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Review—Discrete Differential Forms
•A discrete differential k-form amounts to a value stored 

on each oriented k-simplex

•Discretization: given a smooth differential k-form, 
can approximate by a discrete differential k-form by 
integrating over each k-simplex

•In practice, almost never comes from direct 
integration.  More typically, values start at vertices 
(samples of some function); 1-forms, 2-forms, etc., 
arise from applying operators like the (discrete) 
exterior derivative.

•This lecture: calculus on discrete differential forms
•differentiation—discrete exterior derivative

•integration—just take sums!
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Discrete Exterior Derivative



Reminder: Exterior Derivative
•Recall that in the smooth setting, the exterior derivative…

•…maps differential k-forms to differential (k+1)-forms

•…satisfies a product rule:

•…yields zero when you apply it twice:

•…is similar to the gradient for 0-forms

•…is similar to curl for 1-forms

•…is similar to divergence when composed w/ Hodge star

•To get discrete exterior derivative, we are simply going to 
evaluate the smooth exterior derivative and integrate the 
result over (oriented) simplices



Discrete Exterior Derivative (0-Forms)

φ - primal 0-form (vertices)

dφ - primal 1-form (edges)
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Discrete Exterior Derivative (1-Forms)

s

e1

e2 e3

α - primal 1-form (edges)

dα - primal 2-form (triangles)

(cda)s =
Z

s
da =

Z

∂s
a =

3

Â
i=1

Z

ei
a =

3

Â
i=1

âi

In general: discrete exterior derivative is coboundary operator for cochains.



Discrete Exterior Derivative—Examples
When applying the discrete exterior derivative, must 
be careful to take orientation into account.

Example (0-form)
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(Also notice that exterior derivative 
has nothing to do with length!)

Example (1-form)
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3 – 9 – 7 = –13
9 + 2 + (-5) = 6



Discrete Exterior Derivative—Matrix Representation
•The discrete exterior derivative on k-forms, which we will 

denote by dk, is a linear map from values on k-simplices to 
values on (k+1)-simplices:
•d0 maps values on vertices to values on edges

•d1 maps values on edges to values on triangles

•d2 maps values on triangles to values on tetrahedra
•…

•We can encode each operator to a matrix, by assigning an 
indices to mesh elements (just as when we encoded discrete 
k-forms as column vectors)

•This matrix turns out to be just a signed incidence matrix, 
which we saw in our discussion of the oriented simplicial 
complex



Discrete Exterior Derivative d0—Example
•To build the exterior derivative on 0-

forms, we first need to assign an index 
to each vertex and each edge

– A discrete 0-form is a list of |V| 
values (one per vertex)

– A discrete 1-form is a list of |E| 
values (one per edge)

•The discrete exterior derivative d0 is 
therefore a |E|x|V| matrix, taking 
values at vertices to values at edges
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Discrete Exterior Derivative d1—Example
•To build the exterior derivative on 1-

forms, we first need to assign an index 
to each edge and each face

– A discrete 0-form is a list of |E| 
values (one per edge)

– A discrete 1-form is a list of |F| 
values (one per face)

•The discrete exterior derivative d1 is 
therefore a |F|x|E| matrix, taking 
values at edges to values at faces

•This time, we need to be more careful 
about relative orientation

Example.
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Exterior Derivative Commutes w/ Discretization
•By definition, the discrete exterior derivative satisfies a very important property:

Taking  the  smooth  exterior  derivative  and then 
discretizing yields the same result  as discretizing 
and then applying the discrete exterior derivative.

Corollary: applying discrete d twice yields zero (why?)



Exactness of Discrete Exterior Derivative
•To confirm that applying discrete exterior derivative twice yields zero, we can just 

multiply the exterior derivative matrices for 0- and 1-forms:



Dual Forms



Reminder: Poincaré Duality

primal

dual

0-cell1-cell2-cell

0-simplex 1-simplex 2-simplex



Dual Discrete Differential k-Form

(Can also formalize via dual chains, dual cochains…)

Just as a discrete differential k-form was a value per 
k-simplex, a dual discrete differential k-form is a value 
per k-cell:

dual 2-form

• a dual 0-form is a value dual vertex
• a dual 1-form is a value per dual edge
• a dual 2-form is a value per dual cell



Primal vs. Dual Discrete Differential k-Forms

primal dual

0-forms vertices dual vertices 
(triangles)

1-forms edges dual edges 
(edges)

2-forms triangle dual cells 
(vertices)

Let’s compare primal and dual discrete forms on a triangle mesh:

Note: no such thing as “primal” and “dual” forms in smooth setting!
Q: Is the dimension of primal and dual k-forms always the same?



Dual Exterior Derivative
•Discrete exterior derivative on dual k-forms works 

in essentially the same way as for primal forms:

•To get the derivative on a (k+1)-cell, sum up 
values on each k-cell along its boundary

•Sign of each term in the sum is determined by 
relative orientation of (k+1)-cell and k-cell

Example.

–7 + 7 – 2 + (–3) + 5 - 5 + 3 = –2
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Notice: as with primal d, we don’t need lengths, areas, …



Dual Forms: Interpolation & Discretization
•For primal forms, it was easy to make connection to smooth forms via interpolation

•k-simplices have clear geometry: convex hull of vertices

•k-forms have straightforward basis: Whitney forms
•Not so clear cut for dual forms!

•e.g., can’t interpolate dual 0-form with linear function

•nonconvex cells even more challenging…
•leads to question of generalizing barycentric coordinates

•k-cells may not sit in a k-dimensional linear subspace
•e.g., 2-cells in 3D can be non-planar

•Nonetheless, still easy to work with dual forms formally/abstractly (e.g., d)



Discrete Hodge Star



Reminder: Hodge Star

Analogy: orthogonal complement
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Discrete Hodge Star—1-forms in 2D

primal 1-form
(circulation)

dual 1-form
(flux)
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Discrete Hodge Star—2-forms in 3D
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Diagonal Hodge Star

Key idea: divide by primal area, 
multiply by dual area.  (Why?)

*



Matrix Representation of Diagonal Hodge Star
•Since the diagonal Hodge star on k-forms simply multiples each discrete k-form 

value by a constant (the volume ratio), it can be encoded via a diagonal matrix



Geometry of Dual Complex
•For exterior derivative, needed only connectivity of the dual cells
•For Hodge star, also need a specific geometry

•Many possibilities for location of dual vertices:
•circumcenter (c) — center of sphere touching all vertices

•most typical choice

•pros: primal & dual are orthogonal (greater accuracy)
•cons: can yield, e.g., negative lengths/areas/volumes…

•barycenter (b) — average of all vertex coordinates
•pros: dual volumes are always positive

•cons: primal & dual not orthogonal (lower accuracy)
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b
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Possible Choices for Discrete Hodge Star
•Many choices—none give exact results!
•Volume ratio

•diagonal matrix; most typical choice in DEC (Hirani, Desbrun et al)
•typical choice: circumcentric dual (Delaunay/Voronoi)
•more general orthogonal dual (weighted triangulation/power diagram)
•can also use barycentric dual (e.g., Auchmann & Kurz, Alexa & Wardetzky)

•Galerkin Hodge star
•L2 norm on Whitney forms

•non-diagonal, but still sparse; standard in, e.g., FEEC (Arnold et al).
•appropriate “mass lumping” again yields circumcentric Hodge star

(Thanks: Fernando de Goes)



Computing Volumes
•Evaluating the Hodge star boils down to computing ratios of dual/primal volumes

•These ratios often have simple closed-form expressions (don’t compute circumcenters!)
Example: 2D circumcentric dual



Summary



Discrete Exterior Calculus—Basic Operators
•Basic operators can be summarized in a very useful diagram (here in 2D):



Composition of Operators
•By composing matrices, we can easily solve equations involving operators like those 

from vector calculus (grad, curl, div, Laplacian…) but in much greater generality 
(e.g., curved surfaces, k-forms…) and on complicated domains (meshes)

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.



Other Discrete Operators
•Many other operators in exterior calculus (wedge, sharp, flat, Lie derivative, …)

•E.g., wedge product on two discrete 1-forms:

(More broadly, many open questions about how to discretize exterior calculus…)



Discrete Exterior Calculus - Summary
•integrate k-form over k-simplices

•result is discrete k-form

•sign changes according to orientation

•can also integrate over dual elements (dual forms)

•Hodge star converts between primal and dual (approximately!)

•multiply by ratio of dual/primal volume

•discrete exterior derivative is just a sum

•gives exact value (via Stokes’ theorem)

•Still plenty missing!  (Wedge, sharp, flat, Lie derivative, ...)
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Applications
•Lots! (And growing.) We’ll see many as we continue with the course.



Thanks!
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