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Curves, Surfaces, and Volumes

* In general, ditferential geometry studies n-dimensional manifolds; we’ll focus
mostly on low dimensions: curves (n=1), surfaces (n=2), and volumes (n=3)

e Why? Geometry we encounter in “every day life” (Common in applications!)
e Low-dimensional manifolds are not baby stuff! :-)
e n=1: unknot recognition (open as of July 2017)

e n=2: Willmore conjecture (2012 for genus 1) -
e n=3: Geometrization conjecture (2003, $1 million)
* Serious intuition gained by studying low-dimensional manifolds

* Conversely, problems involving very high-dimensional manifolds (e.g., statistics/
machine learning) involve less "deep" geometry than you might imagine!

® fiber bundles, Lie groups, curvature flows, spinors, symplectic structure, ...

e Moreover... curves and surfaces are beautiful! (And sometimes boring for large #...)



Curves & Surfaces

e Much of the geometry we encounter in life well-described by curves and surfaces*

(Curves) & = R

*Or solids... but the boundary of a solid is a surface! (Surfaces)



Smooth Descriptions of Curves & Surfaces

 height function over tangent plane vt

* Jocal parameterization

e Christoffel symbols — coordinates/indices

—
e differential forms — “coordinate free” 3

e moving frames — change in adapted frame d dw

e Riemann surfaces (local); Quaternionic functions (global)
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e People can get very religious about these different “dialects”... best to be multilingual!

e We'll dive deep into one description (differential forms) and touch on others



Discrete Descriptions of Curves & Surfaces

* Also many ways to discretize a surface
* For instance:
e implicit —e.g., zero set of scalar function on a grid
e o00d for changing topology, high accuracy
e expensive to store/adaptivity is harder

e hard to solve sophisticated equations on surface

>0
* explicit — e.g., polygonal surface mesh y
* changing topology, high-order continuity is harder $ <0
* cheaper to store / adaptivity is much easier e
* more mature tools for equations on surfaces explicit implicit

* Don’t be “religious”; use the right tool for the job!



Curves & Surfaces — Quverview

e Goal: understand curves & surfaces from complementary smooth and discrete points
of view.

* Smooth setting:
* express geometry via differential forms
e will first need to think about vector-valued forms

* Discrete setting:

e use explicit mesh as domain
* express geometry via discrete differential forms

e Payoff: will become very easy to switch back & forth between smooth setting
(scribbling in a notebook) and discrete setting (running algorithms on real data!)






Discrete Curves in the Plane

o We'll define a discrete curve as a piecewise linear parameterized curve,
.e., a sequence of points connected by straight line segments:

Shorthand: 7; := v(s;)



Discrete Curves in the Plane— Example

e A simple example is a curve comprised of two segments:

2 (5) .{(S,O), 0<s<1,



Discrete Curves and Discrete Differential Forms

e Equivalently, a discrete curve
is determined by a discrete,
Rr-valued O-form on a

manifold simplicial 1-complex

e The 0-form values give the K =1{ (vo,01), (v1,02), (v2,03),
location of the vertices; (v0), (v1), (v2), (v3), @ }
interpolation by Whitney B
bases (hat functions) gives the zgz(l)g — E;)g, ggg
map from each edge to R” v(vy) = (118,58)

1(os) = (134,47)



Differential of a Discrete Curve

* We can now directly translate statements about smooth curves
expressed via smooth exterior calculus into statements about discrete
curves expressed using discrete exterior calculus

*Simple example: the differential just becomes the edge vectors:

--------------- I —— O (d/)/)l] — ,Y] — Vi



Discrete Tangent

e As in smooth setting, can simply normalize differential to obtain
tangents, yielding a vector per edge”

v (s) Ti
N N
v
T(s) :=dy () /|dvy(5)] Tii := (dy)ii/ |(dy)ij|

*And no definition of the tangent at vertices!



Discrete Normal

e As in the smooth setting, we can express the (discrete) normals of a
planar curve as a 90-degree rotation of the (discrete) tangent:

N;;

j
ész

N(s) = JT(s) Nij = J1j;



Regqular Discrete Curve | Discrete Immersion

eRecall that a smooth curve is reqular if its
differential is nonzero; this condition helps
avoid “bad behavior” like sharp cusps

e For a discrete curve, a nonzero differential
merely prevents zero edge lengths; need
something stronger to get “nice” curves

*In particular, a reqular discrete curve or
discrete immersion is a discrete curve that is
a locally injective map

e Rules out zero edge lengths and zero angles
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Discrete Curvature

eFor a regular discrete curve, discrete curvature has several definitions

TURNING ANGLE [.LENGTH VARIATION

e

STEINER FORMULA

AUA




Fundamental Theorem of Discrete Plane Curves

Fact. Up to rigid motions, a regular discrete plane curve is uniquely
determined by its edge lengths and turning angles.

Q: Given only this data, how can we recover the curve?

A: Mimic the procedure from the smooth setting:

Sum curvatures to get angles: Piit1 = Z 01
k=1

Evaluate unit tangents: T;; := (cos(q)l]) sin(¢;;))

Sum tangents to get curve: Yi ‘= Z 1 Th et 1
k=1
Q: Rigid motions?



Discrete Whitney Graustein

e If we adopt the definition of a discrete regular curve
as one that is locally injective, then there is a discrete
version of Whitney-Graustein that exactly mirrors
the smooth one

e Has been carefully studied from several
perspectives:

e Constructive algorithm (case analysis) by
Mehlhorn & Yap (1991)

e Much simpler argument by Pinkall in terms of
convex polyhedron: https://bit.1ly/2BFtywA

e Both use powerful idea from (discrete) differential
geometry: to find a “path” connecting two objects,
find path from both objects to a canonical one, then
compose... (uniformization, Delaunay; ...)

SIAM J. COMPUT.
Vol. 20, No. 4, pp. 603-621, August 1991
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CONSTRUCTIVE WHITNEY-GRAUSTEIN TJ
OR HOW TO UNTANGLE CLOSED PLANAK

KURT MEHLHORNYT AND CHEE-KENG YA

Abstract. The classification of polygons is considered in which two pol)
if one can be continuously transformed into the other such that for each i
adjacent edges overlap. A discrete analogue of the classic Whitney-Graustein |
that the winding number of polygons is a complete invariant for this classific
constructive in that for any pair of equivalent polygons, it produces some sequé
taking one polygon to the other. Although this sequence has a quadratic num]
be described and computed in real time.

Key words. polygons, computational algebraic topology, computational g
theorem, winding number

—

The Discrete Whitney-Graustein Theorem

Leave a reply

Let us consider regular closed discrete plane curves «y with n vertices and tangent winding
number m. We assume that the length of -y is normalized to some arbitrary (but henceforth
fixed) constant L. Up to orientation-preserving rigid motions such a -y is uniquely determined
by a point

(l1y. ey lnyB1y. .. 6,) € (0,00)" X (—m, )"
satisfying
bLih+...+4,=L

Ki+ ...+ Ky =2mm

where

aj:Ii1+...+Iij.

Proposition 1: Consider a fixed (Ki,...,kn) € X(—m,m)" satisfying
K1+ ...+ kn, = 2m for some m € Z and define a;,...,a, as above. Then the set of
Gy £,) € (0, 00)" satisfying



https://bit.ly/2BFtywA

ote Space Curves




Review: Fundamental Theorem of Space Curves

e The fundamental theorem of space curves tells that given the
curvature ¥ and torsion 7 of an arc-length parameterized
space curve, we can recover the curve itself

e Formally: integrate the Frenet-Serret equations; intuitively:
start drawing a curve, bend & twist at prescribed rate.
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Discrete Space Curve

e A discrete space curve is simply a discrete curve in R3 rather than R2;
described by vertex positions



Fundamental Theorem of Discrete Space Curuves

Q: How can we discretize the fundamental theorem for space curves?

A: One possibility (“reduced coordinates”):
— arc length = lengths ¢;; at edges ij

— curvature = exterior angles «; at vertices 1
— torsion = angles 7;;at edges 17

Q: Reconstruction procedure?




uroature Flow



Curvature Flow on Curves

* A curvature flow is a time evolution
of a curve (or surface) driven by
some function of its curvature.

e Such flows model physical elastic
rods, can be used to find shortest
curves (geodesics) on surfaces, or
might be used to smooth noisy data
(e.g., image contours).

' Two common examples: length-
shortening flow and elastic flow.




Discretizing a Gradient Flow

e Two possible paths for discretizing

any gradient flow: SMOOTH discretize DISCRETE
—
1. First derive the gradient of the OBJECTIVE OBJECTIVE
objective in the smooth setting,
then discretize the resulting = =
evolution equation. i =
=~ =~
50 50
2. First discretize the objective
itself, then take the gradient of -
the resulting discrete objective. SMOOTH discretize y| DISCRETE
FLOW FLOW

*In general, will not lead to the same

numerical scheme/algorithm! (Does NOT commute in general.)



Length Shortening Flow

e The objective for length shortening
flow is simply the total length of the

curve; the flow is then the (L2)
gradient flow.

eFor closed curves, several interesting
features (Gage-Grayson-Hamilton):

* Center of mass is preserved
e Curves flow to “round points”

e Embedded curves remain embedded

credit: Sigurd Angenent



Length Shortening Flow

Let length(-y) denote the total length of a regular plane curve v : [0, L] — R?,
and consider a variation 7 : [0, L] — R? vanishing at endpoints. One can then
show that

L

%\gzo length(y + er7) = —/O (n(s),k(s)N(s)) ds

7+ e

Key idea: quickest way to reduce length is to move in the direction xN.



Length Shortening Flow — Forward Euler

e At each moment in time, move iy(s t) = —x(s, t)N(s, t)
. . : : dt / / /
curve in normal direction with
speed proportional to curvature yit — o o
— —x:N:
*“Smooths out” curve (e.g., noise), T .

eventually becoming circular

*Discretize by replacing time
derivative with difference in time;
smooth curvature with one (of
many) curvatures

e Repeatedly add a little bit of kN
(“forward Euler method”)




Elastic Flow

*Basic idea: rather than shrinking
length, try to reduce bending
(curvature)

e Objective is integral of squared
curvature; elastic flow is then
gradient flow on this objective

e Minimizers are called elastic curves

e More interesting w/ constraints
(e.g., endpoint positions & a
tangents)


http://brickisland.net/cs177fa12/?p=320

Isometric Elastic Flow

e Different way to smooth out a curve
is to directly “shrink” curvature

*Discrete case: “scale down” turning
angles, then use the fundamental
theorem of discrete plane curves to
reconstruct

e Extremely stable numerically;
exactly preserves edge lengths

e Challenge: how do we make sure P | ey
- R .
closed curves remain closed-

From Crane et al, “Robust Fairing via Conformal Curvature Flow”



Elastic Rods

e For space curve, can also try to
minimize both curvature and
torsion 3
),

e Both in some sense measure
“non-straightness” of curve

e Provides rich model of elastic oy
rods )0

o[ ots of interesting applications

From Bergou et al, “Discrete Elastic Rods”

(simulating hair, laying cable, ...)



Untangling Knots

*[s a given curve “knotted?” /L L 1 L
S

 Minimize elastic energy and penalize self-collision | /0 Jo [v(s) =7(8)[*  d(s,1)?

e Might go to smoothest curve in same isotopy class Mobius energy

Credit: Henrik Schumacher
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