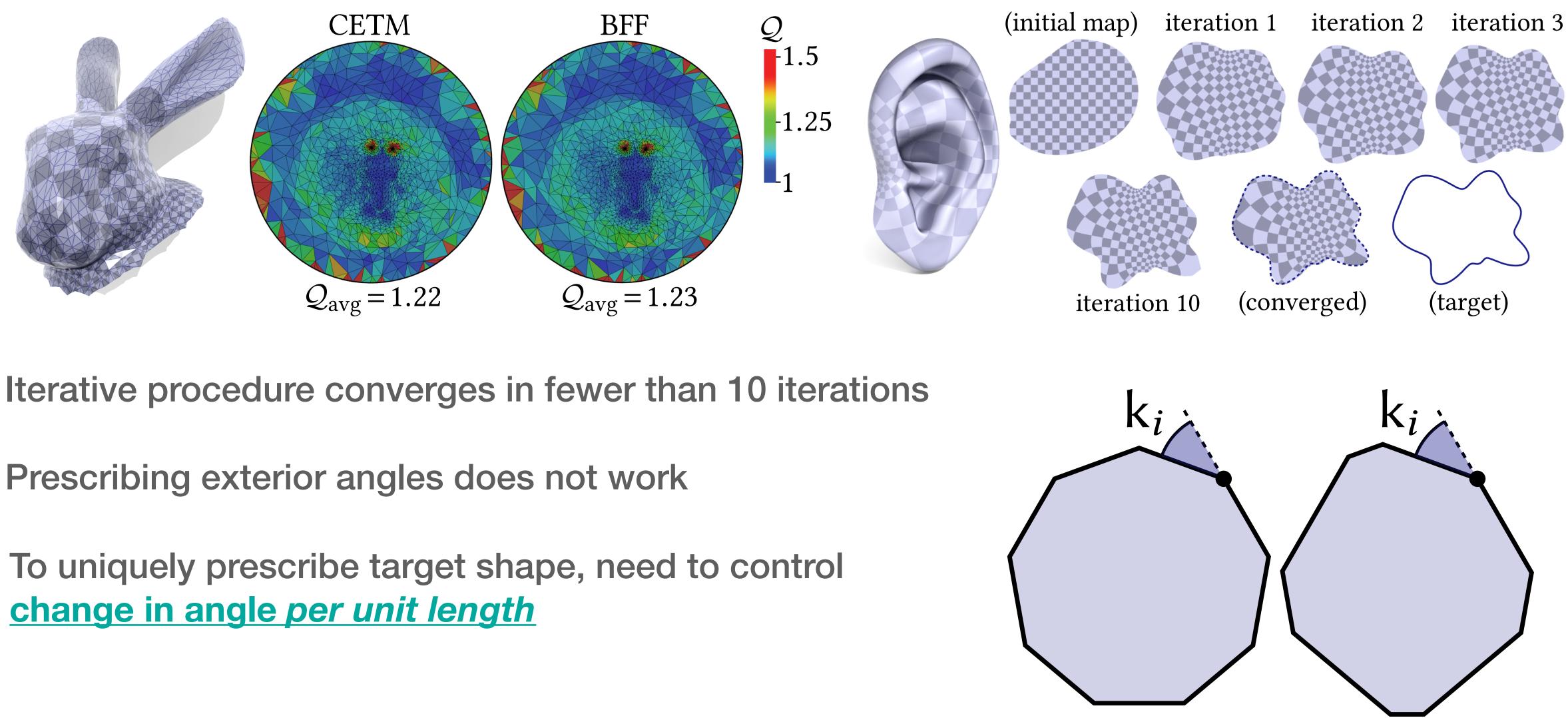


Iterative procedure converges in fewer than 10 iterations

Prescribing exterior angles does not work



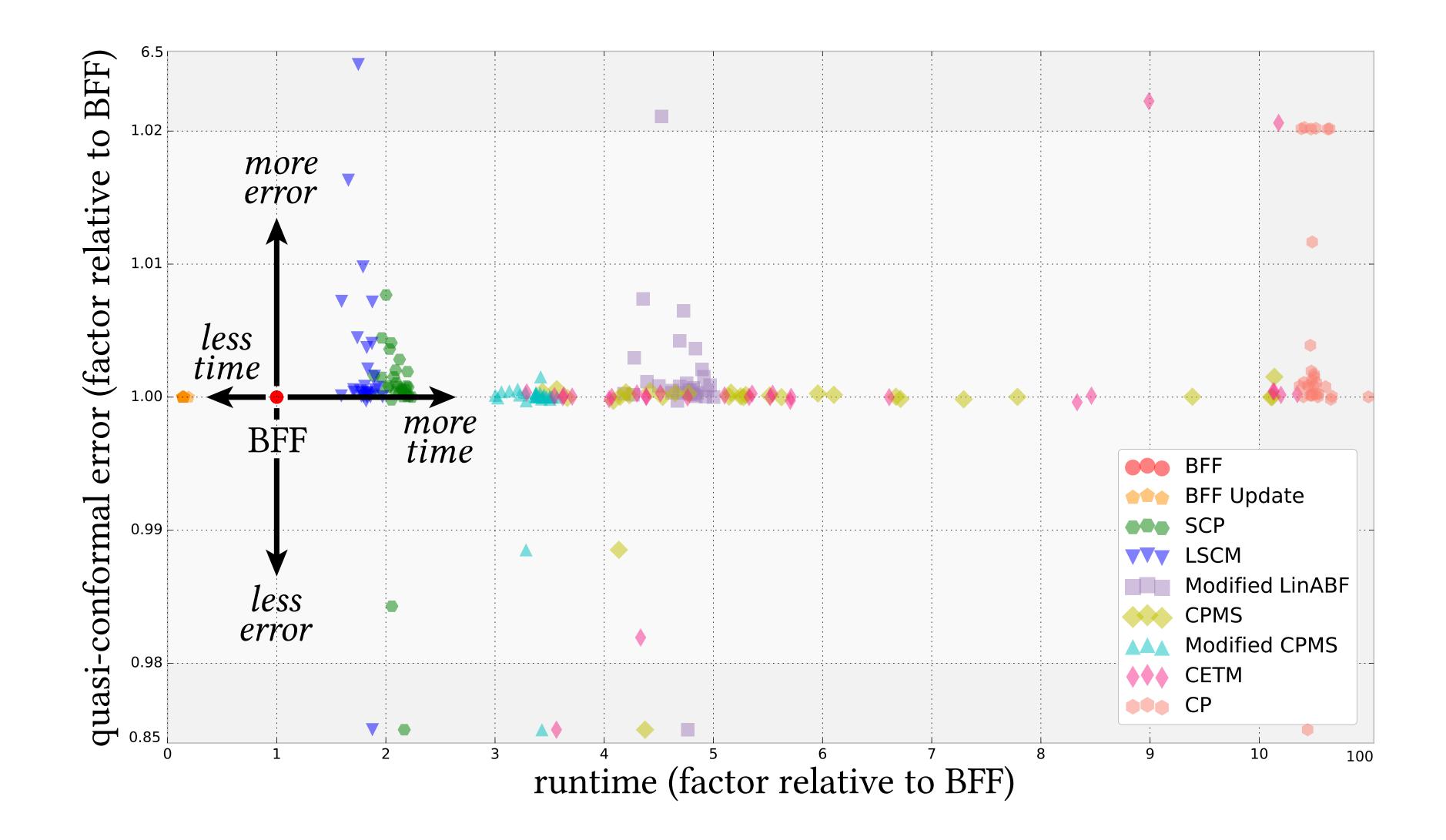
Prescribing exterior angles does not work



Prescribing exterior angles does not work

change in angle per unit length

Performance



Fast Computation

Single Sparse Cholesky Factorization

$$\begin{bmatrix} A_{II} & A_{IB} \\ A_{IB}^T & A_{BB} \end{bmatrix} = \begin{bmatrix} L_{II} & 0 \\ L_{BI} & L_{BB} \end{bmatrix} \begin{bmatrix} L_{II}^T & L_{B}^T \\ 0 & L_{B}^T \end{bmatrix}$$

most expensive step in entire algorithm

Fast Computation

Single Sparse Cholesky Factorization

$$\begin{bmatrix} A_{II} & A_{IB} \\ A_{IB}^T & A_{BB} \end{bmatrix} = \begin{bmatrix} L_{II} & 0 \\ L_{BI} & L_{BB} \end{bmatrix} \begin{bmatrix} L_{II}^T & L_{B}^T \\ 0 & L_{B}^T \end{bmatrix}$$

$$\implies A_{II} = L_{II}L_{II}^T$$

most expensive step in entire algorithm

"for free"

Fast Computation

Single Sparse Cholesky Factorization

$$\begin{bmatrix} A_{II} & A_{IB} \\ A_{IB}^T & A_{BB} \end{bmatrix} = \begin{bmatrix} L_{II} & 0 \\ L_{BI} & L_{BB} \end{bmatrix} \begin{bmatrix} L_{II}^T & L_{B}^T \\ 0 & L_{B}^T \end{bmatrix}$$

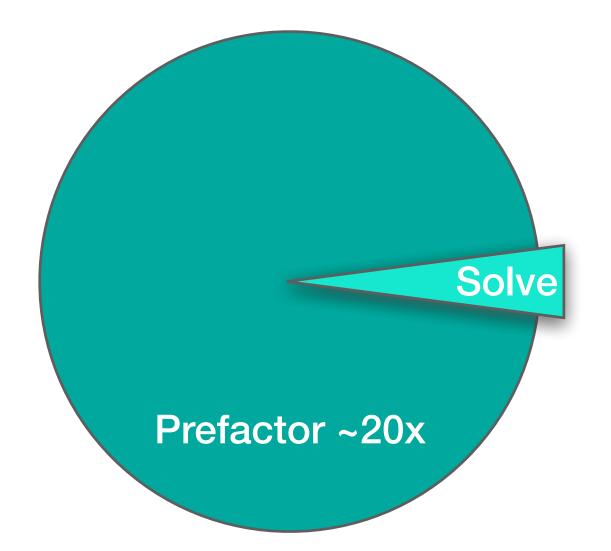
$$\implies A_{II} = L_{II}L_{II}^T$$

Backsubtitution

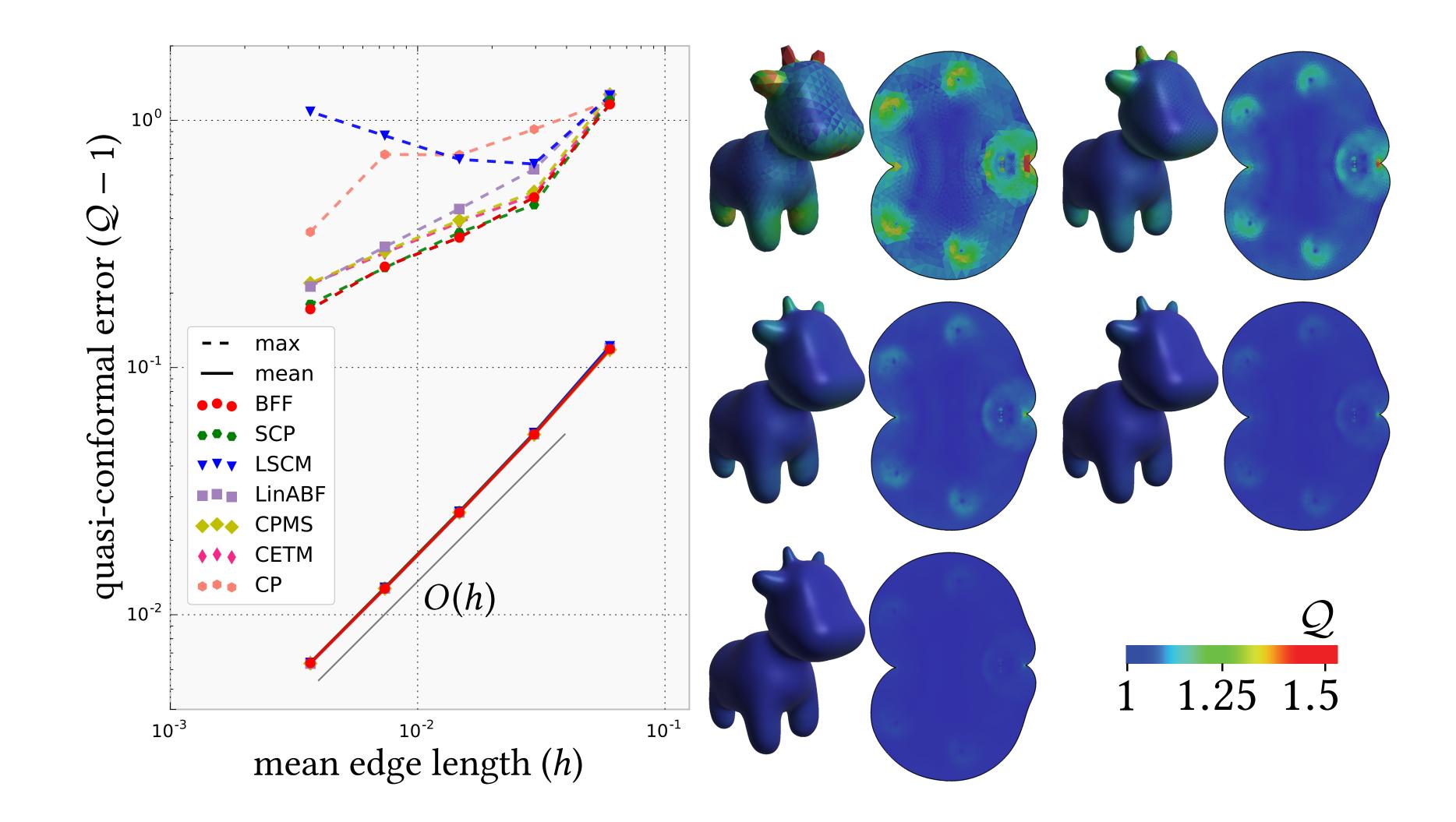
$$Ax_1 = b_1$$
$$Ax_2 = b_2$$
$$Ax_3 = b_3$$

most expensive step in entire algorithm

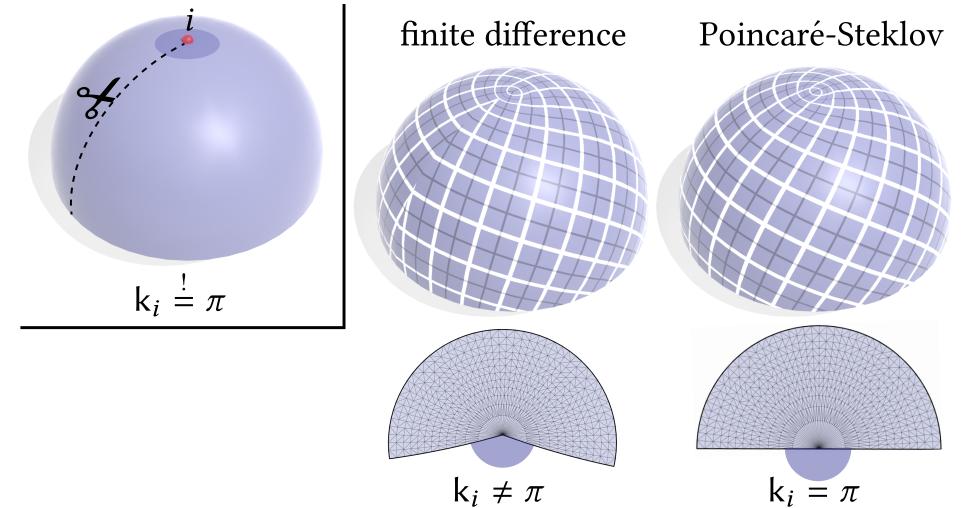
"for free"



Convergence

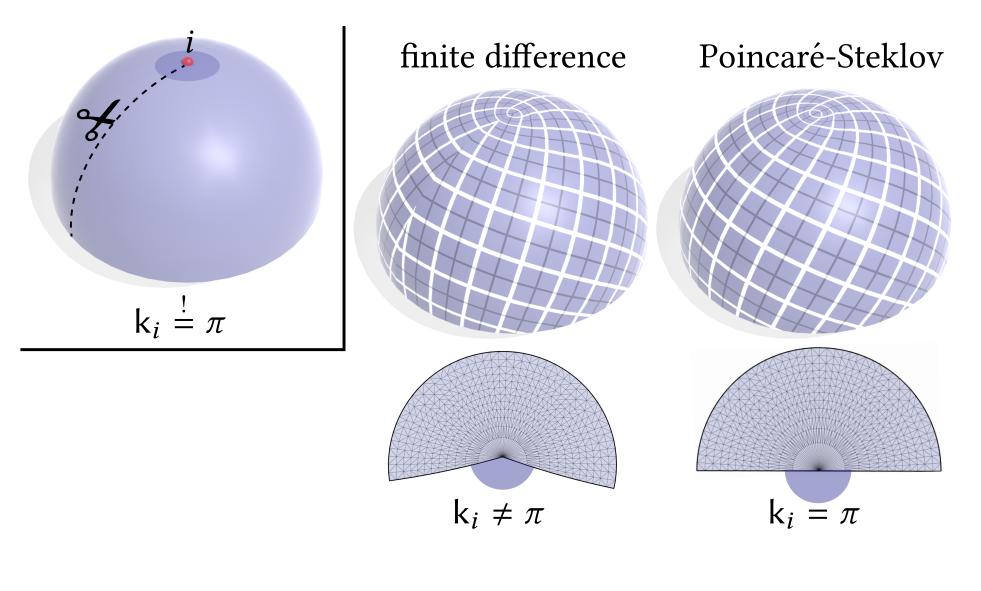


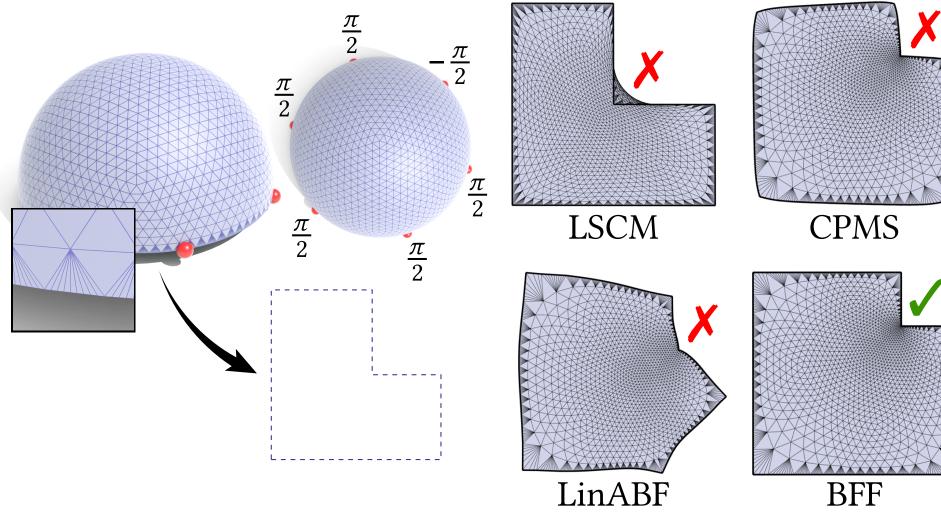
Principled discretization of Poincaré Steklov operators guarantees <u>exact</u> integrability of exterior angles



Principled discretization of Poincaré Steklov operators guarantees <u>exact</u> integrability of exterior angles

Integrability of edge lengths enforced only along boundary





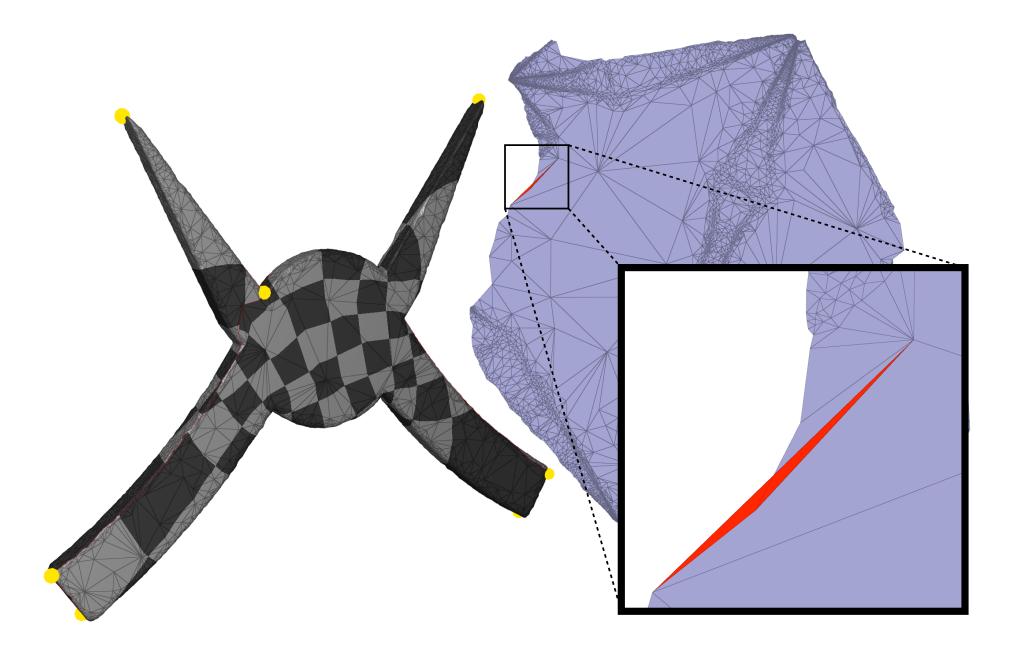
Injectivity (No Flipped Triangles)

BFF provides no guarantees, but maps are usually injective:

Injectivity (No Flipped Triangles)

BFF provides no guarantees, but maps are usually injective:

SHREC: 6/588 meshes; 1-2 flipped triangles

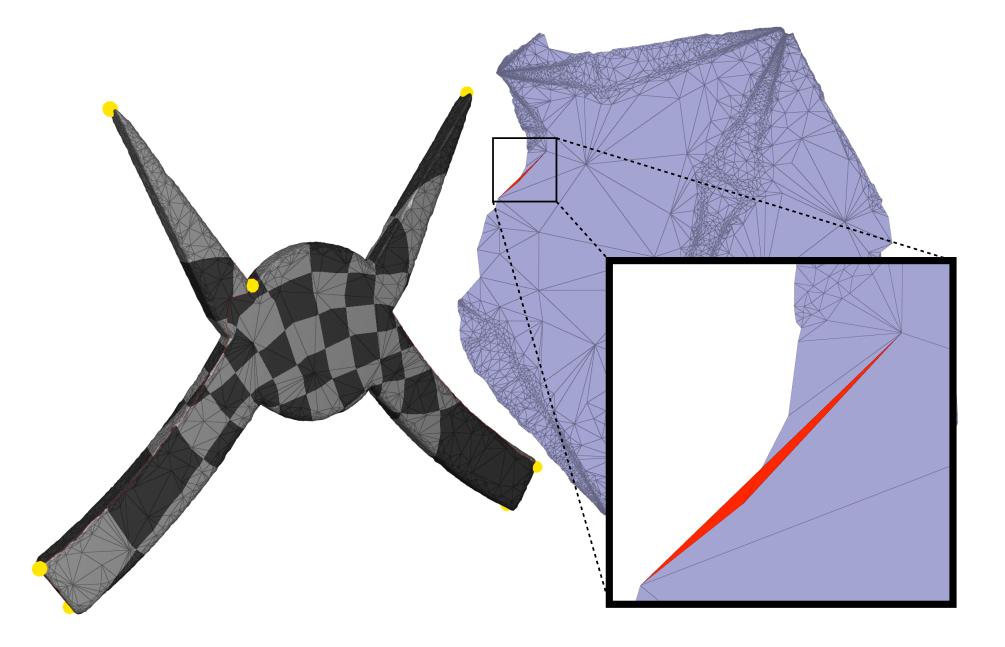


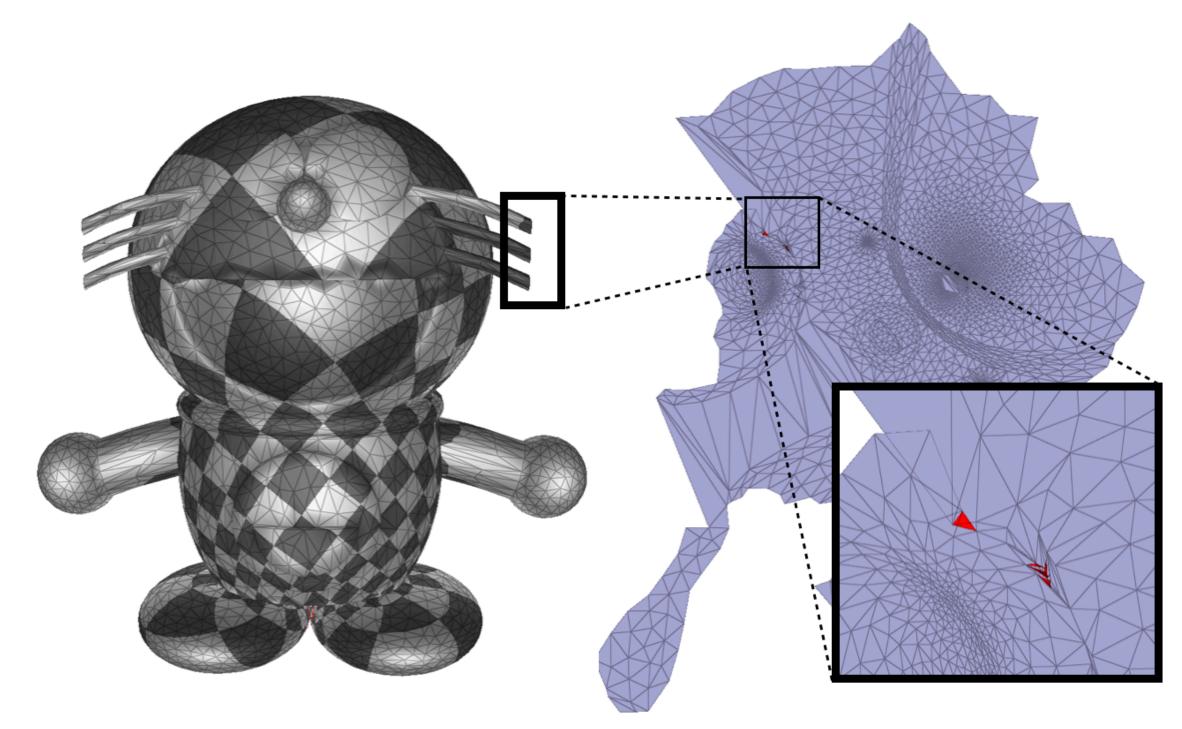
Injectivity (No Flipped Triangles)

BFF provides no guarantees, but maps are usually injective:

SHREC: 6/588 meshes; 1-2 flipped triangles

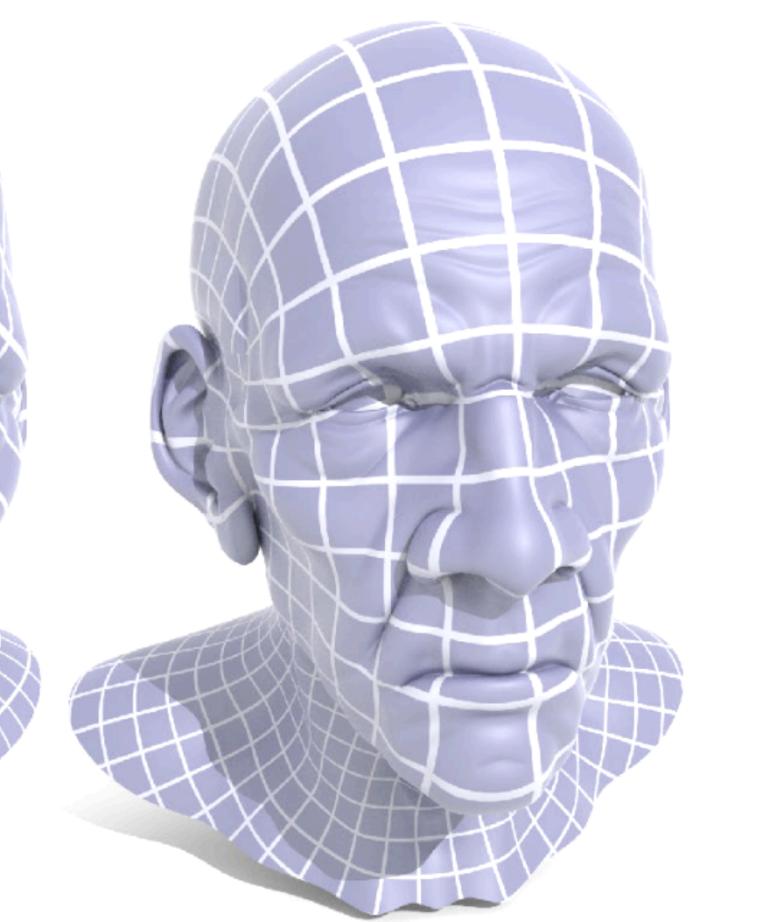
Myles & Zorin: <u>5/116</u> meshes; <u>> 1%</u> flipped triangles





Price of Guaranteed Injectivity

Editing can be <u>100's</u> of times slower with injective methods



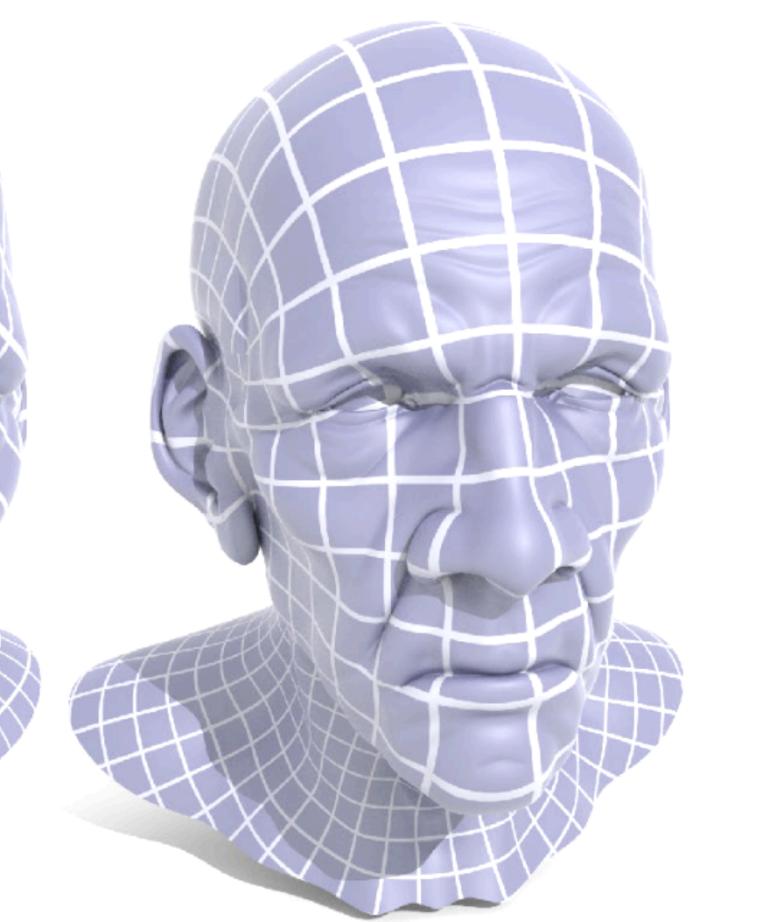
SLIM + PARDISO – 15.9s [Rabinovich et al 2016]

BFF - 0.12s (126x faster) [Sawhney & Crane 2017]

Price of Guaranteed Injectivity

Editing can be <u>100's</u> of times slower with injective methods

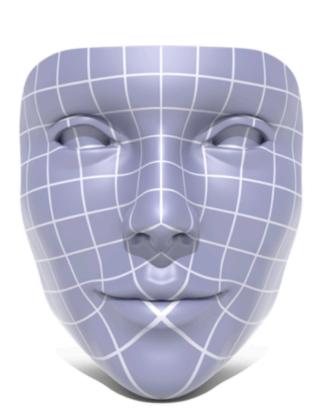
Best of both worlds: use fast method like BFF fallback if necessary



SLIM + PARDISO – 15.9s [Rabinovich et al 2016]

BFF - 0.12s (126x faster) [Sawhney & Crane 2017]

Want My BFF To Be Your BFF



Boundary First Flattening

Boundary First Flattening (BFF) is a free and open source application for surface parameterization. Unlike other tools for UV mapping, BFF allows free-form editing of the flattened mesh, providing users direct control over the shape of the flattened domain—rather than being stuck with whatever the software provides. The initial flattening is fully automatic, with distortion mathematically guaranteed to be as low or lower than any other conformal mapping tool. The tool also provides some state-of-the art flattening techniques not available in standard UV mapping software such as cone singularities, which can dramatically reduce area distortion, and seamless maps, which help eliminate artifacts by ensuring identical texture resolution across all cuts. BFF is highly optimized, allowing interactive editing of meshes with millions of triangles.

The BFF application is based on the paper, "Boundary First Flattening" by Rohan Sawhney and Keenan Crane.

geometry.cs.cmu.edu/bff

Thanks!

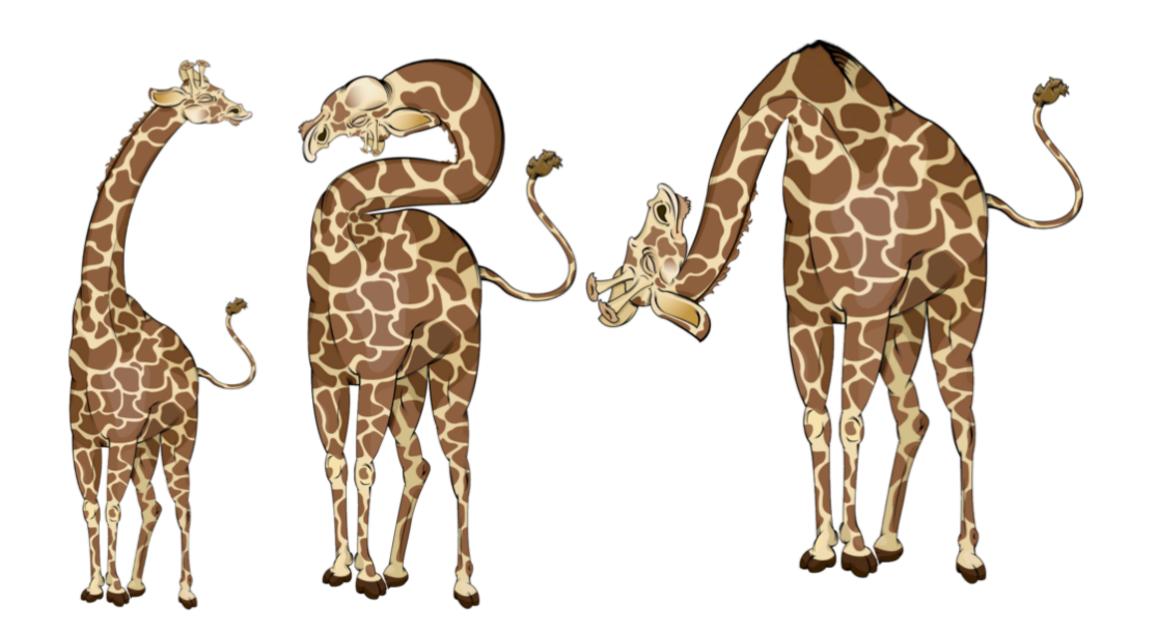
BACKUP SLIDES

2D Shape Editing & Uniformization

Apply 2D conformal deformations to initial flattening?

Piecewise linear conformal maps do not compose

Composition of methods offers no clear advantage in terms of speed or simplicity



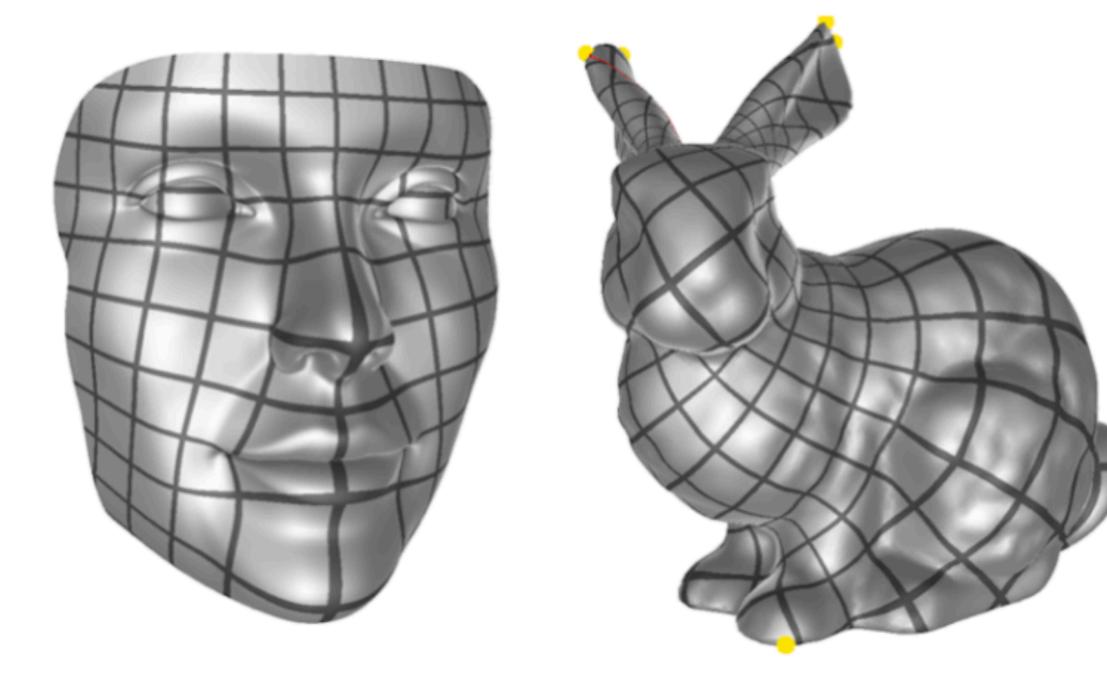
Controllable Conformal Maps for Shape Deformation and Interpolation [Weber et al 2010]

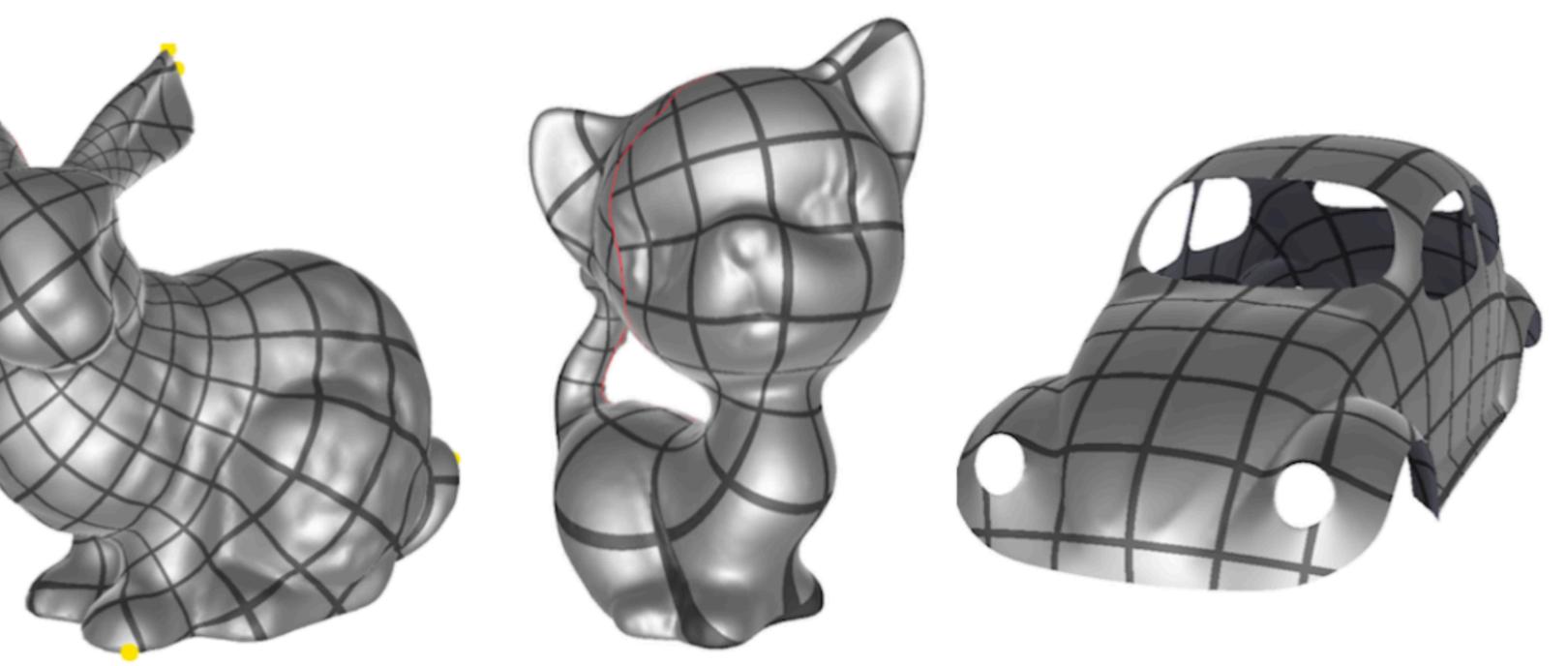
Topology

For multiply connected domains like annulus, Hilbert transform is not valid

Fill holes with virtual faces to flatten

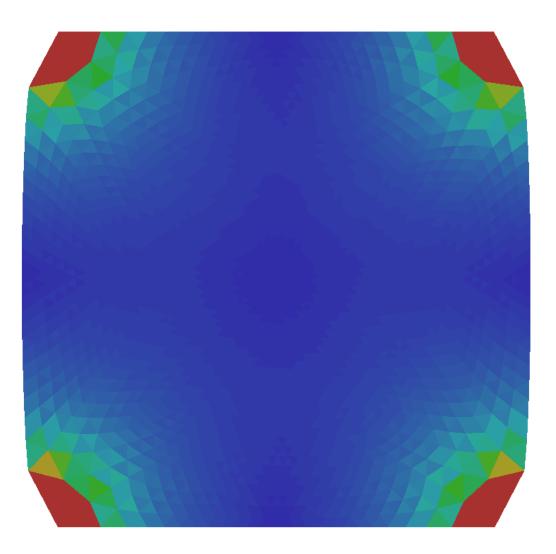
Cut surface into one or more disks



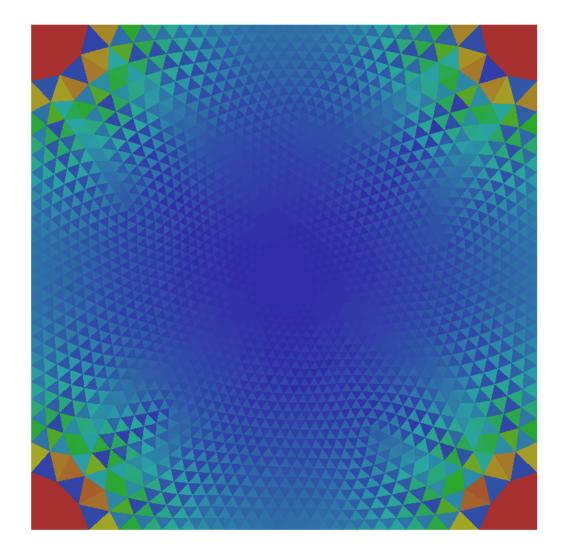


Harmonic vs Holomorphic Extension

Harmonic and holomophic extension of $\tilde{\gamma}$ converge to the same solution under refinement



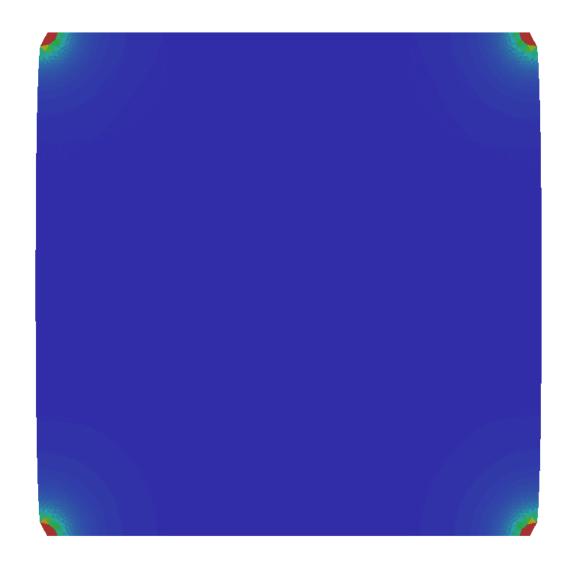
Holomorphic Extension



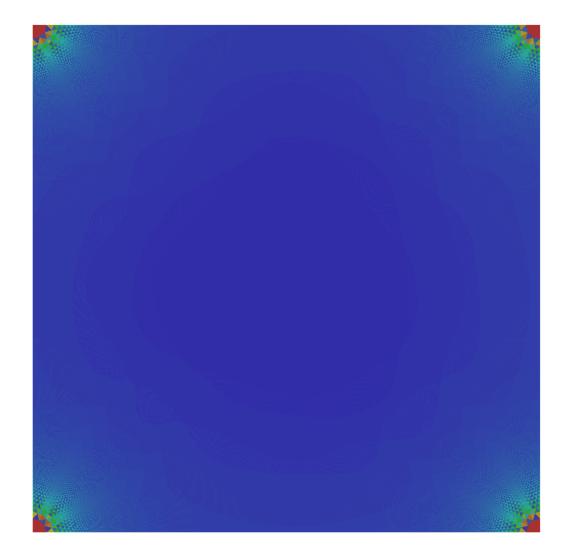
Harmonic Extension

Harmonic vs Holomorphic Extension

Harmonic and holomophic extension of $\tilde{\gamma}$ converge to the same solution under refinement



Holomorphic Extension



Harmonic Extension

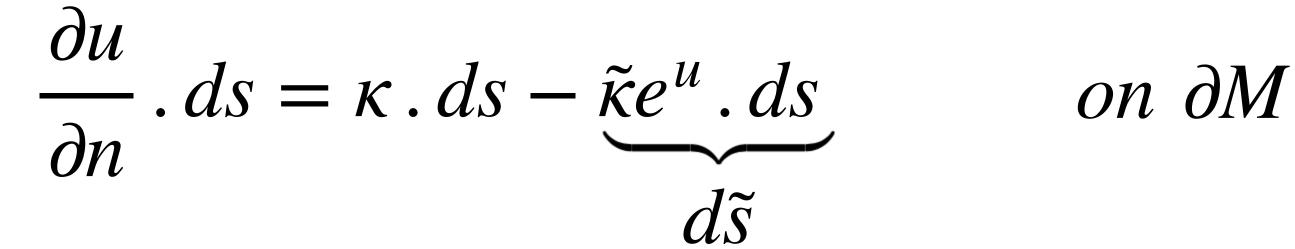
More Details on Discretizing the Yamabe Problem (1)

Multiply Yamabe equation by dA and its boundary conditions by ds

$$\Delta u = K - e^{2u} \tilde{K}$$

$$\frac{\partial u}{\partial n} = \kappa - e^{u} \tilde{\kappa}$$

$$\Delta u \,.\, dA = K \,.\, dA - \tilde{K} e^{2u} \,.\, dA \qquad on \ M$$
$$d\tilde{A}$$



More Details on Discretizing the Yamabe Problem (2)

Integrate over dual volumes

$\Delta u \,.\, dA = K \,.\, dA - \tilde{K} \,.\, d\tilde{A}$

$\frac{\partial u}{\partial n} \cdot ds = \kappa \cdot ds - \tilde{\kappa} d\tilde{s}$

on M

on ∂M

More Details on Discretizing the Yamabe Problem (2)

Integrate over dual volumes

$\Delta u \,.\, dA = K \,.\, dA - \tilde{K} \,.\, d\tilde{A}$

$\frac{\partial u}{\partial n} \cdot ds = \kappa \cdot ds - \tilde{\kappa} d\tilde{s}$

$Au = \Omega - \tilde{\Omega} \qquad on \ M$

$h = k - \tilde{k} \qquad on \ \partial M$

Modification to CPMS

High Level Idea:

- Employ Yamabe Equation to obtain scale information
- Seek edge lengths that describe a flat surface via least squares layout

Modification:

Add boundary control with Cherrier boundary conditions

Comparison with BFF:

Least Squares layout does not respect boundary constraints

Amortized cost of editing a map with BFF is 30x faster compared to CPMS (Layout matrix cannot be prefactored)

Modification to LinABF

High Level Idea:

Optimize corner angles β to find near flat metric Find planar vertex positions approximating angles via least squares layout

Modification:

To prescribe exterior angles $\tilde{\kappa}$, add linear be

To prescribe boundary lengths \tilde{l}_{ii} , add boun

Comparison with BFF:

Artifacts due to linearization and least squares layout

Neither least squares matrix nor angle constraint matrix can be prefactored

oundary constraints
$$\sum \beta_{i}^{jk} = \pi - \tilde{\kappa}_{i}$$

ndary condition $\prod_{ijk} \frac{\sin \beta_{i}^{jk}}{\sin \beta_{j}^{ji}} = \frac{\tilde{l}_{i-1,i}}{\tilde{l}_{i,i+1}}$

I don't know...

