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• For computation, need finitely many degrees of freedom

• Many ways to discretize—common choice is triangle mesh
• No restrictions on geometry (height function, etc.)
• Any polygon can be triangulated
• Simple formulas (e.g., per triangle)
• Efficient computation (sparse)

Surfaces as Triangle Meshes

vertices edges facesmesh



• Images: assume every pixel has four neighbors (keeps things simple!)

• Likewise, assume meshes are manifold

• edges contained in no more than two faces

• vertex contained in “fan” of triangles

• formally: every vertex star St(v) is a disk

• Keeps formulas simple

• Fewer special cases in code

• Easier to translate between smooth/discrete

Manifold Triangle Mesh

MANIFOLD

NONMANIFOLD



Piecewise Linear Function
• Typical way to encode any function u on a 

triangle mesh

• Store one value ui per vertex i

• “Extend” values linearly over each triangle

• More sophisticated schemes possible, but 
this one will take you surprisingly far…



“Discretized” vs. “Discrete”
• Two high-level approaches to conformal maps on triangle meshes:

DISCRETIZED DISCRETE

properties satisfied only in limit of refinement
(e.g., angle preservation)

quantities preserved exactly no matter how coarse
(e.g., length cross ratios)

traditional perspective of scientific computing / 
finite element analysis

more recent perspective of discrete differential 
geometry (DDG)

often (but not always) leads to easy linear problems can require slightly more difficult computation     
(e.g., convex optimization)

most of the algorithms we’ll consider (e.g., LSCM) only a few algorithms: circle packing, CETM, 
inversive distance



Discrete Metric
• “Discrete” point of view: try to exactly capture smooth relationship

• What is a discrete metric?

• Smooth metric allowed us to measure lengths:

• Discrete metric is simply length assigned to each edge:

• Must also satisfy triangle inequality:

• Can then be extended to Euclidean metric per triangle



Discrete Metric—Visualized

(a.k.a. “cone metric”)



Conformal Equivalence of Triangle Meshes
• “Discrete” point of view: try to exactly capture smooth relationship

• Discrete analogue: two discrete metrics are conformally equivalent if 
there is a function u at vertices such that

• Initially looks like naïve numerical approximation
• Turns out to provide complete discrete theory that (exactly) captures 

much of the behavior found in the smooth setting.

LUO, “Combinatorial Yamabe Flow on Surfaces” (2004)



Preservation of Length Cross Ratios

length
cross ratio

discrete conformal
equivalence

Fact. (Springborn-Schröder-Pinkall)

If two discrete metrics are conformally 
equivalent, then they exhibit the same 
length cross ratios.



Möbius Invariance of CETM
Fact. Length cross ratios are exactly preserved by 
Möbius transformations of vertices (even though 
angles are not!)

Key idea: discrete theory may not always capture “most obvious” properties (like 
angles); should try to think more broadly: “what other characterizations are available?”

Möbius

Möbius

Möbius



“Discretized” Conformal Maps?
• Ok, that’s the “discrete” definition…

• …What about “discretized” notions of conformal maps?

• these are much easier to come by

• basically anything that converges under refinement

• will see more of this as we discuss algorithms
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(Some) Characterizations of Conformal Maps

angle preservation
metric rescaling

preservation of circlesconjugate harmonic
functions

critical points of
Dirichlet energy



(Some) Conformal Geometry Algorithms
CHARACTERIZATION ALGORITHMS

Cauchy-Riemann least square conformal maps (LSCM)

Dirichlet energy discrete conformal parameterization (DCP)
genus zero surface conformal mapping (GZ)

angle preservation angle based flattening (ABF)

circle preservation circle packing
circle patterns (CP)

metric rescaling conformal prescription with metric scaling (CPMS)
conformal equivalence of triangle meshes (CETM)

conjugate harmonic boundary first flattening (BFF)



Quasiconformal Distortion
• Only conformal map from triangle to triangle is similarity (rigid + scale)
• Quasiconformal distortion (Q) is ratio of singular values in each triangle
• Measures “how conformal”(want Q = 1 everywhere)



Cauchy-Riemann



From Cauchy-Riemann to Algorithms
• Natural starting point: solve Cauchy-Riemann equation

• Already know that there will be no exact solutions for a triangle mesh

• Instead, find solution that minimizes residual

• Leads to least squares conformal map (LSCM)

• Very popular; in Maya, Blender, libigl, …

• Fully automatic; no control over target shape

CAUCHY-RIEMANN



Least Square Conformal Energy
• Write map as pair of real coordinates: f = a+bi

• Express Cauchy-Riemann as condition on a, b:

• Sum failure of this relationship to hold over all triangles:

• Resulting energy is convex and quadratic (i.e., “easy”!)



Gradient of a Piecewise Linear Function
• Many geometry processing algorithms need gradient of a function 

(i.e., direction of “steepest increase”)

• Easy formula on a triangle mesh:

• Since function is linear, gradient is 
constant across each triangle.



• Coordinate functions (a,b) that minimize ELSCM give the “best” map

• Problem: constant functions have zero energy!

• Solution*: “pin” two vertices to fixed locations
• one vertex determines translation in plane
• the other determines rotation & scale

• *Will see later that this solution is still not quite right…

• To minimize, set gradient to zero and solve for (a,b)

•  Numerical problem is sparse linear system (very easy to solve)

Least Square Conformal Maps (LSCM)



• Coordinate functions (a,b) that minimize ELSCM give the “best” map

• Can encode energy as a quadratic form:

Least Square Conformal Maps (LSCM)

LÉVY, PETITJEAN, RAY, MAILLOT, “Least Squares Conformal Maps for Automatic Texture Atlas Generation” (2011)

• Minimize by setting gradient equal to zero:

• Just need to solve a linear system
• Problem: has trivial solution x = 0!



LSCM—Nontrivial Solution via “Pinning"
• In fact, any constant map will have zero energy, since gradient is zero:

• Idea: “pin” any two vertices to arbitrary locations

• one vertex determines global translation

• another vertex determines scale/rotation

• Linear system now has nonzero RHS:

(“hat” indicates removed rows/columns, corresponding to pinned vertices)



Problems with Pinning
• To get a unique solution we “pinned down” two vertices

• Two problems with this approach:
1. map can be unpredictable, distorted depending on choice of vertices
2. we should have way more choice about what target shape looks like!

Will address the first issue first… [DEMO]



• “Pinning” was used to prevent degenerate (constant) solution

• Alternatively, can ask for smallest energy among all unit-norm solutions

• Compute principal eigenvector of energy matrix

• Q: Why does this work better?

• identical from perspective of linear algebra

• (much) better accuracy in floating-point

Spectral Conformal Parameterization (SCP)

MULLEN, TONG, ALLIEZ, DESBRUN, “Spectral Conformal Parameterization” (2008)

LSCM

SCP[DEMO]



Conformal Maps—Boundary Conditions?
• Something is still wrong!

• In the discrete setting, specified just two points on 
boundary (just rigid motion & scaling in the plane)

• In the smooth setting, there are far more ways to 
conformally flatten (Riemann Mapping Theorem)

• What happened here?

• Among piecewise linear maps, “most conformal” 
solution is unique (up to rigid motion).

• But what if we want to control target shape?



Prescribing the Entire Boundary Doesn’t Work
• First attempt: pin all boundary points to desired target shape

• Problem: In general there is no conformal map compatible 
with a given map along the boundary

• Least-squares yields harmonic map with severe angle distortion:

HARMONIC CONFORMAL



…So what if we want to control target shape?

Will revisit this question later—when 
we have more tools at our disposal!



Dirichlet Energy



Dirichlet Energy
• Different characterization of conformal maps: 

critical points of so-called Dirichlet energy

• Physical analogy: elastic membrane that 
wants to have zero area

• When this energy is minimized, we get a 
conformal map…

• …under very special assumptions on the 
domain / boundary conditions!

• Alternative route to LSCM (a.k.a DCP) & other algorithms



Smooth Dirichlet Energy
• Consider any map f  between manifolds M and N

• Dirichlet energy is given by:

• Any critical point (e.g., local minimum) is called a harmonic map.

• Perhaps most common case in geometry processing:

• M is a surface

• N is just the real line



Real Harmonic Functions
• Intuitively, a harmonic function is the “smoothest” function that 

interpolates given values on the boundary; looks “saddle-like”

• A function is harmonic if applying the Laplacian yields zero

• E.g., in 2D:



• Harmonic functions are easy to compute on a triangle mesh.

• Roughly speaking: every value is (weighted) average of its neighbors.

• More precisely, at every vertex i we want

• Typical choice for w are cotan weights

• Boundary values fi are fixed

• Sparse linear system; many (fast!) ways to solve

Discrete Harmonic Functions



Discrete Harmonic Map—Neanderthal method
• How can we actually compute a harmonic map?

• Simple but stupid idea: repeatedly average with neighbors (Jacobi)

• Much better idea: express as linear system and solve with a fast solver.

input iteration 1 iteration 736
(converged) [DEMO]



Meshes & Matrices
• Common task in geometry processing: solve system of linear equations 

involving variables on vertices (or edges, or faces, …)
• Basic idea: give each mesh element a unique index; build a matrix 

encoding system of equations.
• E.g., find values u for black vertices that are average of neighbors:

(Now solve with a fast linear solver.)

0

3

4 7

5 6

1 2



Dirichlet Energy and Harmonic Maps
• Fact*: the residual of Cauchy-Riemann equations can be expressed as 

difference of Dirichlet energy and (signed) target area:
*For a derivation, see Crane et al, “Digital Geometry 
Processing with Discrete Exterior Calculus”, Section 7.4

• Minimizing this energy turns out to be numerically equivalent to LSCM

DESBRUN, MEYER, ALLIEZ, “Intrinsic Parameterizations of Surface Meshes ” (2002)



Harmonic Map with Fixed Area
• Special case: if target area is fixed, one need only consider ED

• E.g., world’s simplest algorithm for uniformization:
• Iteratively average with neighbors
• Project boundary vertices onto circle

• (Initialize by doing the same thing but with boundary fixed to circle)

More sophisticated treatment:  HUTCHINSON, “Computing Conformal Maps and Minimal Surfaces” (1991)

domain harmonic conformal [DEMO]



Aside: When is a Harmonic Map Conformal?
• When else can you play this “trick”?  (I.e., get a conformal map by just 

computing a harmonic map)

• Works for the sphere: just keep averaging w/neighbors, projecting

• Caveat: may get stuck in a local minimum that is only holomorphic

• As before, there are much more intelligent algorithms for the sphere!

• Full characterization given by Eells & Wood (1975):



Angle Preservation



Angle Preservation
• As discussed earlier, exact angle preservation 

is too rigid (most meshes can’t be flattened)

• But, can still continue down this path:

• Find a collection of angles that describe a 
flat mesh

• Approximate original angles “as well as 
possible”

• Still provides good approximation of 
conformal map as we refine (“discretized”)



Compatibility of Angles
• Encode flat mesh by interior angles rather than positions

• Must satisfy three conditions:

1. Angles sum to ! in each triangle

2. Sum to 2! around interior vertices

3. Compatible lengths around vertices:

Note: final condition is nonlinear!



• Given: angles 𝜃0 for original mesh (usually from embedding in 3-space)
• Find: closest angles 𝜃 that describe a flat mesh
• Compute by solving nonconvex optimization problem:

Angle-Based Flattening

SHEFFER, DE STURLER, “Parameterization of Faceted Surfaces for Meshing using Angle Based Flattening” (2001)



Linear Angle Based Flattening
• Original ABF problem is large, difficult to solve

• Approximate by a linear problem:

• solve for change in angles that makes mesh flat

• linearize nonlinear condition via log, Taylor series

• Results are nearly indistinguishable from original ABF

ZAYER, LÉVY, SEIDEL, “Linear Angle Based Parameterization” (2007)



Angle Layout Problem (Local Strategy)
• Given: Angles that describe a flat triangulation
• Find: Vertex positions that exhibit these angles
• Local strategy: start at any triangle and “grow out”

• first triangle determined up to scale by three angles
• Problem: accumulation of numerical error can cause cracks



Angle Layout Problem (Global Strategy)
• Global strategy: solve large linear system for vertex positions that best 

match the given angles (see ABF++)
• Observation: linear system is equivalent to computing edge lengths 

from angles, running LSCM on new edge lengths.
• Interpretation: ABF++ intrinsically “deforms” metric to something 

nearly flat; still needs LSCM to get final (extrinsic) map to the plane
(Will see this strategy again later…)

LOCAL GLOBAL



Circle Preservation



Circle Preservation
• Smooth: conformal maps preserve infinitesimal circles (why?)

• Discrete: try to preserve circles associated with mesh elements



Circle Packing
• Koebe: every planar graph can be realized as collection of circles

• one circle per vertex; two circles are tangent if they share an edge
• Thurston: cover planar region by regular tiling of circles; now make 

boundary circles tangent to unit circle.  This “circle packing” 
approximates a smooth conformal map (Rodin-Sullivan).



Circle Packing—Structure Preservation
• Theories based on circles naturally preserve certain properties of smooth 

conformal maps

• E.g., since Möbius transformations take circles to circles, circle packing 
preserves dimension of solutions to Riemann mapping

Möbius



Circle Packing—Algorithm
• Nonlinear problem, but simple iterative algorithm
• For each vertex i:

• Let 𝜃 be total angle currently covered by k neighbors
• Let r be radius such that k neighbors of radius r also cover 𝜃
• Set new radius of i such that k neighbors of radius r cover 2!

• Repeat!

COLLINS, STEPHENSON, “A Circle Packing Algorithm” (2003)



Circle Packing—Gallery



Circle Packings Ignore Geometry
• Circle packing is purely combinatorial (neighboring circles are tangent)

• For geometry processing, need definition that incorporates geometry!

(All three meshes yield same circle packing.)



Circle Patterns
• Different idea: circle patterns

• associate each face with its circumcircle (circle through three vertices)

• consider “conformal” if circle intersection angles are preserved

• Nicely incorporates geometry

• Convex optimization

• Still rigid! (not obvious)

KHAREVYCH, SPRINGBORN, SCHRÖDER, “Discrete Conformal Mappings via Circle Patterns” (2006)



Cone Singularities—Motivation
• Even in the best case, conformal flattening 

can exhibit significant area distortion:



Cone Singularities
• Idea: (Kharevych-Springborn-Schröder)

• first map to a surface that is flat except at a few “cone points”
• then cut through cone points so that surface is flat everywhere
• can now lay out in the plane with no additional stretching

• Result: lower overall area distortion (concentrated at cones)



Rigidity of Circle Patterns
Experiment: deform mesh, then find (numerically) nearby mesh with 
same circle intersection angles as original mesh.

original deformed optimized
original deformed optimized

(CONVEX) (NONCONVEX)
…More flexible than angle preservation, less flexible than smooth conformal maps…



Cone Singularities in Auxetic Design
• Useful for manufacturing from materials with limited ability to stretch:

(laser cut copper)

KONAKOVIC, CRANE, DENG, BOUAZIZ, PIKER, PAULY, “… Computational Design … with Auxetic Materials” (2016)



Metric Scaling



Discrete Conformal Flattening
• Recall that two metrics are conformally equivalent if…

SMOOTH DISCRETE

How do we compute a flattening that is 
conformally equivalent in this sense?



(Discrete) Gaussian Curvature
• Useful to take a moment to say what we mean by “flat”!

• Gaussian curvature K measures how hard it is to flatten a piece of material

• Discrete Gaussian curvature is just deviation from planar angle sum 2!:

SMOOTH (K) DISCRETE



Yamabe Problem
• In the smooth setting, the Yamabe equation gives an explicit relationship 

between a conformal scaling of the metric, and the change in Gaussian 
curvature:

Laplacian

log scale factor

original
curvature

new
curvature

• Nonlinear due to e2u term on right-hand side; hard to solve directly.



Discrete Yamabe Flow
• Instead, flow toward scale factors that give desired curvature

• Discrete case: scale factors determine new lengths, which 
determine new angles, which determine angle defect

• Basic idea: differentiate curvature with respect to u

• End up with so-called (discrete) Yamabe flow:

• (Here for any target curvature  Ω*, not just flat)

LUO, “Combinatorial Yamabe Flow on Surfaces” (2004)



CETM Algorithm
• Flow can also be interpreted as a 

gradient of convex energy

• Hessian of this energy is infamous 
“cotan Laplacian”

• Makes the flow more practical for 
geometry processing algorithms

• Sophisticated control over boundary 
shape, cone singularities, etc.

SPRINGBORN, SCHRÖDER, PINKALL, “Conformal Equivalence of Triangle Meshes” (2008)



Curvature Prescription & Metric Scaling (CPMS)
• Alternatively: linearize Yamabe equation and solve in one step:

BEN-CHEN, GOTSMAN, BUNIN, “Conformal Flattening by Curvature Prescription and Metric Scaling” (2008)

assume log factor is 
fixed, or zero

• Reasonable assumption when target curvature describes cone metric.



Cherrier Formula
• Yamabe equation was actually incomplete—

what happens at the boundary?

• Answer given by Cherrier equation

• Implies we can prescribe either the 
curvature  𝜅 or the scale factor u along the 
boundary—but not both!

CHERRIER, “Problèms de Neumann non linéaires sur les variétés Riemanniennes” (1984)



Boundary First Flattening (BFF)
• Brand new algorithm (2017) based on 

Cherrier plus some other tricks…

• Complete control over boundary shape

• Faster than LSCM; much faster than 
CETM (but with comparable quality)

• Lots of bonus features (optimal area 
distortion, cone singularities, …)

SAWHNEY, CRANE, “Boundary First Flattening” (2017)

https://arxiv.org/abs/1704.06873
[DEMO]



Boundary First Flattening—Rough Outline

• Given a surface, specify either length or curvature of target curve

• Solve Cherrier problem to get complementary data (curvature or length)

• Integrate boundary data to get boundary curve

• Extend boundary curve to a pair of conjugate harmonic functions



From Cauchy-Riemann to Conjugate Harmonic
• Starting with Cauchy-Riemann:

CONJUGATE HARMONIC PAIR

(How do you conjugate a piecewise linear function?  See BFF paper!)



Summary



So much more!
• Many ideas/algorithms we didn’t cover…

• in plane: Schwarz-Christoffel, Cauchy-Green coordinates, …

• inversive distance [Guo et al 2009]

• primal-dual length ratio / discrete Riemann surfaces [Mercat 2001]

• facewise Möbius transformations [Vaxman et al 2015]

• in the plane: Schwarz-Christoffel, Cauchy-Green coordinates, …

• Also, didn’t get to see many of the (beautiful!) things people are doing 
with conformal maps…



Thanks!
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