DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

LECTURE 10: DISCRETE EXTERIOR CALCULUS

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

Review—Discrete Differential Forms

- A discrete differential k-form amounts to a value stored on each oriented *k*-simplex
- **Discretization:** given a smooth differential k-form, can approximate by a discrete differential k-form by integrating over each k-simplex
- *In practice,* almost never comes from direct integration. More typically, values start at vertices (samples of some function); 1-forms, 2-forms, etc., arise from applying operators like the (discrete) exterior derivative.
- This lecture: calculus on discrete differential forms
 - differentiation—*discrete* exterior derivative
 - integration—just take sums!

9.0

Discrete Exterior Derivative

Reminder: Exterior Derivative

- Recall that in the smooth setting, the exterior derivative...
 - ...maps differential *k*-forms to differential (*k*+1)-forms
 - ... satisfies a product rule: $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$
 - ... yields zero when you apply it twice: $d \circ d = 0$
 - ... is similar to the *gradient* for 0-forms
 - ... is similar to *curl* for 1-forms
 - ... is similar to *divergence* when composed w / Hodge star
- To get **discrete** exterior derivative, we are simply going to evaluate the smooth exterior derivative and integrate the result over (oriented) simplices

Discrete Exterior Derivative (0-Forms)

 ϕ - *primal 0-form* (vertices)

 $d\phi$ - primal 1-form (edges)

 v_2 $(\widehat{d\phi})_e = \int_e d\phi = \int_{\partial e} \phi = \hat{\phi}_2 - \hat{\phi}_1$

Discrete Exterior Derivative (1-Forms)

α - primal 1-form (edges)

 $d\alpha$ - primal 2-form (triangles)

 $(d\alpha)_{\sigma}$ –

In general: discrete exterior derivative is *coboundary* operator for *cochains*.

Discrete Exterior Derivative—Examples

When applying the discrete exterior derivative, must be careful to take *orientation* into account.

(Also notice that exterior derivative has *nothing* to do with length!)

- The discrete exterior derivative on *k*-forms, which we will denote by d_k , is a linear map from values on k-simplices to values on (k+1)-simplices:
 - d_0 maps values on vertices to values on edges
 - *d*₁ maps values on edges to values on triangles
 - *d*₂ maps values on triangles to values on tetrahedra
- We can encode each operator to a matrix, by assigning an indices to mesh elements (just as when we encoded discrete *k*-forms as column vectors)
- This matrix turns out to be just a signed incidence matrix, which we saw in our discussion of the oriented simplicial complex

Discrete Exterior Derivative—Matrix Representation

			0	T		Z	Ĺ
	0	Γ	1	—1	-	0	
	1		-1	0		1	
$\Xi^0 =$	2		0	\mathbf{C}		—1	
	3		0	1		0	
	4		0	-1	-	1	
			0	1	2	3	4
r^1		0	[1	1	0	0 ·	-1
L		1	0	0	1	1	1
			-				

Discrete Exterior Derivative d_0 —Example

- To build the exterior derivative on 0forms, we first need to assign an index to each *vertex* and each *edge*
 - -A discrete 0-form is a list of |V|values (one per vertex)
 - -A discrete 1-form is a list of |E|values (one per edge)
- The discrete exterior derivative *d*₀ is therefore a $|E| \times |V|$ matrix, taking values at vertices to values at edges

Discrete Exterior Derivative d_1 —Example

- To build the exterior derivative on 1forms, we first need to assign an index to each *edge* and each *face*
 - -A discrete 0-form is a list of |E|values (one per edge)
 - A discrete 1-form is a list of |*F*| values (one per face)
- The discrete exterior derivative *d*₁ is therefore a |*F*|x|*E*| matrix, taking values at edges to values at faces
- This time, we need to be more careful about relative orientation

Example.

• By definition, the discrete exterior derivative satisfies a very important property:

Taking the **smooth** exterior derivative and then discretizing yields the same result as *discretizing* and then applying the **discrete** exterior derivative.

Corollary: applying discrete d twice yields zero (why?)

Exterior Derivative Commutes w/ Discretization

Exactness of Discrete Exterior Derivative

multiply the exterior derivative matrices for 0- and 1-forms:

• To confirm that applying discrete exterior derivative twice yields zero, we can just

Reminder: Poincaré Duality

0-simplex

primal

dual

2-cell

1-simplex

2-simplex

1-cell

0-cell

Dual Discrete Differential k-Form

Consider the (Poincaré) dual K^* of a manifold simplicial complex K.

Just as a discrete differential *k*-form was a value per *k*-simplex, a *dual discrete differential k-form* is a value per *k*-cell:

- a dual **0-form** is a value **dual vertex**
- a dual **1-form** is a value per **dual edge**
- a dual **2-form** is a value per **dual cell**

(Can also formalize via dual chains, dual cochains...)

dual 2-form

Primal vs. Dual Discrete Differential k-Forms

Let's compare primal and dual discrete forms on a triangle mesh:

	primal	dı
0-forms	vertices	dual v (<i>tria</i> 1
1-forms	edges	dual (<i>ed</i>
2-forms	triangle	dual (ver

Note: no such thing as "primal" and "dual" forms in smooth setting! **Q:** Is the dimension of primal and dual *k*-forms always the same?

Dual Exterior Derivative

- Discrete exterior derivative on *dual* k-forms works in essentially the same way as for primal forms:
 - To get the derivative on a (*k*+1)-cell, sum up values on each *k*-cell along its boundary
 - Sign of each term in the sum is determined by relative orientation of (*k*+1)-cell and *k*-cell

Example.

Let α be a dual discrete 1-form (one value per dual edge) Then $d\alpha$ is a value per 2-cell, obtained by summing over dual edges (As usual, relative orientation matters!) **Notice:** as with primal *d*, we don't need lengths, areas, ...

- -7 + 7 2 + (-3) + 5 5 + 3 = -2

Dual Forms: Interpolation & Discretization

- For primal forms, it was easy to make connection to smooth forms via *interpolation*
 - *k*-simplices have clear geometry: *convex hull of vertices*
 - *k*-forms have straightforward basis: *Whitney forms*
- Not so clear cut for dual forms!
 - •e.g., can't interpolate dual 0-form with linear function
 - nonconvex cells even more challenging...
 - leads to question of *generalizing* barycentric coordinates
 - k-cells may not sit in a k-dimensional linear subspace
 - e.g., 2-cells in 3D can be non-planar
- Nonetheless, still easy to work with dual forms formally / abstractly (e.g., d)

Discrete Hodge Star

Reminder: Hodge Star (*)

Analogy: *orthogonal complement*

$\star(u \wedge v) = w$

 $k \mapsto (n-k)$

Discrete Hodge Star – 1-forms in 2D

primal 1-form (circulation)

dual 1-form (flux)

 ℓ^{\star}

Discrete Hodge Star – 2-forms in 3D

 A_{ijk} — area of triangle *ijk* ℓ_{ab} — length of dual edge *ab*

primal 2-form

dual 1-form

a

b

 $\frac{\ell_{ab}}{A_{ijk}}\widehat{\omega_{ijk}}$

 $\star \widehat{\omega}_{ab} = -$

Diagonal Hodge Star

a map $\star : \Omega_k \to \Omega_{n-k}^{\star}$ determined by

 $\star \alpha(\sigma^*) =$

for each k-simplex σ in M, where σ^* is the corresponding dual cell, and $|\cdot|$ denotes the volume of a simplex or cell.

Key idea: divide by primal area, multiply by dual area. (Why?)

Definition. Let Ω_k and Ω_{n-k}^* denote the primal k-forms and dual (n-k) forms (respectively on an *n*-dimensional simplicial manifold *M*. The *diagonal Hodge star* is

$$= \frac{|\sigma^{\star}|}{|\sigma|} \alpha(\sigma)$$

Matrix Representation of Diagonal Hodge Star

 $\sigma_1, \ldots, \sigma_N - k$ -simplices in the primal mesh $\sigma_1^{\star}, \ldots, \sigma_N^{\star} - (n-k)$ -cells in the dual mesh $|\cdot|$ — volume of a simplex or cell $\star_k \in \mathbb{R}^{N \times N}$ — matrix for Hodge star on primal *k*-forms

• Since the diagonal Hodge star on k-forms simply multiples each discrete k-form value by a constant (the volume ratio), it can be encoded via a *diagonal* matrix

Geometry of Dual Complex

- For exterior derivative, needed only *connectivity* of the dual cells
- For Hodge star, also need a specific *geometry*
- Many possibilities for location of dual vertices:
 - circumcenter (c) center of sphere touching all vertices
 - most typical choice
 - pros: primal & dual are orthogonal (greater accuracy)
 - cons: can yield, e.g., negative lengths/areas/volumes...
 - **barycenter** (*b*) average of all vertex coordinates
 - pros: dual volumes are always positive
 - cons: primal & dual not orthogonal (lower accuracy)

Possible Choices for Discrete Hodge Star

- Many choices—*none* give exact results!
- Volume ratio
 - diagonal matrix; most typical choice in DEC (Hirani, Desbrun et al)
 - typical choice: circumcentric dual (Delaunay / Voronoi)
 - more general orthogonal dual (weighted triangulation/power diagram)
 - can also use barycentric dual (e.g., Auchmann & Kurz, Alexa & Wardetzky)
- <u>Galerkin Hodge star</u>
 - *L*₂ norm on Whitney forms
 - non-diagonal, but still sparse; standard in, e.g., FEEC (Arnold et al).
 - appropriate "mass lumping" again yields circumcentric Hodge star

(Thanks: Fernando de Goes)

Computing Volumes

- Evaluating the Hodge star boils down to computing ratios of dual/primal volumes
- These ratios often have simple closed-form expressions (*don't compute circumcenters!*)

Example: 2D circumcentric dual

Summary

Discrete Exterior Calculus—Basic Operators

• Basic operators can be summarized in a very useful diagram (here in 2D):

 Ω_k — primal *k*-forms Ω_k^{\star} — dual *k*-forms

Composition of Operators

(e.g., curved surfaces, k-forms...) and on complicated domains (meshes)

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.

• By composing matrices, we can easily solve equations involving operators like those from vector calculus (grad, curl, div, Laplacian...) but in much greater generality

Other Discrete Operators

- Many other operators in exterior calculus (wedge, sharp, flat, Lie derivative, ...)
- E.g., wedge product on two discrete 1-forms:

(More broadly, many open questions about how to discretize exterior calculus...)

Discrete Exterior Calculus - Summary

- integrate *k*-form over *k*-simplices
 - result is *discrete k*-form
 - sign changes according to orientation
- can also integrate over dual elements (*dual* forms)
- Hodge star converts between primal and dual (*approximately*!)
 - multiply by ratio of dual/primal volume
- discrete exterior derivative is just a sum
 - gives *exact* value (via Stokes' theorem)
- Still plenty missing! (Wedge, sharp, flat, Lie derivative, ...)

Applications

• Lots! (And growing.) We'll see many as we continue with the course.

DISCRETE DIFFERENTIAL GEOMETRY AN APPLIED INTRODUCTION