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Solving Differential Equations

* People model all sorts of systems using

differential equations

e Solving these equations is usually hard

e Sometimes you can do it by hand

https:/ / rarehistoricalphotos.com / nasa-scientists-board-calculations-1961/



Solving Differential Equations

e Many differential equations don’t have solutions that you can write
down with elementary functions

e Even surprisingly-simple differential equations don’t have analytical
solutions



Why Do We Need Numerical Solutions?

e Many systems are too complicated to solve or approximate by hand

Energy: 0.0099996291

Journal of Statistical Mechanics, p. L09001-L09010 (2009) Tetsuro Konishi and Tatsuo Yanagita, https://www.youtube.com/watch?v=cHdZMXxnQIM



https://www.youtube.com/watch?v=cHdZMXxnQIM
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Example: The Pendulum

e A pendulum’s behavior is governed by Newton’s
second law F' = ma

e |n this case, Newton’s law tells us that
0 = —<sin0

e If we introduce the angular velocity variable w := 0

we can rewrite the equation as two first-order

differential equations .
0 = w

W = —%Siﬂ@



Example: The Pendulum

® There are 3 common techniques for simulating this system

Ot 1 = 0¢ + howy Orr1 = 01 + hwi g
Wi+1 = wi — % sin by Wit1 = Wy — 7 sin B4
Explicit Euler Implicit Euler

Symplectic Euler



Example: The Pendulum

State Space Phase Space Energy State Space Phase Space Energy

Explicit Euler Implicit Euler
State Space Phase Space ~ Energy

Symplectic Euler



What Makes Symplectic Euler Good?

e There is a lot of deep geometric structure underlying classical mechanics

e Symplectic Euler faithfully preserves some of this geometric structure

¢ ¢.g. Liouville’s Theorem - time evolution of physical systems preserves
area in phase space
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Physics 1s Optimization

e Newton gave us an equation that describes
how things move in response to forces.

e Lagrange reformulated mechanics as an
optimization problem.

e Particles follow the optimal path
according to some objective function
(the action)

e Useful for proving theorems



Enerqy and the Lagrangian

e Recall that the kinetic enerqy K measures how much something is
moving around. Usually K (g, ¢) = %kc]z

e The potential enerqy V' measures how much energy is stored for future
use. For a spring, V' (q, ¢) = %qu

e Next, we define a function £ called the Lagrangian. Usually

L(q,q) = K(q,4) —V(q,4q)

e Note that all of these functions take a position and velocity as arguments.
Equivalently, we can say that at each position, £ takes in a vector and
returns a scalar. So we can think of [/ as a 1-form



Action

e We define the action of a trajectory ¢(%) to be the integral of L along ¢(t)
t1
Slal == | £ty i) dt
to

e The principle of “least’ action says that the trajectories taken by physical
systems are stationary points of the action

e These are often (but not always) minima



The Lagrangian Measures “Liveliness”

e The Lagrangian looks strange at first glance. Why is it meaningful to
subtract energies like this?

e Kinetic energy measures how much is going on in our system at the
moment.

e Potential energy measures how much could happen in the future.

e Minimizing the action means that the system never wants to do much at
the moment - it prefers to save its energy for later

e “Nature is as lazy as possible” -John Baez



Example - Projectiles

e Consider the trajectory of a thrown object

e At the top of the arc, the object has high potential
energy and low kinetic energy - it wants to spend

time here

o At the bottom of the arc, the object has low
potential energy and high kinetic energy -
it does not want to spend much time here



T'he Euler-Lagrange Equation

e To find stationary points of the action, we essentially set its derivative
equal to 0

e The derivative of the action at a path should tell us how the action
changes as we vary the path a little bit

e We restrict our attention to nearby paths which have the same endpoints



T'he Euler-Lagrange Equation

e Setting the variation to 0 yields the Euler-Lagrange equation




T'he Euler-Lagrange Equation

t1
55 — 5/ L(q,q) dt
to
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Example - Newton’s Law

e To get a feel for the Euler-Lagrange equation, let’s look at an example

e Consider the Lagrangian of a particle with potential energy V(g)

1

L(q,q) = §qu — V(q)

e We can differentiate the Lagrangian to find

oL 9V doL

0q Og dt O

mq



Example - Newton’s Second Law

e Now, the Euler-Lagrange equation tells us

¢ This is Newton’s second law!



More Specific Example: The Pendulum
v = 10507

e The potential energy is givenby V' = gh = —gf cos 6

e The kinetic energy of a pendulum is given by K = %

e Thus, our Lagrangian is

1
L(0,w) = §€2w2 + gl cos 0

e This will be useful later




Momentum

e Hamilton noticed that it's very convenient to define momentum
associated to the Lagrangian. We set

0L
P -= i

e Note thatif £ = %qu — V(q), then p = ™ as usual

e Using momentum, the Euler-Lagrange equations can be written

pz@q
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Conservation Laws

e Many physical systems obey conservation laws

- - by -~
- : . \ »
\ -
u \ =
‘. o..‘t » . ‘
/

https: / / www.youtube.com /watch?v=sHnDzGWcqlQ



https://www.youtube.com/watch?v=sHnDzGWcqlQ

Noether’s Theorem

e Symmetries give rise to conserved quantities

* Rotational symmetry <= angular momentum

e Translational symmetry <—- momentum

 Temporal symmetry <= energy

e There’s a slick proof using Lagrangian mechanics

https: / /en.wikipedia.org /wiki / File:Noether.jpg



https://en.wikipedia.org/wiki/File:Noether.jpg

Noether’s Theorem

e Suppose W is a vector field, and flowing along W does not change our
Lagrangian (e.g. W = )

e What does this do to the action? Well, nothing, since it doesn’t change
the Lagrangian

e On the other hand, it does induce a variation in action. Recall that

hraL d oL oL h
55:/ ( .)-Wdtl W
i, \0q dt 0q 0q £

e Since we know that the action does not change, the left hand side is 0.

And the Euler-Lagrange equations tell us that the first term is 0. So the

quantity 9L W does not change over time!

0q



Lagrange Multipliers

e [ agrange multipliers are a neat way of turning constrained optimization
problems into unconstrained optimization problems

e For example,

max Iy ~> IllaX LY —+- )\(1 — $2 — y2)
S.t. 12+ y2 — 1



Lagrange Multipliers

e Lagrangian mechanics casts physics as an optimization problem

e [t turns out the we can use Lagrange multipliers to enforce constraints on
our physical system!

e ¢.¢. a pendulum is a free particle which is constrained to be a distance /¢
from the origin
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Discrete Mechanics

e In classical mechanics, we compute trajectories q (t)
e In discrete mechanics, we compute discrete trajectories qo, 41, - - -,k
e A discrete Lagrangian is a function £p(qk, qr+1)

e The discrete action of a discrete trajectory is

K—1
q1 Splq] := Z Lp(Git1,9) 0
i=0

4o 42 ds3 04 6

Note that the discrete Lagrangian is an integrated quantity. It’s basically a discrete 1-form



Stationary Action for Discrete Mechanics

e Again, we want to find paths which are stationary points of the action.

e Now, everything is finite-dimensional, so we can just take regular
derivatives

e At a stationary point, we must have %Sql? = () for each @;. Thus,

a[’D (Qi—l 9 qz) |
0q; I 0q;

* People often write

DsLp(qi—1,9;) + D1Lp(qi,qiv1) =0



Stationary Action for Discrete Mechanics

e We call this equation the discrete Euler-Lagrange equation

DsLp(qi—1,9;) + D1Lp(qi,qiv1) =0

e If we know ¢;—1 and q;, we can use the discrete Euler-Lagrange
equation to solve for q; 1

e To represent our state, we store pairs of positions (g;—1, ¢i)



Discrete Momentum

e [t's often inconvenient to store our state as a pair of positions
e For convenience, we can define the discrete momentum
pi = D2Lp(qi-1, q:)

e Now we can store pairs (¢;, p;) and our implicit update rule is given by

DiLp(Gi,Giv1) = —pi
DzﬁD(qz‘, q@-+1) — Pi+1



Example: The Pendulum

e We can define the discrete Lagrangian of a pendulum to be

1 i1 — G\
ED(QiaQi+1) = h (252 (q Hh ! ) +9€COSC]¢)

Integrated quantity Kinetic energy Potential energy

e Then the discrete Euler-Lagrange equations give us symplectic Euler!






Physical Systems Conserve Area in Phase Space

e The motion of a pendulum preserves area in p




The Lagrangian 1-form

e Recall that in our derivation of the Euler-Lagrange equation, we saw that
the change in action due to a variation 0¢ is given by

oL d oL or |"
5S — 5q dt 5
S /t (aq dté’cj) 100 T 550

ty ‘
0S = 8?5(] =: 6(dq)

to

to

e We call O the Lagrangian 1-form. In coordinates, 0 = p dq



The Lagrangian Symplectic Form

e The change in action due to a variation is essentially a directional
derivative. We can think of it like applying a 1-form to a vector

“5S = dS(6q)"

e So if we take the exterior derivative of 0.9, we should get 0. Recall that

t1
05 = 6(dq)
to
t1
e Therefore, d6 is conserved, i.e. 6 — ()
to
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Higher Dimensions

e For higher-dimensional systems, = Z ; Di dg;

e The symplectic form is dfl = d (Z ; p@-dq7;> = ZZ dp; N dg;
 Preservation of the symplectic form implies preservation of volume

e For a 2n-dimensional system, the basis 1-forms are

{dq17 K '7dQTL7dp17 K 7dpn}

e The n-fold wedge product of the symplectic form is the volume form!






So What's So Good About Symplectic Euler?

e We can view any simulation method as a function on phase space
F: (qk, k) = (Qr+1: Pk+1)

e Now, we can ask if this function preserves area

e To check this, we can just compute the Jacobian

e In the case of symplectic Euler, we have

F : (qk,pr) — (qr + hpr — h? sinqi, p, + hsingy)



So What's So Good About Symplectic Euler?

F': (g, pr) = (g + hpr — h” sin gy, pr, — hsin gz)
e Taking the Jacobian, we find that

(1 —h%cosqi —hcosqy
ir = (1" )

e Observe that det(dF ) — ]

e So symplectic Euler preserves area in phase space (i.e. symplectic Euler is
symplectic)



What About Explicit Euler?

b (qk,pk) — (C]k + hpr, Pk — hSian)

(1 —hcosgx
o () b

det(dF) = 1 + h® cos g

e For small angles, this is greater than 1.

e For small 1, this is approximately 1



What About Implicit Euler?

Grr1 = G+ P
Pry1 = Py — hsing;

F~' i (quaisPrsy) = (qk+1 — NPiy1> Prgr + AsIn Qk+1)

el (1 hcosqk+1)
h 1

1

detdF = ————
| + h2 COS (11



Why is Symplectic Euler Symplectic?

e Simulation methods based on discrete Lagrangian mechanics must be
symplectic.

e The proof is (almost) exactly the same as the continuous proof!

e Recall that p; = DoLp (g1, q;)

e And for trajectories satisfying the discrete Euler-Lagrange equations,

DsLp(qi—1,9;) = —D1Lp(qi,qit1)



Why is Symplectic Euler Symplectic?

dSp = Z ' Lp(gi—1,9)

1=1

_ Z D1Lp(qi-1,9:)dqi—1 + D2Lp(qi—1, q:)dg;
i=1

n—1
= D1Lp(q0,q1)dqo + Z (D2Lp(qi—1,9;) + D2LD(qi, qix1)) dgi + D2 LD (Gn—1,9n)dqn
i—1

— DlﬁD (q07 Q1)dq0 + DQLD (Qn—la qn)dqn
= —podqo + pPrndqy

0 =d(dSp) = —dpg N dqgo + dp,, N dg,
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Discrete Noether’s Theorem

e Using the same tricks, we can prove a discrete version of Noether’s
theorem

e This proves, e.g. that the discrete momentum P; is conserved for systems
with translation-invariant discrete Lagrangians



Lagrange Multipliers

e We can also use Lagr ange multiplier S Energy: 0.0099996291
to enforce constraints on our
simulation

e This make it a lot easier to simulate
things like triple pendular






