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BFF: A New Paradigm for Conformal Parameterization

Cone Singularities

Minimal Area Distortion  
(Fully Automatic)

Arbitrary Target Shapes

Sharp Corners

Direct Editing

Quality of nonlinear methods 

Faster than existing linear schemes



Boundary First Flattening (BFF)

Real Time/ 
Scalable

Robust

Full Control Over 
Target Shape



BFF is Robust

Spectral Conformal (SCP) 
[Mullen et al 2008]

Angle Based (ABF) 
[Zayer et al 2008]

Boundary First (BFF) 
[Sawhney et al 2017]

u +

−



MOTIVATION



Conformal Flattening Applications

Cartography Texture Mapping Remeshing Physical Simulation 

Machine Learning Computational Design 3D Fabrication
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Why Conformal? 

Why so much interest in maps that preserve angles?

EFFICIENCY: Often only one sparse factorization!

QUALITY: Often comparable to nonlinear schemes

SLIM + PARDISO 
[Rabinovich et al 2016]

BFF 
[Sawhney & Crane 2017]

15.9s 0.12s (126x faster)
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Why Conformal? 

What about other energies like ARAP, Symmetric Dirichlet, …?

As Rigid As Possible Symmetric Dirichlet Conformal

Distortion is inevitable

Choice of cuts is far more important, with conformal energies much cheaper to minimize
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Problems

NO BOUNDARY CONTROL

Cone singularities mitigate scale distortion

SCALE DISTORTION

User obtains a single, automatic flattening

Conformal maps can scale arbitrarily

Must "take it or leave it,” irrespective of quality

Current linear conformal methods have two major shortcomings:

Optimal Cone Singularities for Conformal Flattening 
[Soliman et al 2018]
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ALGORITHM

  Least Squares Conformal Maps (LSCM)

  Spectral Conformal Parameterization (SCP)

  Angle Based Flattening (ABF)

  Linear Angle Based Flattening (LinABF)*

BOUNDARY CONTROL

“Free” Boundary Methods 

Minimize discrete energy without explicit boundary constraints

*can be modified to provide boundary control
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“Free” Boundary Conditions are Meaningless 

Solution has no meaningful interpretation in the smooth setting!

Enormous space of perfect conformal flattenings

Unique solution must depend on discretization

SMOOTH SETTING

Obtained by flattening and then applying in-plane maps

DISCRETE SETTING

Results change based on mesh or numerical treatment

Special Conformal Parameterization 
[Mullen et al 2008]
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Forcing the Boundary

Harmonic Conformal

First attempt: Pin all boundary points to get desired shape
Least squares yields harmonic map with severe angle distortion:
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(only angles)
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Prescribed Lengths and Angles 

BFF is faster than existing linear methods 

Quality & control comparable to nonlinear schemes

ALGORITHM COMPLEXITY BOUNDARY CONTROL

  Circle Patterns (CP) Nonlinear

  Conformal Equivalence (CETM) Nonlinear

  Curvature Prescription (CPMS)* Linear 

  Boundary First Flattening (BFF) Linear

(only angles)

Boundary First Flattening (BFF)

*can be modified to provide boundary control



SMOOTH THEORY 
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Key Idea

If you know the boundary  
of a conformal map, 
then extension to the  
interior is easy
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Algorithm Outline

Given a surface with either scale or curvature of target boundary curve

1. Solve Yamabe Problem to get complementary data (curvature or scale)

2. Integrate boundary data to get boundary curve 

3. Extend boundary curve to a pair of conjugate harmonic functions



Compatibility of Boundary Data

Not every parameterized curve is  
the boundary of a conformal map!
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Yamabe Problem

Yamabe equation provides explicit relationship between conformal scaling 
and change in curvature:

Can prescribe either curvature or scaling, 
but not both!

Δu = K − e2u K̃

∂u
∂n

= κ − eu κ̃ o n ∂M

o n M
log scale factor

original 
Gaussian curvature

new 
Gaussian curvature

original 
geodesic curvature

new 
geodesic curvature

Cherrier boundary conditions:



Curve Integration
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Curve Integration

Curvature and scaling determine a closed curve up to rigid transformation

T̃

∫ eu T̃ γ̃
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Conjugate Harmonic Functions

J ∇a = ∇b

Δa = 0

Fix a along the boundary and minimize conformal energy w.r.t. b (easy linear problem!)

Δb = 0

CONJUGATE HARMONIC PAIR 

How do we find the solution on the interior?



Algorithm Outline

Given a surface with either scale or curvature of target boundary curve

1. Solve Yamabe Problem to get complementary data (curvature or scale)

2. Integrate boundary data to get boundary curve 

3. Extend boundary curve to a pair of conjugate harmonic functions
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Discretizing the Yamabe Problem

Smooth Yamabe Problem is nonlinear

o n ∂M

Δu = K − e2u K̃

∂u
∂n

= κ − eu κ̃

o n M

⟹
in tegratin g

Integration over dual volumes yields linear relationships
0

cotan 
Laplace matrix

old 
angle defects

new 
angle defects

Neumann 
boundary data

old 
exterior angles

new 
exterior anglesCan prescribe either exterior angles or scaling,  

but not both!

Au = Ω − Ω̃

h = k − k̃
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Poincaré Steklov Operators 

[
AII AIB

AT
IB ABB] [ u I

u B] = [ Ω
−(k − k̃)]

How do we switch between angles and scale factors?
Rewrite integrated Yamabe Problem in block matrix form

DIRICHLET TO NEUMANN MAPNEUMANN TO DIRICHLET MAP

Given

Solve Neumann system above for

Read off

Solve Dirichlet Problem

Given

Angles exactly sum to 2π!

u Bk̃
u

u B k̃ = k + AT
IBu I + ABBu B

AIIu I = Ω − AIBu B for u I
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Curve Integration

Rescale boundary edge lengths using scale factors
Extremely small discretization errors prevent curve from closing

Formulate small least squares problem to adjust only lengths to close curve

u

Exterior angles are exactly preserved 
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Harmonic Extension and Conjugation

Δa = 0 s . t . a |∂M = Re(γ̃)

Δb = 0 s . t . ∂b
∂n

= Ha

hj = 1
2 (ak − ai)

Hilbert Transform

Basic Idea: Fix one coordinate of   , minimize discrete conformal energy  
w.r.t. other coordinate 

γ̃

“as conjugate as possible”

i

kj



Algorithm Outline

Given a surface with either scale or curvature of target boundary curve

1. Solve Yamabe Problem to get complementary data (curvature or scale)

2. Integrate boundary data to get boundary curve 

3. Extend boundary curve to a pair of conjugate harmonic functions
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Automatic Flattening

Results indistinguishable 
from CETM 

Better preservation of symmetry  
compared to LSCM and SCP

User does not have to specify boundary curve: automatically pick flattening  
with minimal scale distortion



Direct Editing 

Spline based curve editor  
to manipulate target angles  
and lengths

Interactively and nonrigidly  
tweak a texture layout  
while remaining conformal
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Harmonically extend both  
coordinates of    to exactly  
interpolate angles

γ̃



Exact Preservation of Sharp Corners

Converges to conformal map  
under refinement since  
is approximately conformal

Harmonically extend both  
coordinates of    to exactly  
interpolate angles

γ̃

γ̃
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Seamless Cone Parameterization

Maps are seamless by construction

Allow interactive editing of cone angles

Results indistinguishable from CETM 

Cone singularities in BFF

Cut through cones, prescribing    along cutu

[
AII AIB

AT
IB ABB] [ u I

u B] = [Ω − Θ
−(k − k̃)]

Solve Yamabe Problem with modified source term

cone  
angles
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Uniformization and Arbitrary Target Shapes

Iterative procedure converges in fewer than 10 iterations

Prescribing exterior angles does not work

To uniquely prescribe target shape, need to control  
change in angle per unit length
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Fast Computation

[
AII AIB

AT
IB ABB] = [LII 0

LBI LBB] [LT
II LT

BI

0 LT
BB]

Single Sparse Cholesky Factorization

⟹ AII = LIILT
II

Backsubtitution
Ax1 = b1
Ax2 = b2
Ax3 = b3

. 

. 

.

“for free”

most expensive step in entire algorithm

Prefactor ~20x

Solve



Convergence



Numerical Robustness

Principled discretization of Poincaré Steklov  
operators guarantees exact integrability of  
exterior angles



Numerical Robustness

Principled discretization of Poincaré Steklov  
operators guarantees exact integrability of  
exterior angles

Integrability of edge lengths enforced only 
along boundary
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BFF provides no guarantees, but maps are usually injective:
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Injectivity (No Flipped Triangles)

BFF provides no guarantees, but maps are usually injective:
SHREC: 6/588 meshes; 1-2 flipped triangles

Myles & Zorin: 5/116 meshes; > 1% flipped triangles



Price of Guaranteed Injectivity 

Editing can be 100’s of times  
slower with injective methods



Price of Guaranteed Injectivity 

Best of both worlds:  
use fast method like BFF  
fallback if necessary 

Editing can be 100’s of times  
slower with injective methods



I Want My BFF To Be Your BFF

geometry.cs.cmu.edu/bff

http://geometry.cs.cmu.edu/bff


Thanks!



BACKUP SLIDES



2D Shape Editing & Uniformization

Apply 2D conformal deformations to initial flattening?
Piecewise linear conformal maps do not compose

Controllable Conformal Maps for Shape Deformation and Interpolation 
[Weber et al 2010]

Composition of methods offers no clear advantage in terms of speed or simplicity



Topology 

For multiply connected domains like annulus, Hilbert transform is not valid

Fill holes with virtual faces to flatten

Cut surface into one or more disks



Harmonic vs Holomorphic Extension

Harmonic and holomophic extension of    converge to the same solution  
under refinement

γ̃

Holomorphic Extension Harmonic Extension
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Harmonic and holomophic extension of    converge to the same solution  
under refinement

γ̃

Holomorphic Extension Harmonic Extension



More Details on Discretizing the Yamabe Problem (1)

o n ∂M

Δu = K − e2u K̃

∂u
∂n

= κ − eu κ̃

o n M

⟹
Δu . dA = K . dA − K̃e2u . dA

∂u
∂n

. ds = κ . ds − κ̃eu . ds

dÃ

ds̃

Multiply Yamabe equation by dA and its boundary conditions by ds 



More Details on Discretizing the Yamabe Problem (2)

o n ∂M

o n MΔu . dA = K . dA − K̃ . dÃ

∂u
∂n

. ds = κ . ds − κ̃ds̃

Integrate over dual volumes



More Details on Discretizing the Yamabe Problem (2)

o n ∂M

o n M

⟹
Au = Ω − Ω̃

h = k − k̃

Δu . dA = K . dA − K̃ . dÃ

∂u
∂n

. ds = κ . ds − κ̃ds̃

Integrate over dual volumes



Modification to CPMS

Employ Yamabe Equation to obtain scale information

Seek edge lengths that describe a flat surface via least squares layout

Add boundary control with Cherrier boundary conditions

Least Squares layout does not respect boundary constraints

Amortized cost of editing a map with BFF is 30x faster compared to CPMS

High Level Idea:

Modification:

Comparison with BFF:

(Layout matrix cannot be prefactored)



Modification to LinABF

Optimize corner angles    to find near flat metric

Find planar vertex positions approximating angles via least squares layout

To prescribe exterior angles   , add linear boundary constraints 

Artifacts due to linearization and least squares layout

Neither least squares matrix nor angle constraint matrix can be prefactored

High Level Idea:

Modification:

Comparison with BFF:

To prescribe boundary lengths    , add boundary condition

κ̃

β

l̃ij

∑ β jk
i = π − κ̃i

∏
ijk

sin β jk
i

sin β ji
j

=
l̃i−1,i

l̃i,i+ 1



I don’t know…

D’oh!


