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Numerical Integrators



• People model all sorts of systems using 
differential equations

• Solving these equations is usually hard

• Sometimes you can do it by hand

Solving Differential Equations

https://rarehistoricalphotos.com/nasa-scientists-board-calculations-1961/



• Many differential equations don’t have solutions that you can write 
down with elementary functions

• Even surprisingly-simple differential equations don’t have analytical 
solutions

Solving Differential Equations



• Many systems are too complicated to solve or approximate by hand

Why Do We Need Numerical Solutions?

Journal of Statistical Mechanics, p. L09001-L09010 (2009) Tetsuro Konishi and Tatsuo Yanagita, https://www.youtube.com/watch?v=cHdZMXxnQIM 

https://www.youtube.com/watch?v=cHdZMXxnQIM


Why do we need geometry in our simulations?



• A pendulum’s behavior is governed by Newton’s 
second law

• In this case, Newton’s law tells us that

• If we introduce the angular velocity variable                 
we can rewrite the equation as two first-order 
differential equations

F = ma
<latexit sha1_base64="+yDqYjAuMHpnWZkCWpGetZ9mbdo=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQS9CURCPFewHtEvJptk2NMmGJCuUpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMixRnxvr+t1dYWV1b3yhulra2d3b3yvsHTZOkmtAGSXii2xE2lDNJG5ZZTttKUywiTlvR6Hbqt56oNiyRj3asaCjwQLKYEWyd1LpD10gg3CtX/Ko/A1omQU4qkKPeK391+wlJBZWWcGxMJ/CVDTOsLSOcTkrd1FCFyQgPaMdRiQU1YTY7d4JOnNJHcaJdSYtm6u+JDAtjxiJynQLboVn0puJ/Xie18VWYMalSSyWZL4pTjmyCpr+jPtOUWD52BBPN3K2IDLHGxLqESi6EYPHlZdI8qwbn1eDholK7yeMowhEcwykEcAk1uIc6NIDACJ7hFd485b14797HvLXg5TOH8Afe5w+jzo50</latexit>

Example: The Pendulum

θ ℓ

Fg

θ̈ = − g
ℓ sin θ

ω := θ̇

θ̇ = ω

ω̇ = − g
ℓ sin θ



• There are 3 common techniques for simulating this system

Example: The Pendulum

θt+1 = θt + hωt

ωt+1 = ωt − g
ℓ sin θt

θt+1 = θt + hωt+1

ωt+1 = ωt − g
ℓ sin θt+1

θt+1 = θt + hωt+1

ωt+1 = ωt − g
ℓ sin θt

Explicit Euler Implicit Euler

Symplectic Euler



Example: The Pendulum

Explicit Euler Implicit Euler

Symplectic Euler

State Space Phase Space Energy State Space Phase Space Energy

State Space Phase Space Energy



• There is a lot of deep geometric structure underlying classical mechanics

• Symplectic Euler faithfully preserves some of this geometric structure

• e.g. Liouville’s Theorem - time evolution of physical systems preserves 
area in phase space

What Makes Symplectic Euler Good?



Lagrangian Mechanics



Physics is Optimization
• Newton gave us an equation that describes 

how things move in response to forces.

• Lagrange reformulated mechanics as an 
optimization problem.

• Particles follow the optimal path 
according to some objective function 
(the action)

• Useful for proving theorems



Energy and the Lagrangian
• Recall that the kinetic energy      measures how much something is 

moving around. Usually

• The potential energy      measures how much energy is stored for future 
use. For a spring,

• Next, we define a function       called the Lagrangian. Usually

• Note that all of these functions take a position and velocity as arguments. 
Equivalently, we can say that at each position,      takes in a vector and 
returns a scalar. So we can think of       as a 1-form

K

V

L
L(q, q̇) = K(q, q̇)− V (q, q̇)

V (q, q̇) = 1
2kq

2

K(q, q̇) = 1
2kq̇

2

L
L



Action
• We define the action of a trajectory          to be the integral of      along

• The principle of ‘least’ action says that the trajectories taken by physical 
systems are stationary points of the action

• These are often (but not always) minima

L

S[q] :=
∫ t1

t0

L(q(t), q̇(t)) dt

q(t) q(t)



The Lagrangian Measures “Liveliness”
• The Lagrangian looks strange at first glance. Why is it meaningful to 

subtract energies like this?

• Kinetic energy measures how much is going on in our system at the 
moment.

• Potential energy measures how much could happen in the future.

• Minimizing the action means that the system never wants to do much at 
the moment - it prefers to save its energy for later

• “Nature is as lazy as possible” -John Baez



Example - Projectiles
• Consider the trajectory of a thrown object

• At the top of the arc, the object has high potential 
energy and low kinetic energy - it wants to spend 
time here

• At the bottom of the arc, the object has low 
potential energy and high kinetic energy - 
it does not want to spend much time here



The Euler-Lagrange Equation
• To find stationary points of the action, we essentially set its derivative 

equal to 0

• The derivative of the action at a path should tell us how the action 
changes as we vary the path a little bit

• We restrict our attention to nearby paths which have the same endpoints

δq



The Euler-Lagrange Equation
• Setting the variation to 0 yields the Euler-Lagrange equation

∂L
∂q

− d

dt

∂L
∂q̇

= 0

δq



The Euler-Lagrange Equation

δS = δ

∫ t1

t0

L(q, q̇) dt

=

∫ t1

t0

∂L

∂q
δq +

∂L

∂q̇
δq̇ dt

=

∫ t1

t0

∂L

∂q
δq +

∂L

∂q̇

d

dt
δq dt

=

∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt +

∂L

∂q̇
δq

∣∣∣∣
t1

t0

=

∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt



Example - Newton’s Law
• To get a feel for the Euler-Lagrange equation, let’s look at an example

• Consider the Lagrangian of a particle with potential energy V(q)

• We can differentiate the Lagrangian to find

L(q, q̇) = 1

2
mq̇2 − V (q)

∂L
∂q

= −∂V

∂q

d

dt

∂L
∂q̇

= mq̈



Example - Newton’s Second Law
• Now, the Euler-Lagrange equation tells us

−∂V

∂q
= mq̈

• This is Newton’s second law!

F = ma



More Specific Example: The Pendulum
• The kinetic energy of a pendulum is given by

• The potential energy is given by

• Thus, our Lagrangian is

• This will be useful later

K = 1
2v

2 = 1
2ℓ

2ω2

θ ℓ
-h

V = gh = −gℓ cos θ

L(θ,ω) = 1

2
ℓ2ω2 + gℓ cos θ



Momentum
• Hamilton noticed that it’s very convenient to define momentum 

associated to the Lagrangian. We set

• Note that if                                          , then                       as usual

• Using momentum, the Euler-Lagrange equations can be written

p :=
∂L
∂q̇

L = 1
2mq̇2 − V (q) p = mq̇



Conservation Laws & Constraints



• Many physical systems obey conservation laws

Conservation Laws

https://www.youtube.com/watch?v=sHnDzGWcqlQ 

https://www.youtube.com/watch?v=sHnDzGWcqlQ


Noether’s Theorem
• Symmetries give rise to conserved quantities

• Rotational symmetry                  angular momentum

• Translational symmetry             momentum

• Temporal symmetry                   energy

• There’s a slick proof using Lagrangian mechanics

⇐⇒

⇐⇒
⇐⇒

https://en.wikipedia.org/wiki/File:Noether.jpg 

https://en.wikipedia.org/wiki/File:Noether.jpg


Noether’s Theorem
• Suppose W is a vector field, and flowing along W does not change our 

Lagrangian (e.g.                 )

• What does this do to the action? Well, nothing, since it doesn’t change 
the Lagrangian

• On the other hand, it does induce a variation in action. Recall that

• Since we know that the action does not change, the left hand side is 0. 
And the Euler-Lagrange equations tell us that the first term is 0. So the 
quantity                does not change over time!

W = ∂
∂x

δS =

∫ t1

t0

(
∂L
∂q

− d

dt

∂L
∂q̇

)
·W dt+

∂L
∂q̇

·W
∣∣∣∣
t1

t0

∂L
∂q̇

·W



• Lagrange multipliers are a neat way of turning constrained optimization 
problems into unconstrained optimization problems

• For example, 

Lagrange Multipliers

maxxy

s.t. x2 + y2 = 1

maxxy + λ(1− x2 − y2)↝



• Lagrangian mechanics casts physics as an optimization problem

• It turns out the we can use Lagrange multipliers to enforce constraints on 
our physical system!

• e.g. a pendulum is a free particle which is constrained to be a distance      
from the origin

Lagrange Multipliers

ℓ



Discrete Lagrangian Mechanics



Discrete Mechanics
• In classical mechanics, we compute trajectories

• In discrete mechanics, we compute discrete trajectories

• A discrete Lagrangian is a function

• The discrete action of a discrete trajectory is

q(t)

q0, q1, . . . , qK

LD(qk, qk+1)

q0

q1

q2 q3 q4

q5

q6

SD[q] :=
K−1∑

i=0

LD(qi+1, qi)

Note that the discrete Lagrangian is an integrated quantity. It’s basically a discrete 1-form



Stationary Action for Discrete Mechanics
• Again, we want to find paths which are stationary points of the action.

• Now, everything is finite-dimensional, so we can just take regular 
derivatives

• At a stationary point, we must have                       for each      . Thus, 

• People often write

∂SD
∂qi

= 0 qi

∂LD(qi−1, qi)

∂qi
+

∂LD(qi, qi+1)

∂qi
= 0

D2LD(qi−1, qi) + D1LD(qi, qi+1) = 0



Stationary Action for Discrete Mechanics
• We call this equation the discrete Euler-Lagrange equation

• If we know          and     , we can use the discrete Euler-Lagrange 
equation to solve for

• To represent our state, we store pairs of positions   

D2LD(qi−1, qi) + D1LD(qi, qi+1) = 0

qi−1 qi
qi+1

(qi−1, qi)



Discrete Momentum
• It’s often inconvenient to store our state as a pair of positions

• For convenience, we can define the discrete momentum

• Now we can store pairs                and our implicit update rule is given by 

pi = D2LD(qi−1, qi)

(qi, pi)

D1LD(qi, qi+1) = −pi

D2LD(qi, qi+1) = pi+1



• We can define the discrete Lagrangian of a pendulum to be

• Then the discrete Euler-Lagrange equations give us symplectic Euler!

Kinetic energy Potential energyIntegrated quantity

Example: The Pendulum

LD(qi, qi+1) = h

(
1

2
ℓ2

(
qi+1 − qi

h

)2

+ gℓ cos qi

)



What does it mean to be symplectic?



• The motion of a pendulum preserves area in phase space

Physical Systems Conserve Area in Phase Space



The Lagrangian 1-form
• Recall that in our derivation of the Euler-Lagrange equation, we saw that 

the change in action due to a variation       is given by

• We call θ the Lagrangian 1-form. In coordinates, 

δq

δS =

∫ t1

t0

(
∂L
∂q

− d

dt

∂L
∂q̇

)
δq dt+

∂L
∂q̇

δq

∣∣∣∣
t1

t0

δS =
∂L
∂q̇

δq

∣∣∣∣
t1

t0

=: θ(δq)
∣∣∣
t1

t0

θ = p dq



• The change in action due to a variation is essentially a directional 
derivative. We can think of it like applying a 1-form to a vector

• So if we take the exterior derivative of        , we should get 0. Recall that

• Therefore, dθ is conserved, i.e.

The Lagrangian Symplectic Form

“δS = dS(δq)′′

δS

δS = θ(δq)
∣∣∣
t1

t0

dθ
∣∣∣
t1

t0
= 0



• Note that

• In 2D, this is just area!

The Lagrangian Symplectic Form



• For higher-dimensional systems,

• The symplectic form is

• Preservation of the symplectic form implies preservation of volume

• For a 2n-dimensional system, the basis 1-forms are 

• The n-fold wedge product of the symplectic form is the volume form!

Higher Dimensions
θ =

∑
i pidqi

dθ = d (
∑

i pidqi) =
∑

i dpi ∧ dqi

{dq1, . . . , dqn, dp1, . . . , dpn}



Symplectic Integrators



So What’s So Good About Symplectic Euler?
• We can view any simulation method as a function on phase space

• Now, we can ask if this function preserves area

• To check this, we can just compute the Jacobian

• In the case of symplectic Euler, we have

F : (qk, pk) !→ (qk+1, pk+1)

F : (qk, pk) !→ (qk + hpk − h2 sin qk, pk + h sin qk)



So What’s So Good About Symplectic Euler?

• Taking the Jacobian, we find that

• Observe that

• So symplectic Euler preserves area in phase space (i.e. symplectic Euler is 
symplectic) 

dF =

(
1− h2 cos qk −h cos qk

h 1

)

det(dF ) = 1

F : (qk, pk) !→ (qk + hpk − h2 sin qk, pk − h sin qk)



What About Explicit Euler?
F : (qk, pk) !→ (qk + hpk, pk − h sin qk)

dF =

(
1 −h cos qk
h 1

)

• For small angles, this is greater than 1.

• For small h, this is approximately 1

det(dF ) = 1 + h2 cos qk



What About Implicit Euler?

qk+1 = qk + hpk+1

pk+1 = pk − h sin qk+1

F−1 : (qk+1, pk+1) ↦ (qk+1 − hpk+1, pk+1 + h sin qk+1)

dF−1 = (1 h cos qk+1

h 1 )
det dF =

1
1 + h2 cos qk+1



Why is Symplectic Euler Symplectic?
• Simulation methods based on discrete Lagrangian mechanics must be 

symplectic.

• The proof is (almost) exactly the same as the continuous proof!

• Recall that

• And for trajectories satisfying the discrete Euler-Lagrange equations,

pi = D2LD(qi−1, qi)

D2LD(qi−1, qi) = −D1LD(qi, qi+1)



Why is Symplectic Euler Symplectic?
dSD =

n∑

i=1

⌈LD(qi−1, qi)

=
n∑

i=1

D1LD(qi−1, qi)dqi−1 + D2LD(qi−1, qi)dqi

= D1LD(q0, q1)dq0 +
n−1∑

i=1

(D2LD(qi−1, qi) + D2LD(qi, qi+1)) dqi + D2LD(qn−1, qn)dqn

= D1LD(q0, q1)dq0 + D2LD(qn−1, qn)dqn

= −p0dq0 + pndqn

0 = d(dSD) = −dp0 ∧ dq0 + dpn ∧ dqn



Discrete Conservation Laws & Constraints



Discrete Noether’s Theorem
• Using the same tricks, we can prove a discrete version of Noether’s 

theorem

• This proves, e.g. that the discrete momentum       is conserved for systems 
with translation-invariant discrete Lagrangians

pi



Lagrange Multipliers
• We can also use Lagrange multipliers 

to enforce constraints on our 
simulation

• This make it a lot easier to simulate 
things like triple pendular



Thanks!
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