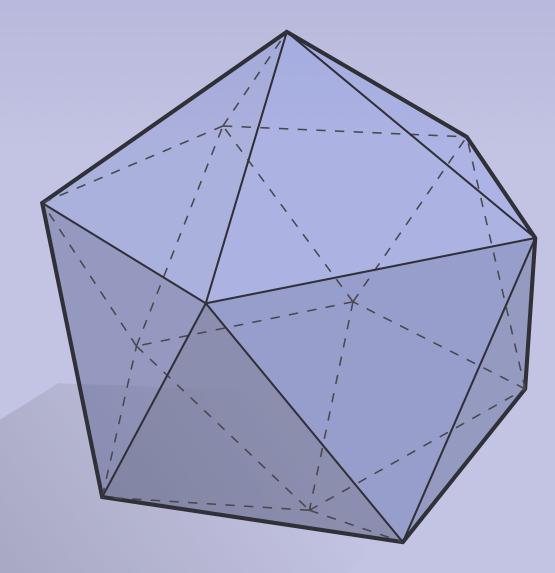
DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

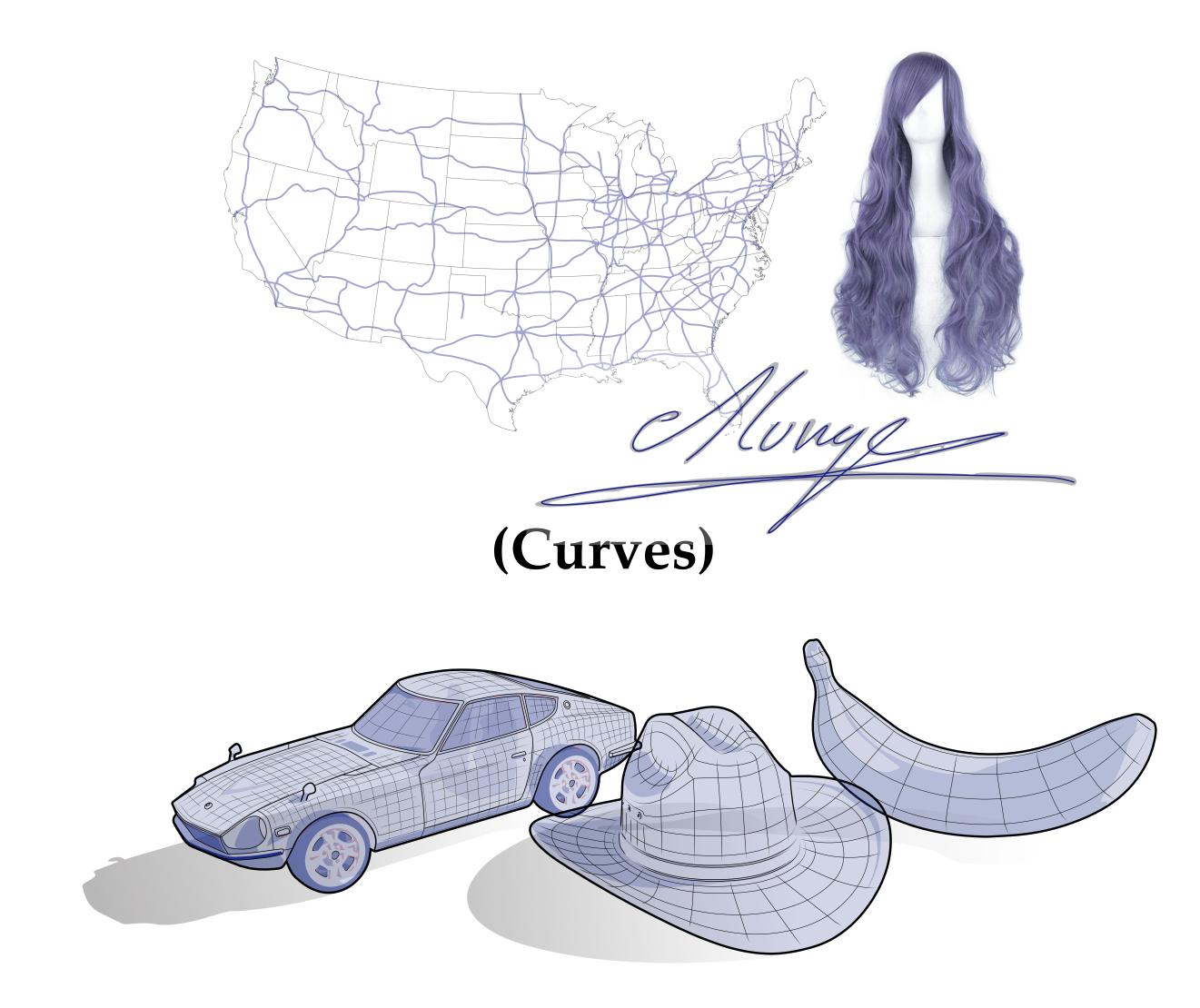
LECTURE 12: SMOOTH SURFACES



DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

From Curves to Surfaces

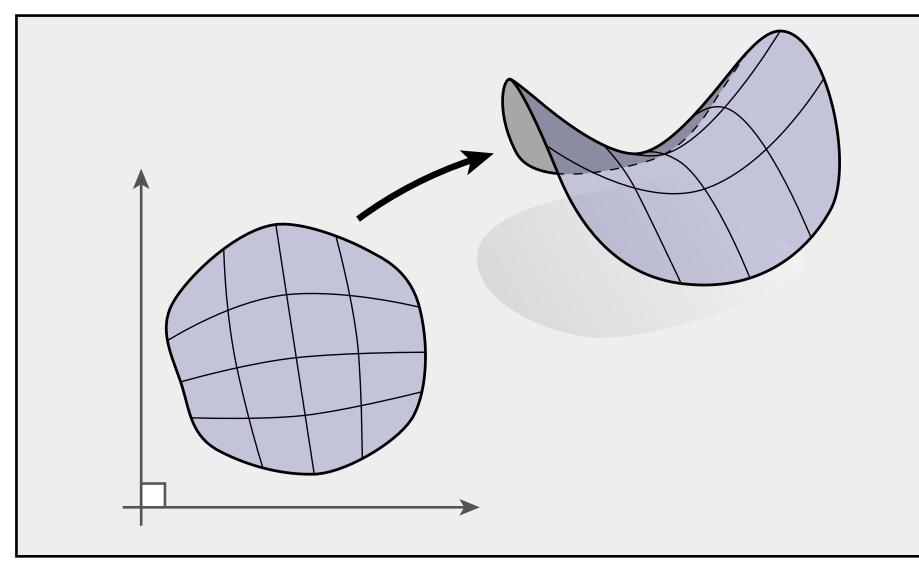
- **Previously:** saw how to talk about 1D curves (both smooth and discrete)
- Today: will study 2D curved surfaces (both smooth and discrete)
 - Some concepts remain the same (e.g., differential); others need to be generalized (*e.g.*, curvature)
 - Still use exterior calculus as our lingua franca

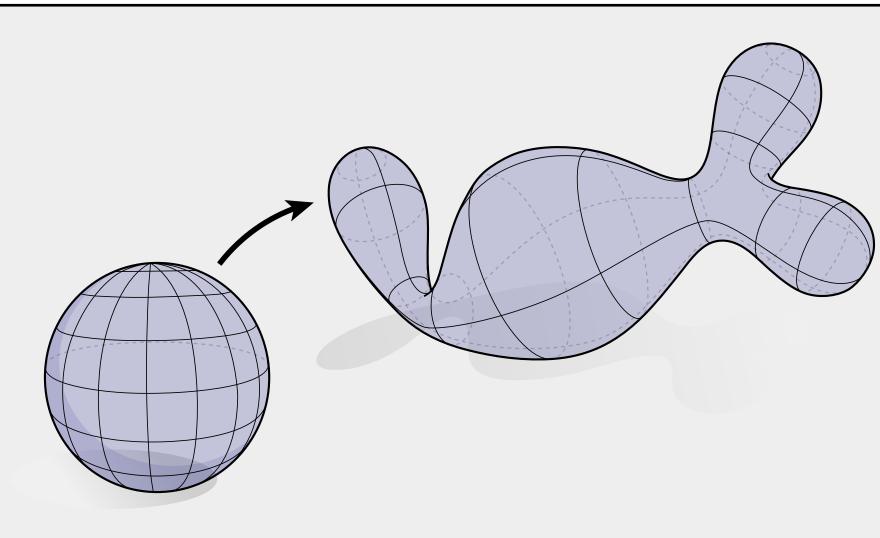


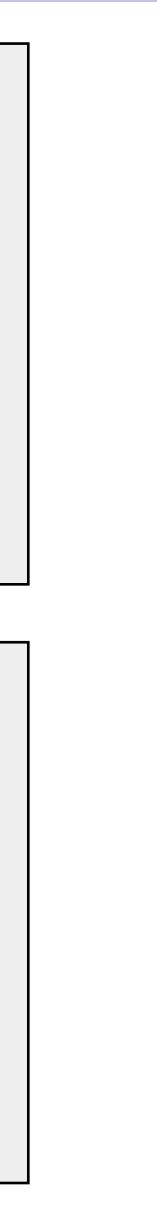
(Surfaces)

Surfaces—Local vs. Global View

- So far, we've only studied exterior calculus in \mathbb{R}^n
- Will therefore be easiest to think of surfaces expressed in terms of patches of the plane (local picture)
- Later, when we study* topology & smooth manifolds, we'll be able to more easily think about "whole surfaces" all at once (global picture). (...*maybe)
- Global picture is *much* better model for discrete surfaces (meshes)...







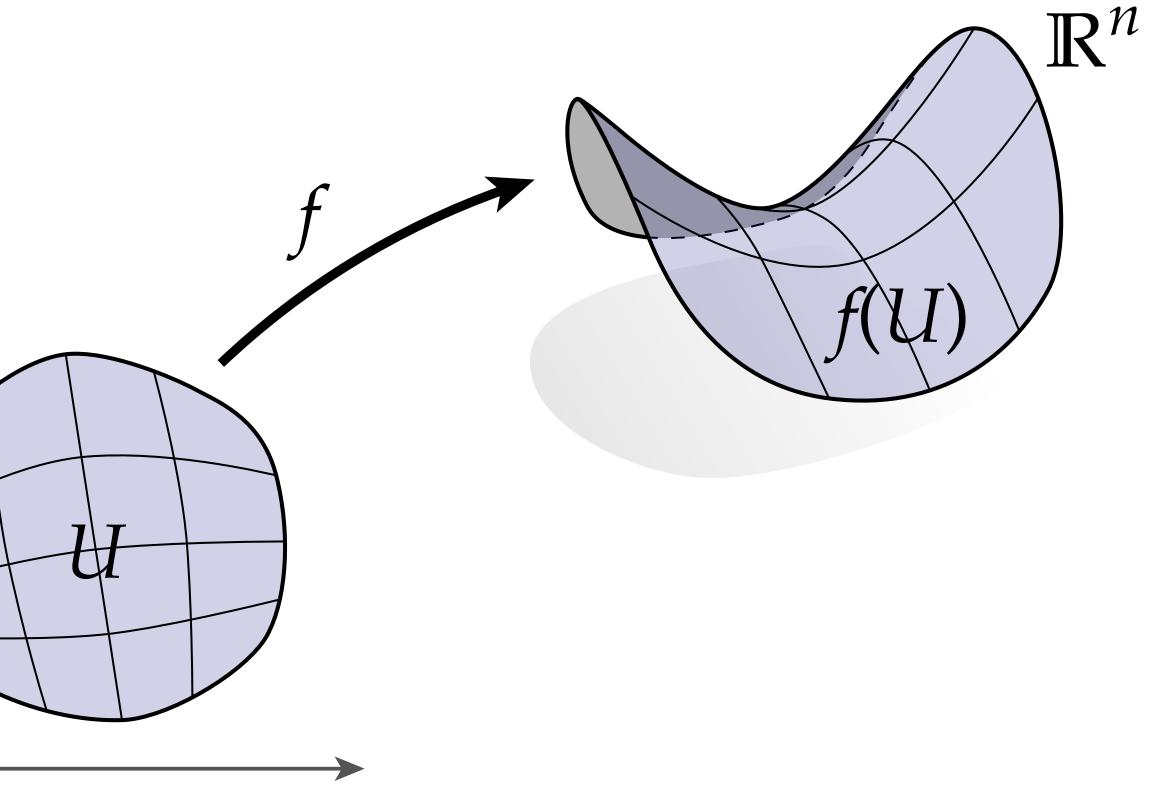
Parameterized Surfaces

Parameterized Surface

A parameterized surface is a map from a two-dimensional region $U \subset \mathbb{R}^2$ into \mathbb{R}^2 :

$f: U \to \mathbb{R}^n$

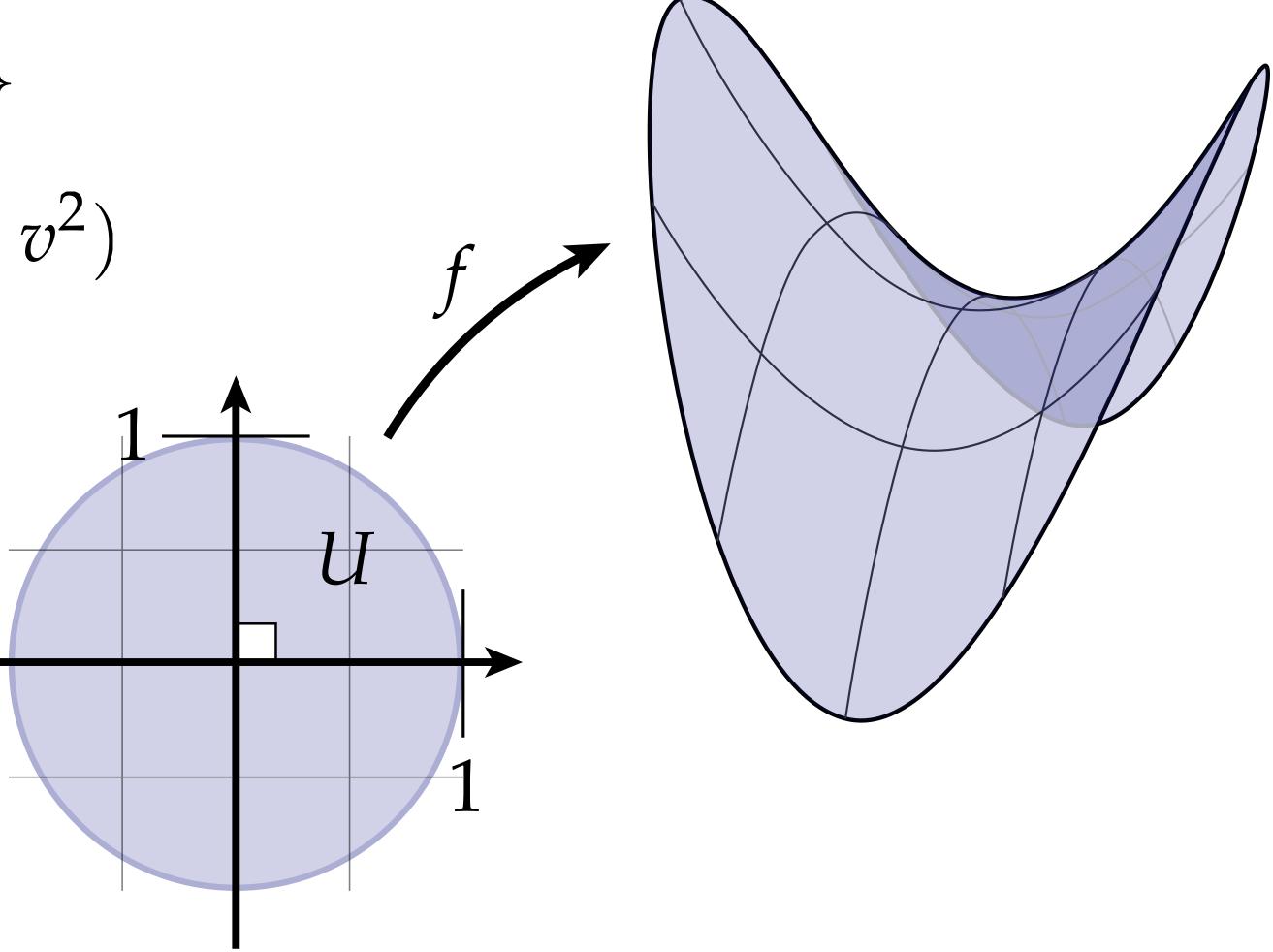
The set of points f(U) is called the **image** of the parameterization.



Parameterized Surface—Example

- $U := \{ (u, v) \in \mathbb{R}^2 : u^2 + v^2 \le 1 \}$
- $f: U \to \mathbb{R}^3$; $(u, v) \mapsto (u, v, u^2 v^2)$

• As an example, we can express a *saddle* as a parameterized surface:

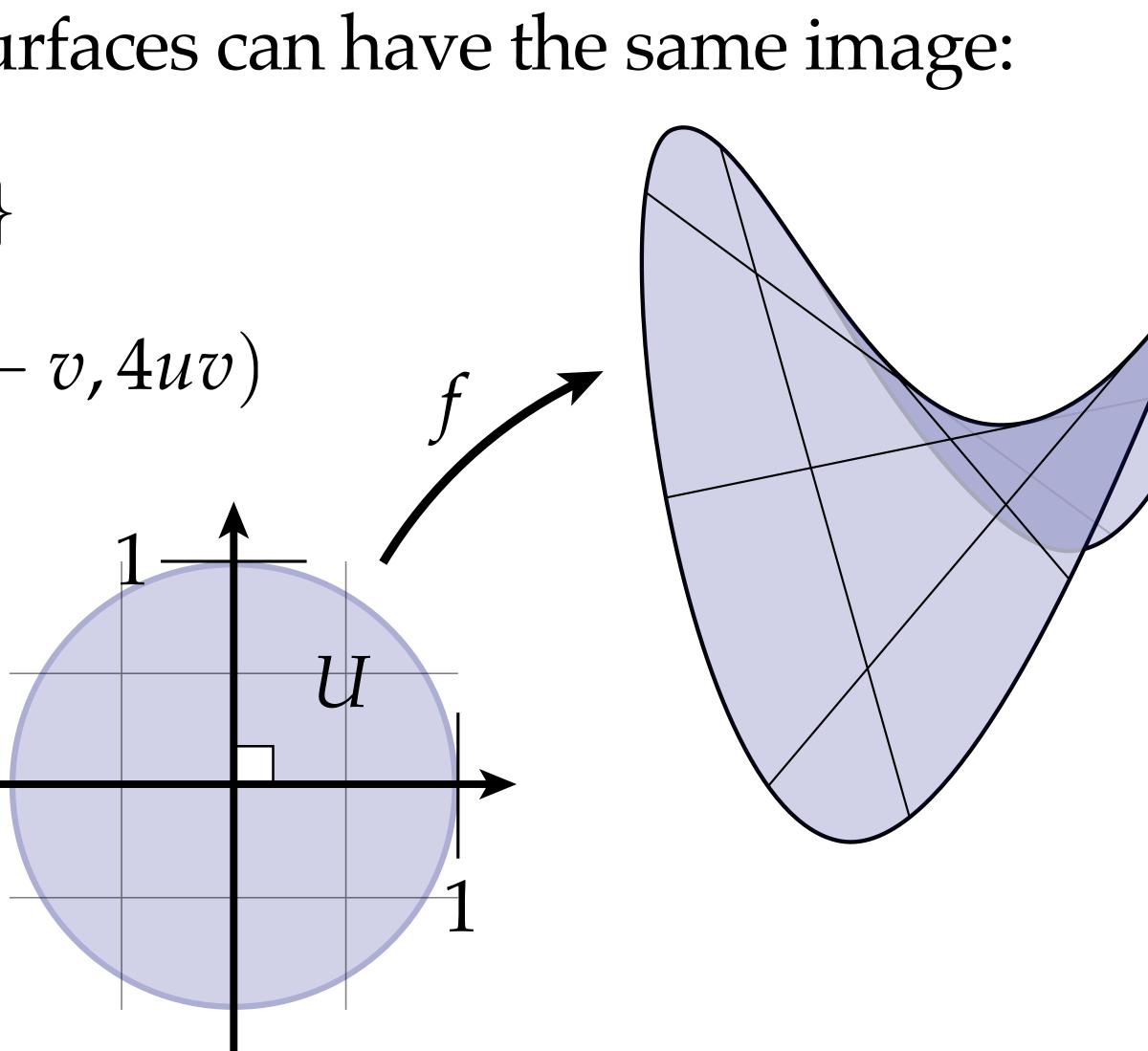


Reparameterization

- Many different parameterized surfaces can have the same image:
- $U := \{ (u, v) \in \mathbb{R}^2 : u^2 + v^2 \le 1 \}$
- $f: U \to \mathbb{R}^3$; $(u, v) \mapsto (u + v, u v, 4uv)$

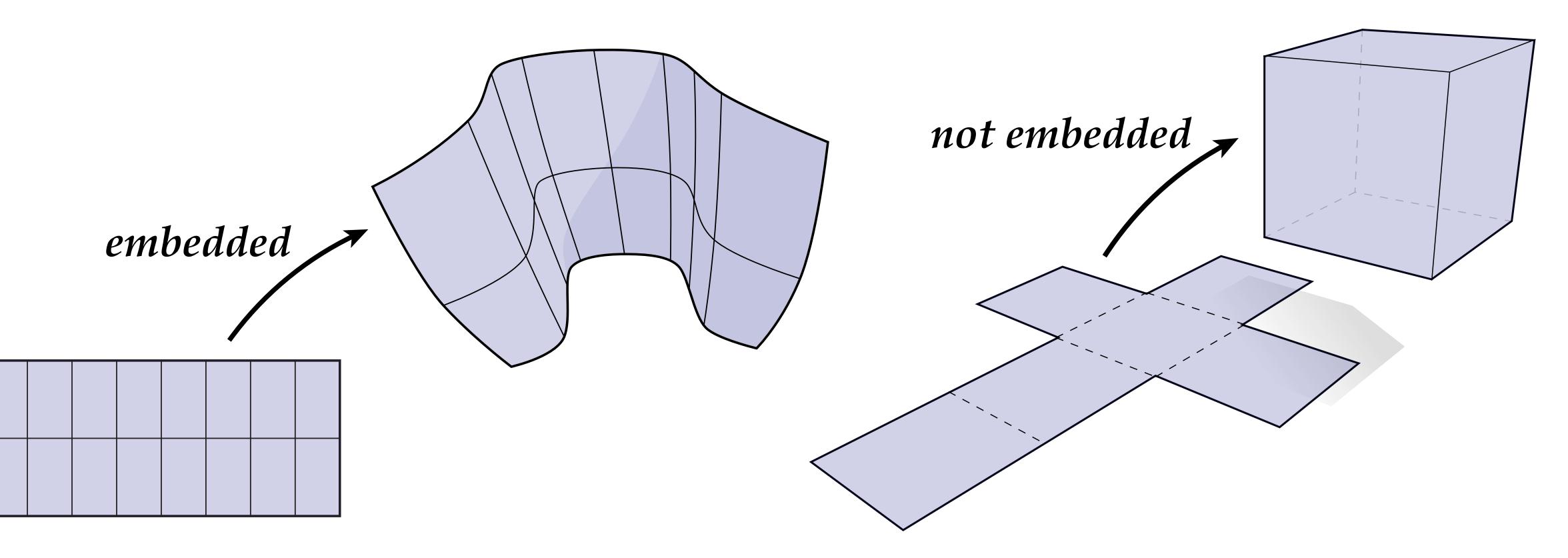
This *"reparameterization symmetry"* can be a major challenge in applications—*e.g.,* trying to decide if two parameterized surfaces (or meshes) describe the same shape.

Analogy: graph isomorphism



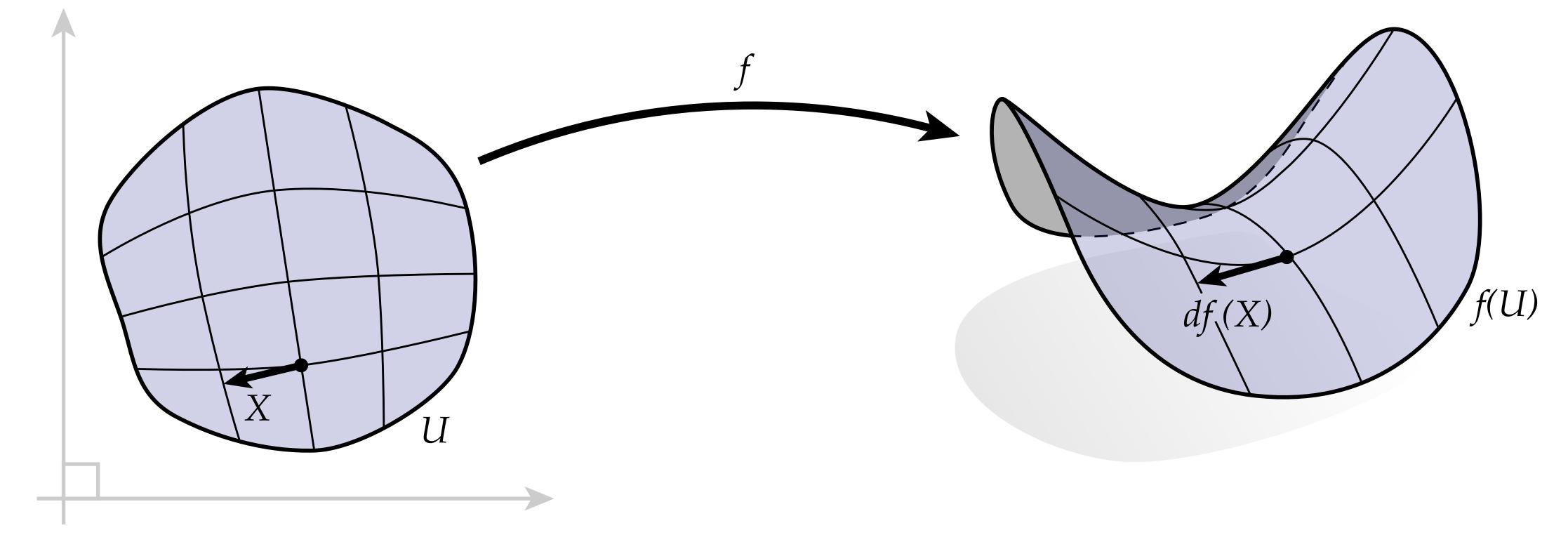
Embedded Surface

- Roughly speaking, an **embedded** surface does not self-intersect
- More precisely, a parameterized surface is an embedding if it is a continuous injective map, and has a continuous inverse on its image



Differential of a Surface

Intuitively, the *differential* of a parameterized surface tells us how tangent vectors on the domain get mapped to vectors in space:



We say that df "pushes forward" vectors X into R^n , yielding vectors df(X)

Differential in Coordinates

In coordinates, the differential is simply the exterior derivative:

 $f: U \to \mathbb{R}^3$; $(u, v) \mapsto (u, v, u^2 - v^2)$

$$df = \frac{\partial f}{\partial u} du + \frac{\partial f}{\partial v} dv =$$

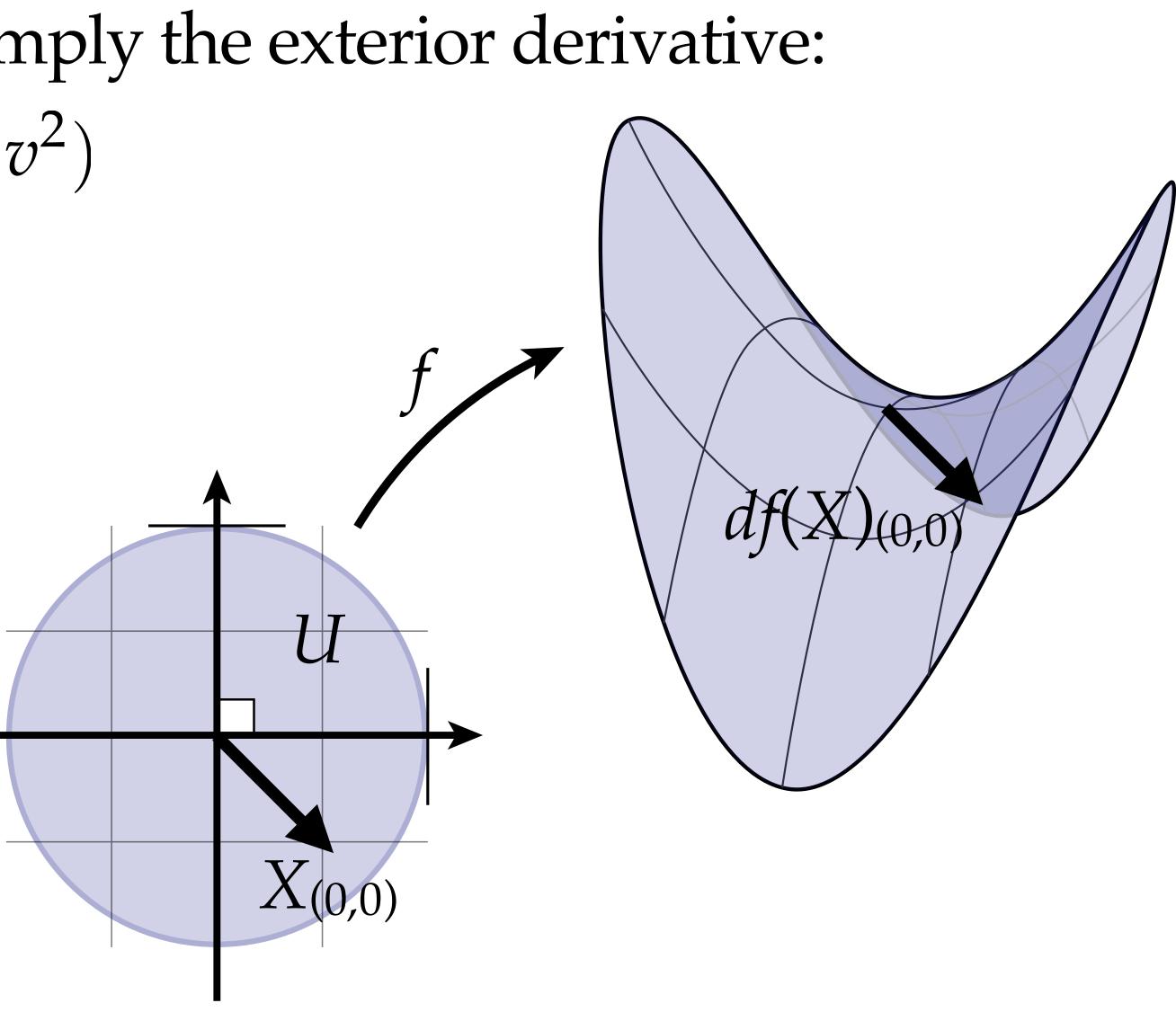
(1,0,2u)du + (0,1,-2v)dv

Pushforward of a vector field:

$$X := \frac{3}{4} \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)$$

$$df(X) = \frac{3}{4} \left(1, -1, 2(u+v) \right)$$

E.g., at $u = v = 0$: $\left(\frac{3}{4}, -\frac{3}{4}, 0 \right)$



Differential—Matrix Representation (Jacobian)

Definition. Consider a map $f : \mathbb{R}^n \to \mathbb{R}^m$, and let x_1, \ldots, x_n be coordinates on \mathbb{R}^n . Then the *Jacobian* of f is the matrix

 $J_{f} := \begin{bmatrix} \partial f^{1} / \partial x^{1} \\ \vdots \\ \partial f^{m} / \partial x^{1} \end{bmatrix}$

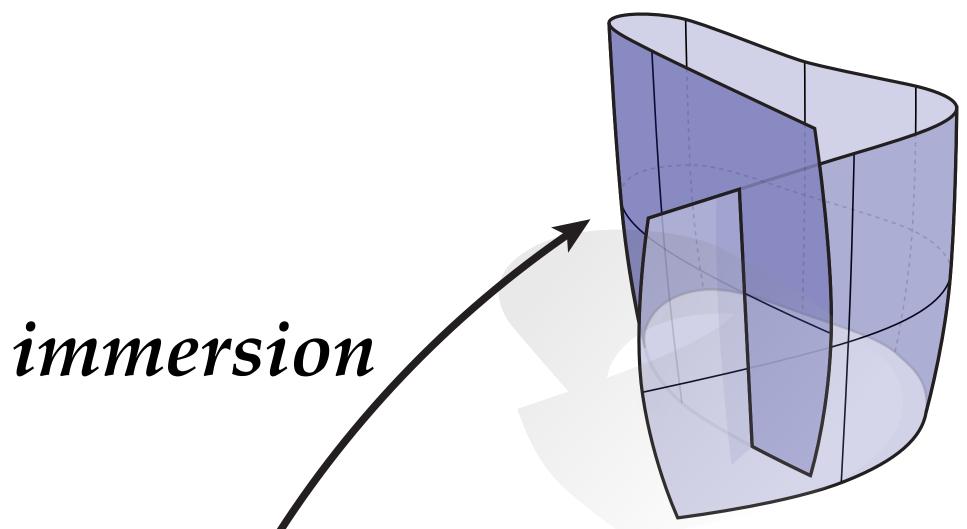
where f^1, \ldots, f^m are the components of f w.r.t. some coordinate system on \mathbb{R}^m . This matrix represents the differential in the sense that $df(X) = J_f X$.

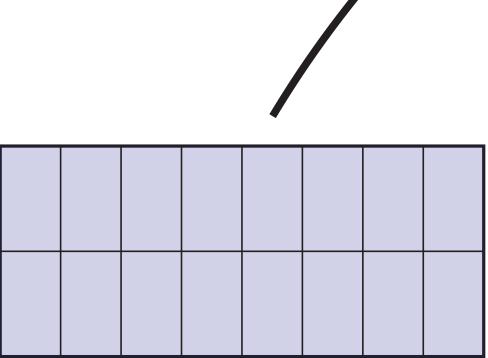
(In solid mechanics, also known as the *deformation gradient*.) **Note:** does not generalize to infinite dimensions! (E.g., maps between functions.)

$$\cdots \partial f^{1}/\partial x^{n} \\ \vdots \\ \cdots \partial f^{m}/\partial x^{n} \end{bmatrix}$$

Immersed Surface

• A parameterized surface *f* is an *immersion* if its differential is nondegenerate, *i.e.*, if df(X) = 0 if and only if X = 0.





Intuition: no region of the surface gets "pinched"

Immersion — Example

Consider the standard parameterization of the sphere:

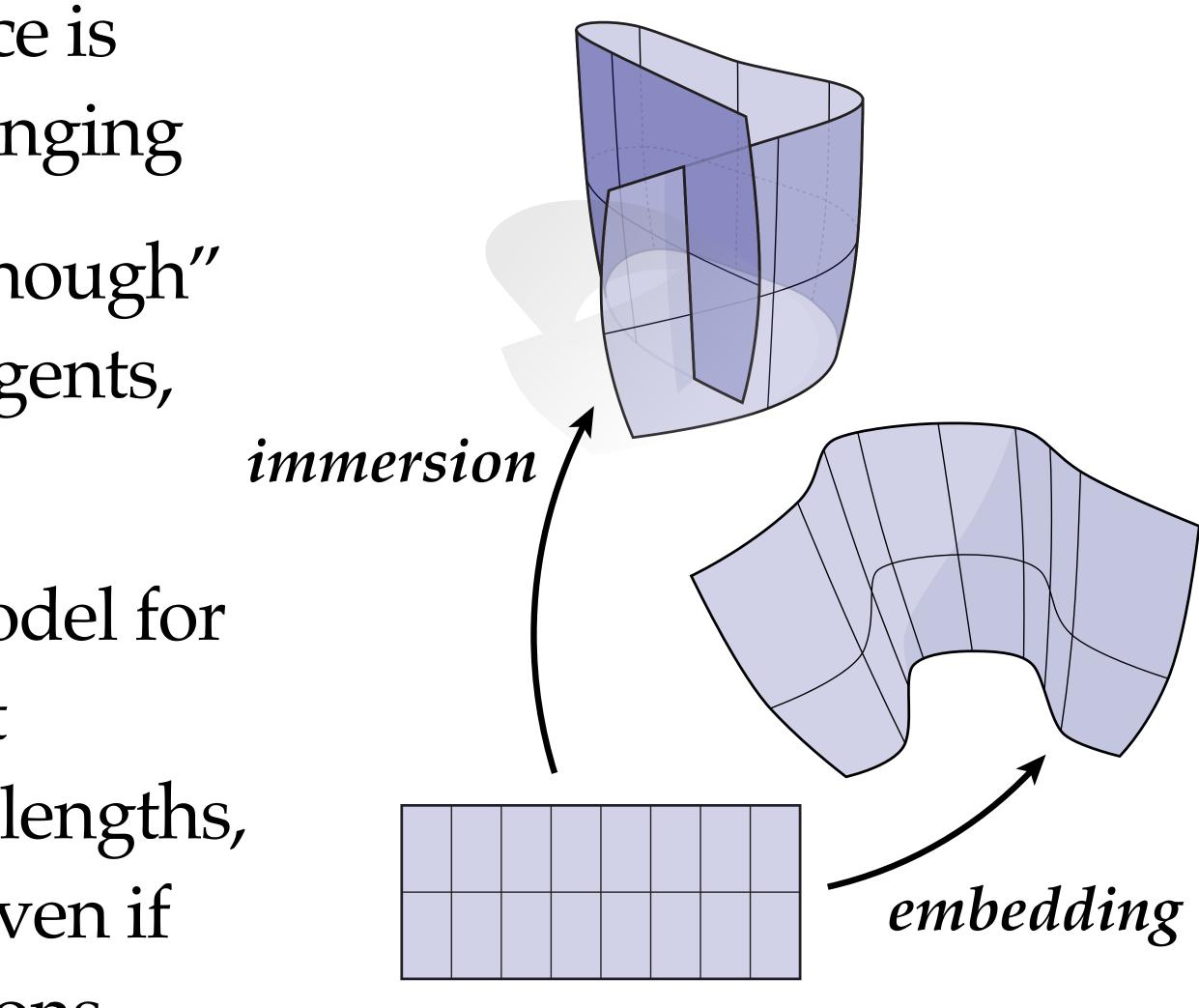
- $f(u,v) := (\cos(u)\sin(v), \sin(u)\sin(v), \cos(v))$
- **Q:** Is *f* an immersion? A: No: when v = 0 we get $(0, 0, 0) du + (\cos(u), \sin(u), -\sin(v)) dv$

Nonzero tangents mapped to zero!

$df = \frac{\partial f}{\partial u} du + \frac{\partial f}{\partial v} dv = \begin{pmatrix} -\sin(u)\sin(v), & \cos(u)\sin(v), & 0 \\ \cos(u)\cos(v), & \cos(v)\sin(u), & -\sin(v) \end{pmatrix} \frac{du}{dv}$ \mathcal{U} π 2π

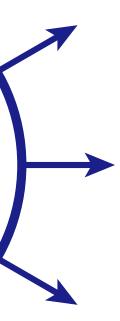
Immersion vs. Embedding

- In practice, ensuring that a surface is globally embedded can be challenging
- Immersions are typically "nice enough" to define local quantities like tangents, normals, metric, etc.
- Immersions are also a natural model for the way we typically think about meshes: most quantities (angles, lengths, etc.) are perfectly well-defined, even if there happen to be self-intersections



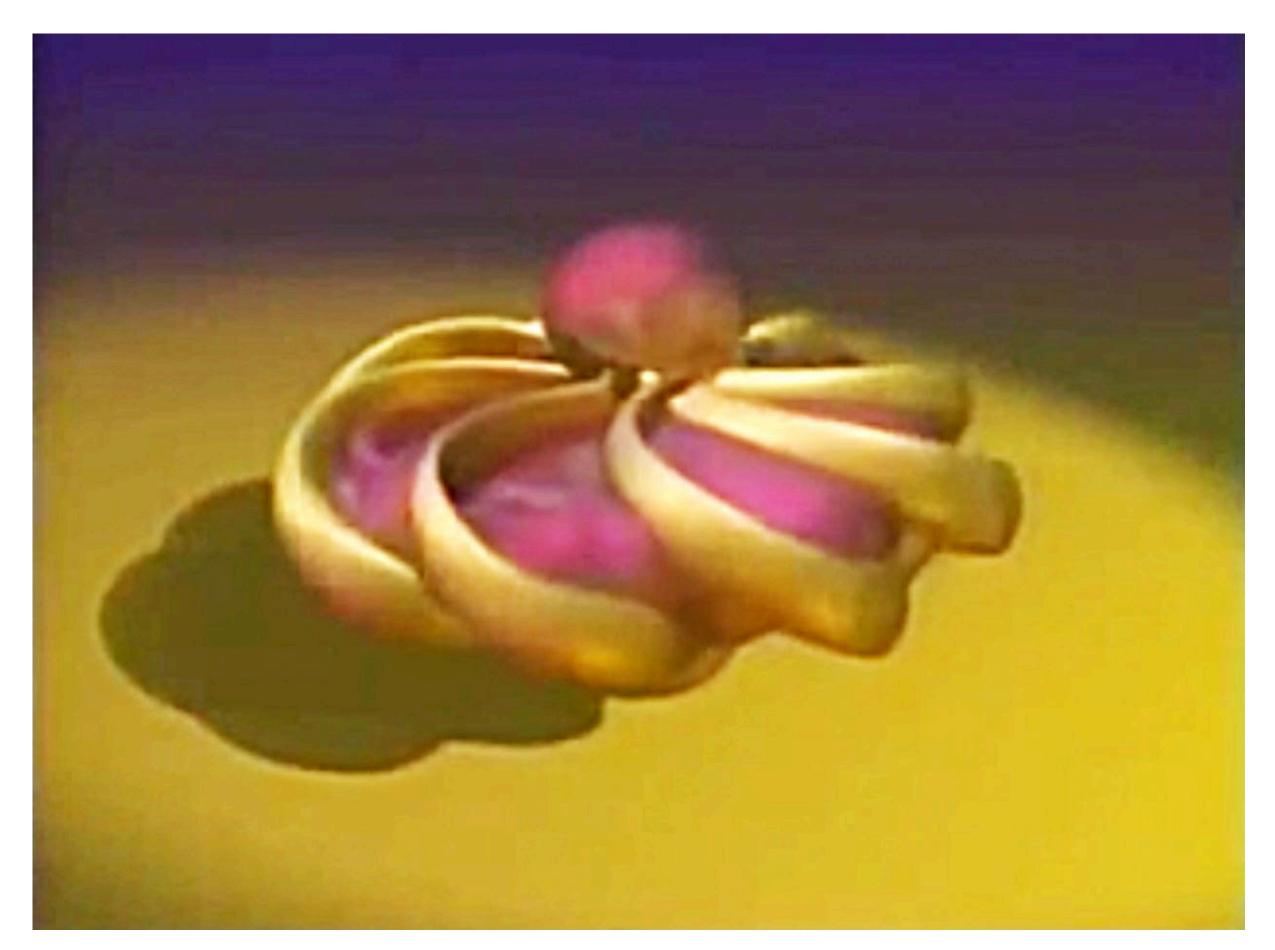
Circle Eversion

- Can you turn the circle inside-out, while remaining immersed?
- (Hint: we've already seen a theorem that says something about this question!)



Sphere Eversion

Turning a Sphere Inside-Out (1994)



https://youtu.be/-6g3ZcmjJ7k

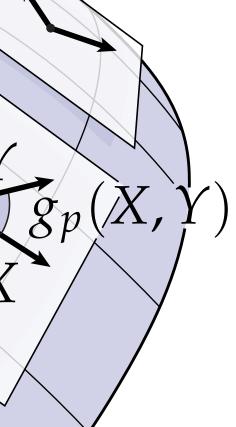
Riemannian Metric

Riemann Metric

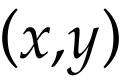
- Many quantities on manifolds (curves, surfaces, etc.) ultimately boil down to measurements of *lengths* and *angles* of tangent vectors
- This information is encoded by the so-called *Riemannian metric**
- Abstractly: smoothly-varying positive-definite bilinear form
- For immersed surface, can (and will!) describe more concretely/geometrically

***Note:** *not* the same as a point-to-point distance metric d(x,y)

M



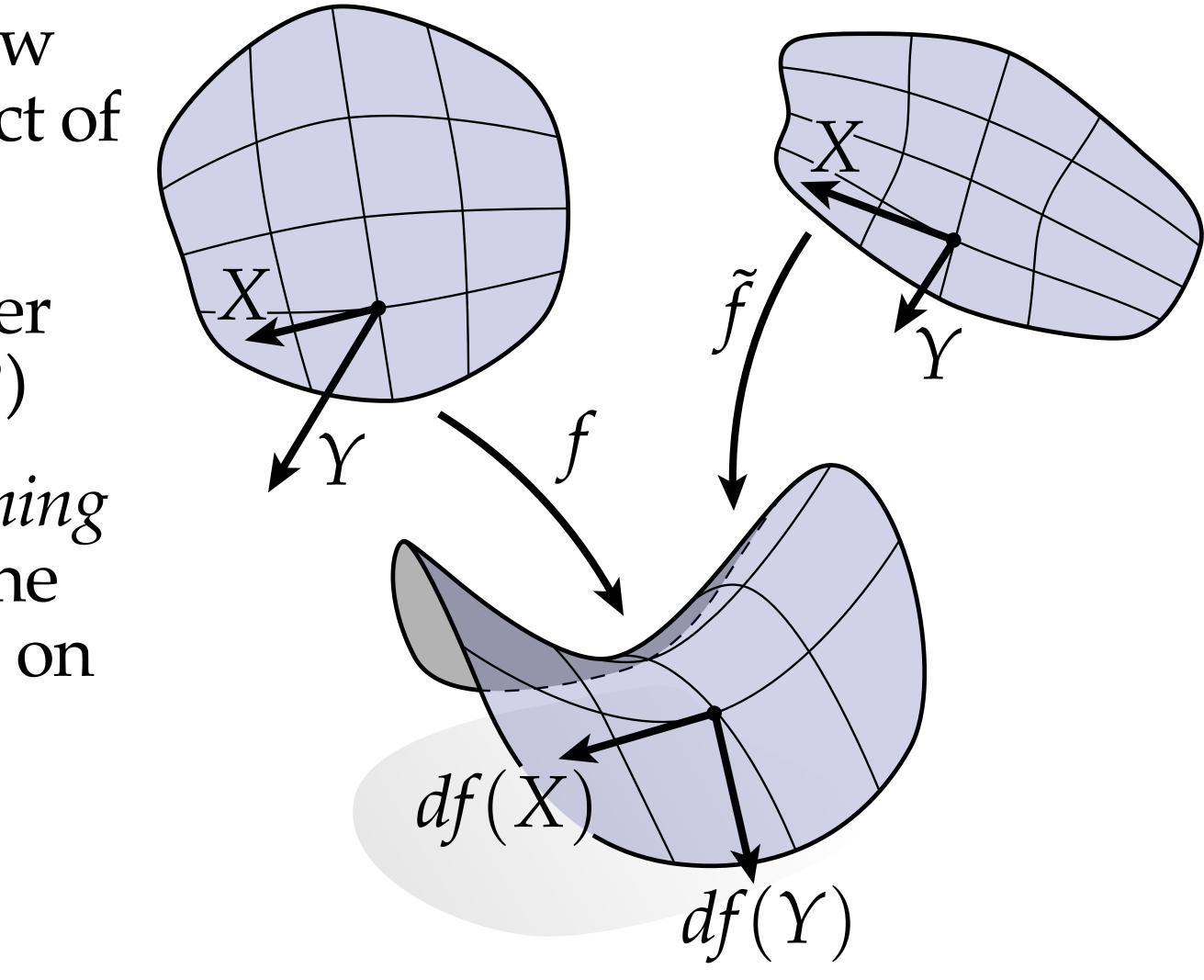
 $T_pM p$



Metric Induced by an Immersion

- Given an immersed surface *f*, how should we measure inner product of vectors *X*, *Y* on its domain *U*?
- We should **not** use the usual inner product on the plane! (Why not?)
- Planar inner product tells us *nothing* about actual length & angle on the surface (and changes depending on choice of parameterization!)
- Instead, use induced metric

 $g(X,Y) := \langle df(X), df(Y) \rangle$



Key idea: must account for "stretching"

Induced Metric—Matrix Representation

represent as a 2x2 matrix I called the *first fundamental form*:

$$g(X, Y) = X^T I Y$$

$$\Rightarrow \mathbf{I}_{ij} = g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right) = \left\langle df\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right) \right\rangle$$

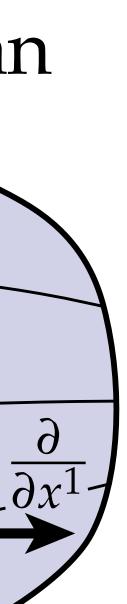
• Alternatively, can express first fundamental form via Jacobian:

 $g(X,Y) = \langle df(X), df(Y) \rangle = (J_f X)^{\mathsf{T}} (J_f Y) = X^{\mathsf{T}} (J_f^{\mathsf{T}} J_f) Y$

$$\Rightarrow \mathbf{I} = J_f^{\mathsf{T}} J_f$$

• Metric is a bilinear map from a pair of vectors to a scalar, which we can

 $\frac{\partial}{\partial x^i}$), $df\left(\frac{\partial}{\partial x^j}\right)$



 ∂x^2

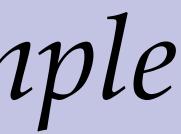
Induced Metric—Example

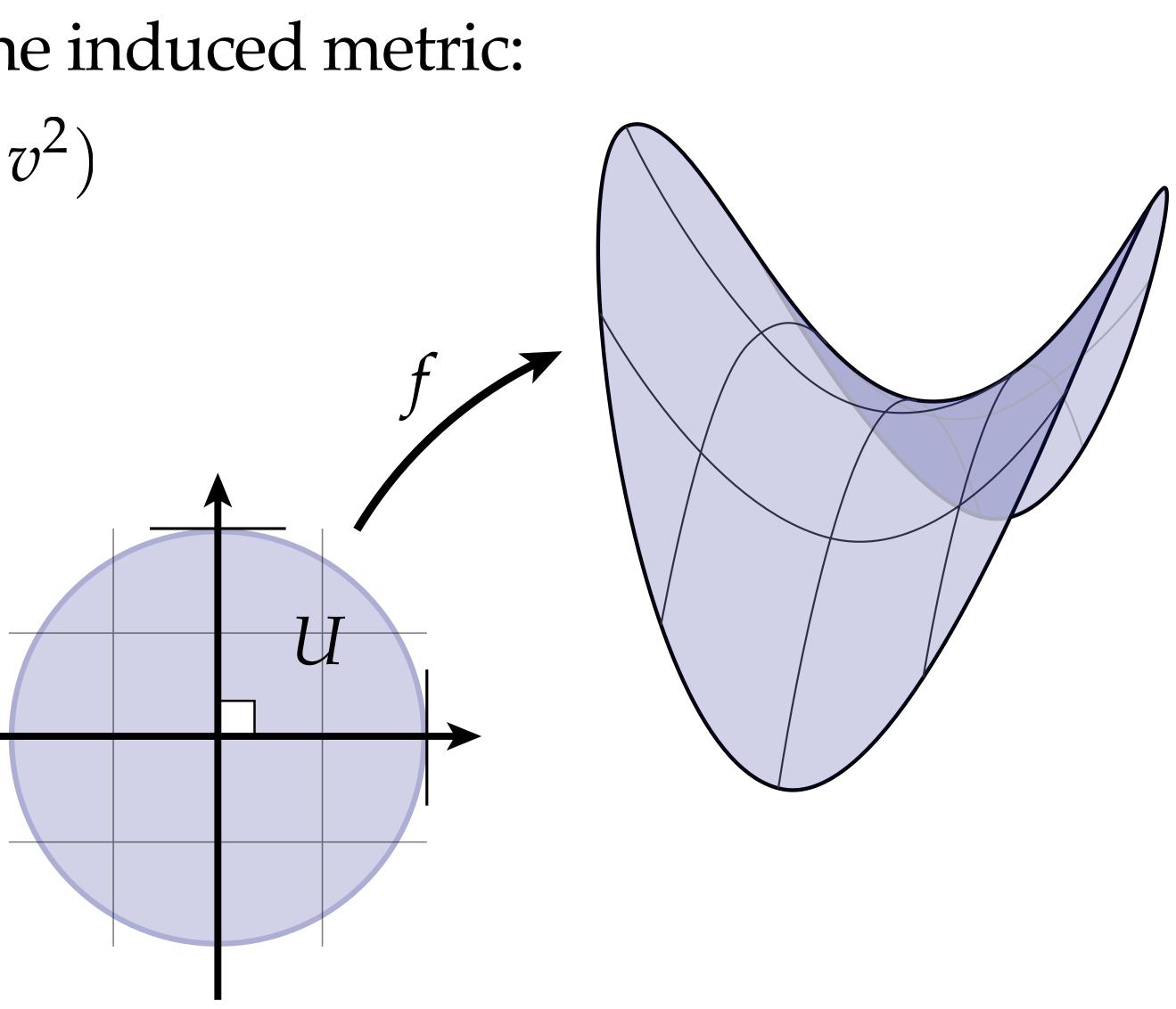
Can use the differential to obtain the induced metric: $f: U \to \mathbb{R}^3$; $(u, v) \mapsto (u, v, u^2 - v^2)$ df = (1, 0, 2u)du + (0, 1, -2v)dv $\begin{bmatrix} 1 & 0 \end{bmatrix}$

$$J_f = \begin{bmatrix} 0 & 1\\ 2u & -2v \end{bmatrix}$$

 $\mathbf{I} = J_f^{\mathsf{I}} J_f$

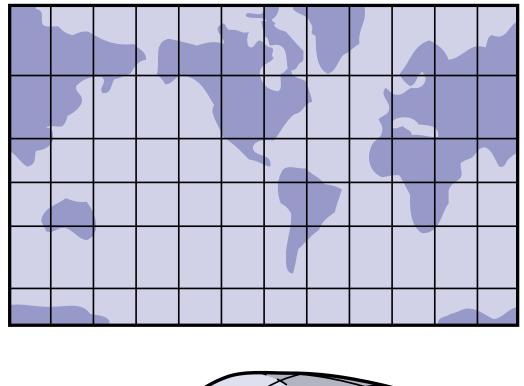
$$= \begin{bmatrix} 1+4u^2 & -4uv \\ -4uv & 1+4v^2 \end{bmatrix}$$

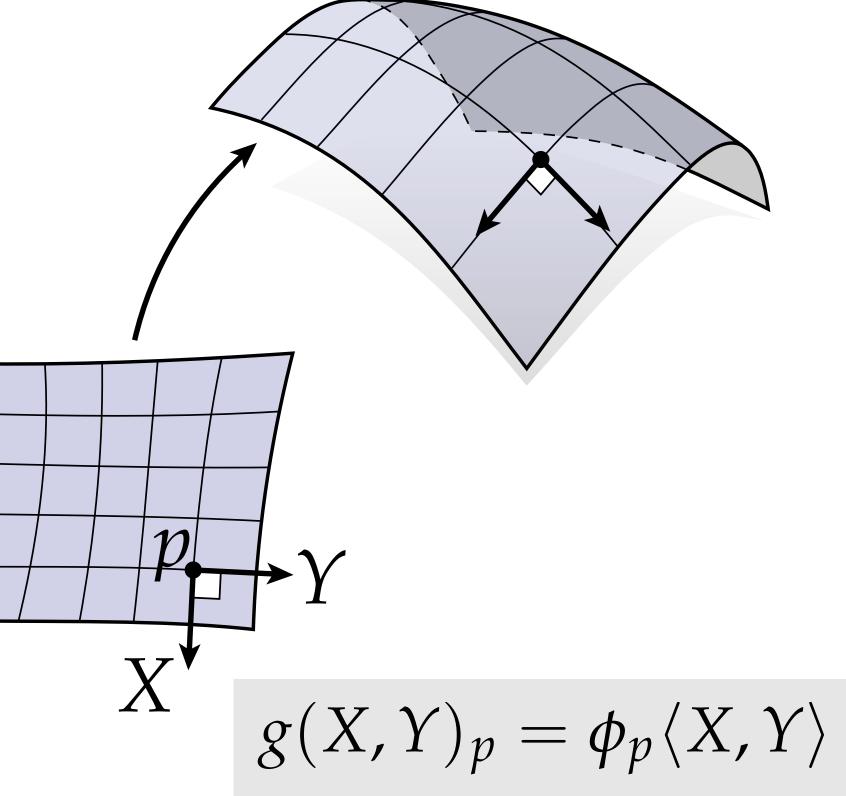




Conformal Coordinates

- As we've just seen, there can be a complicated relationship between length & angle on the domain (2D) and the image (3D)
- For curves, we simplified life by using an *arc-length* or *isometric* parameterization: lengths on domain are identical to lengths along curve
- For surfaces, usually not possible to preserve all *lengths* (e.g., globe). Remarkably, however, can always preserve *angles* (conformal)
- Equivalently, a parameterized surface is *conformal* if at each point the induced metric is simply a positive rescaling of the 2D Euclidean metric





Example (Enneper Surface)

Consider the surface

$$f(u,v) := \begin{bmatrix} uv^2 + u - \frac{1}{3}v(v^2 - 3u) \\ (u - v)(u) \end{bmatrix}$$

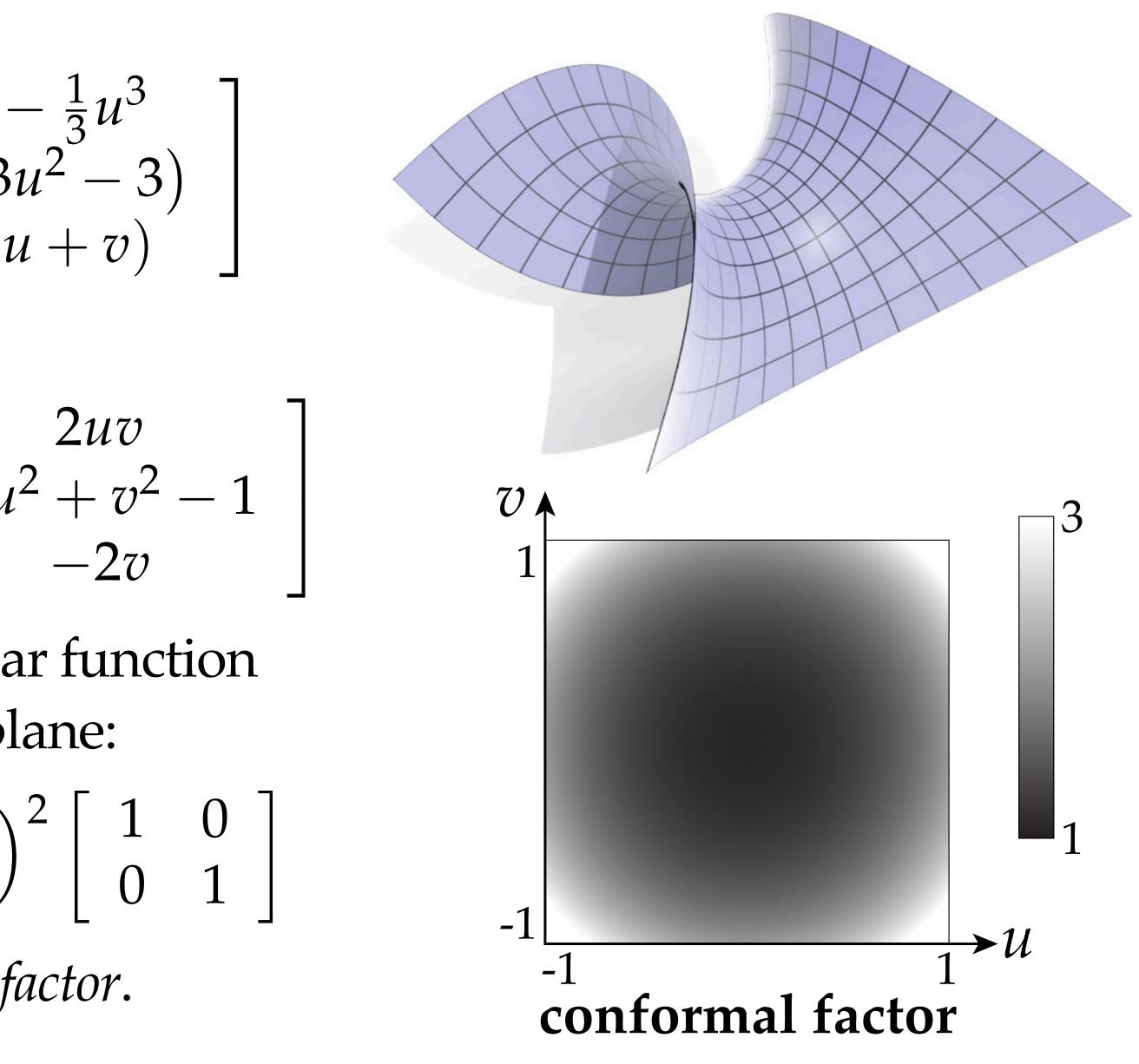
Its Jacobian matrix is

$$J_f = \begin{bmatrix} -u^2 + v^2 + 1 \\ -2uv & -u^2 \\ 2u \end{bmatrix}$$

Its metric then works out to be just a scalar function times the usual metric of the Euclidean plane:

$$\mathbf{I} = J_f^T J_f = \left(u^2 + v^2 + 1\right)^2$$

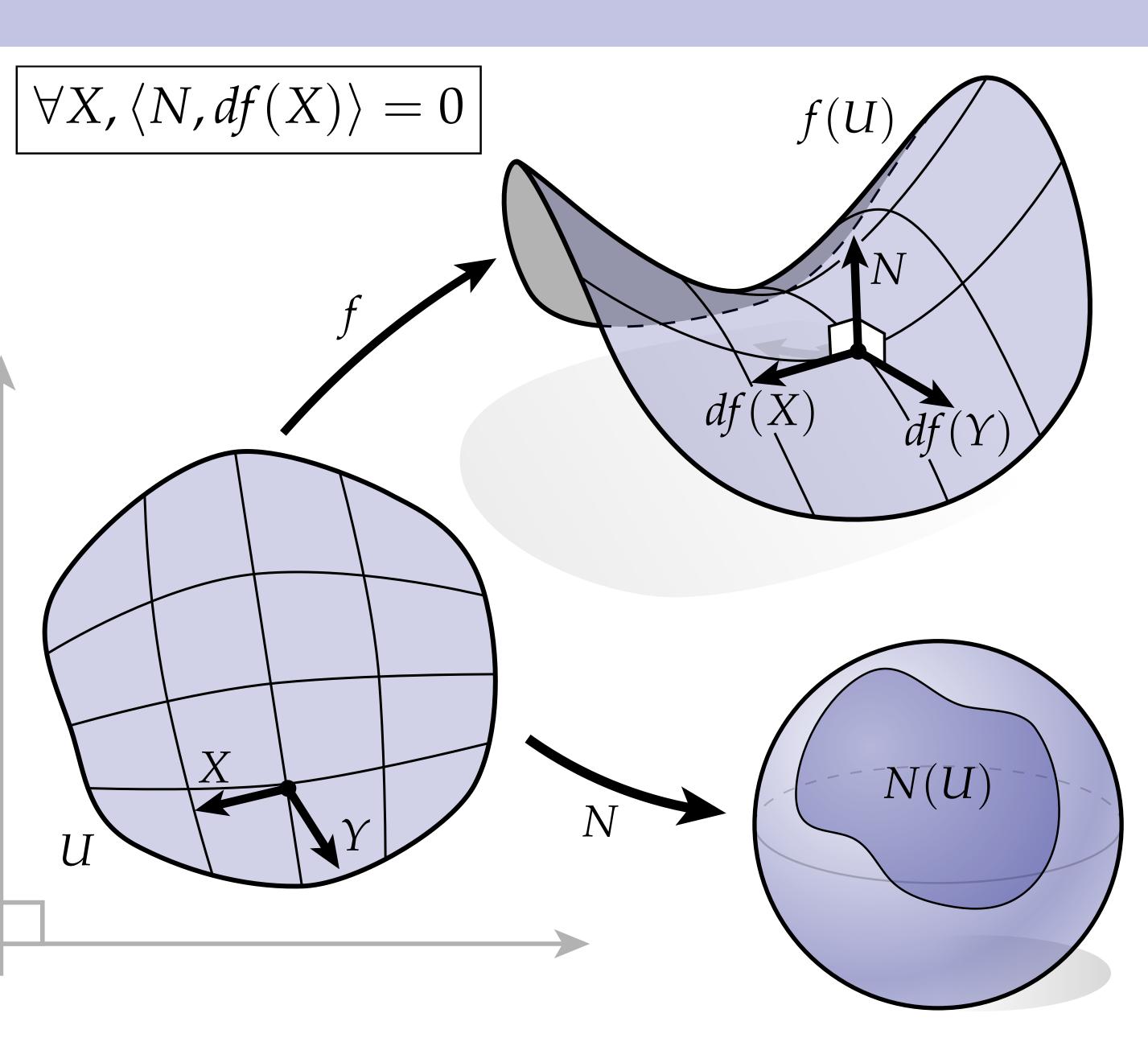
This function is called the *conformal scale factor*.



Gauss Map

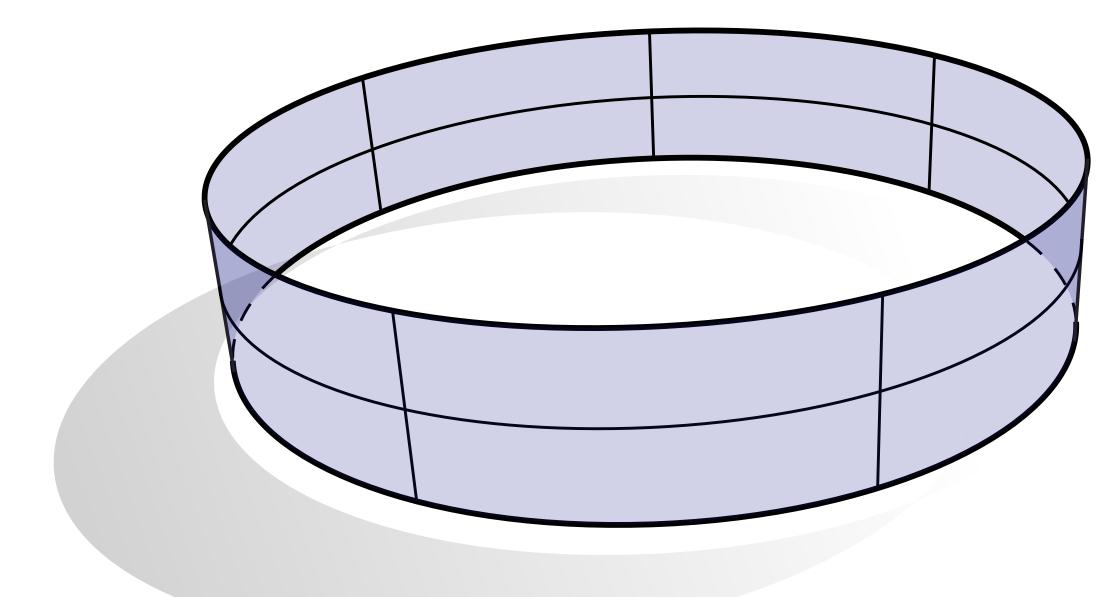
Gauss Map

- A vector is **normal** to a surface if it is orthogonal to all tangent vectors
- **Q**: Is there a *unique* normal at a given point?
- A: No! Can have different magnitudes/directions.
- The Gauss map is a *continuous* map taking each point on the surface to a *unit* normal vector
- Can visualize Gauss map as a map from the surface to the unit sphere

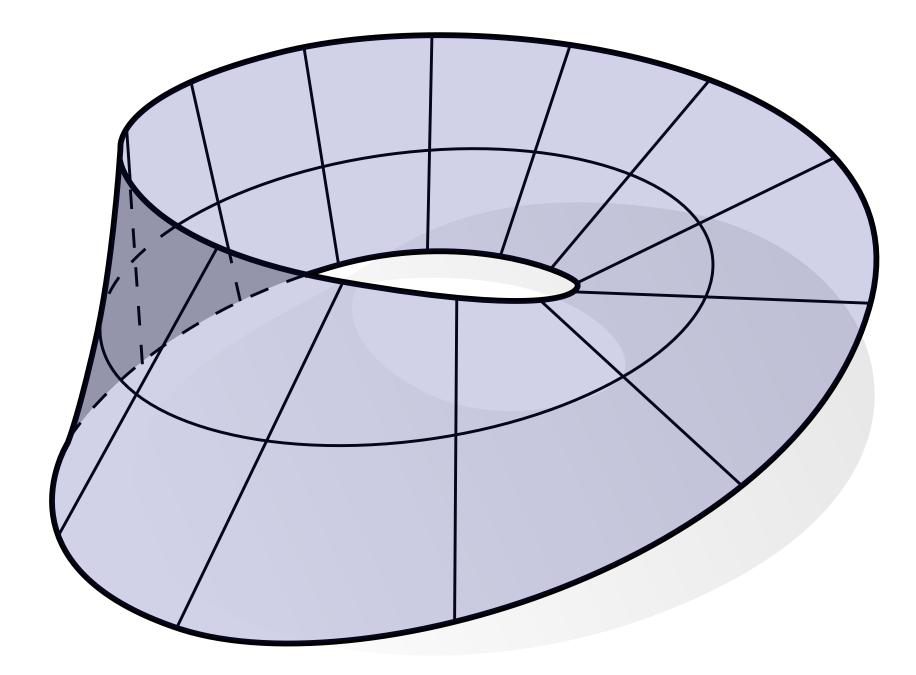


Orientability

Not every surface admits a Gauss map (globally):



orientable



nonorientable

Gauss Map—Example

Can obtain unit normal by taking the cross product of two tangents*:

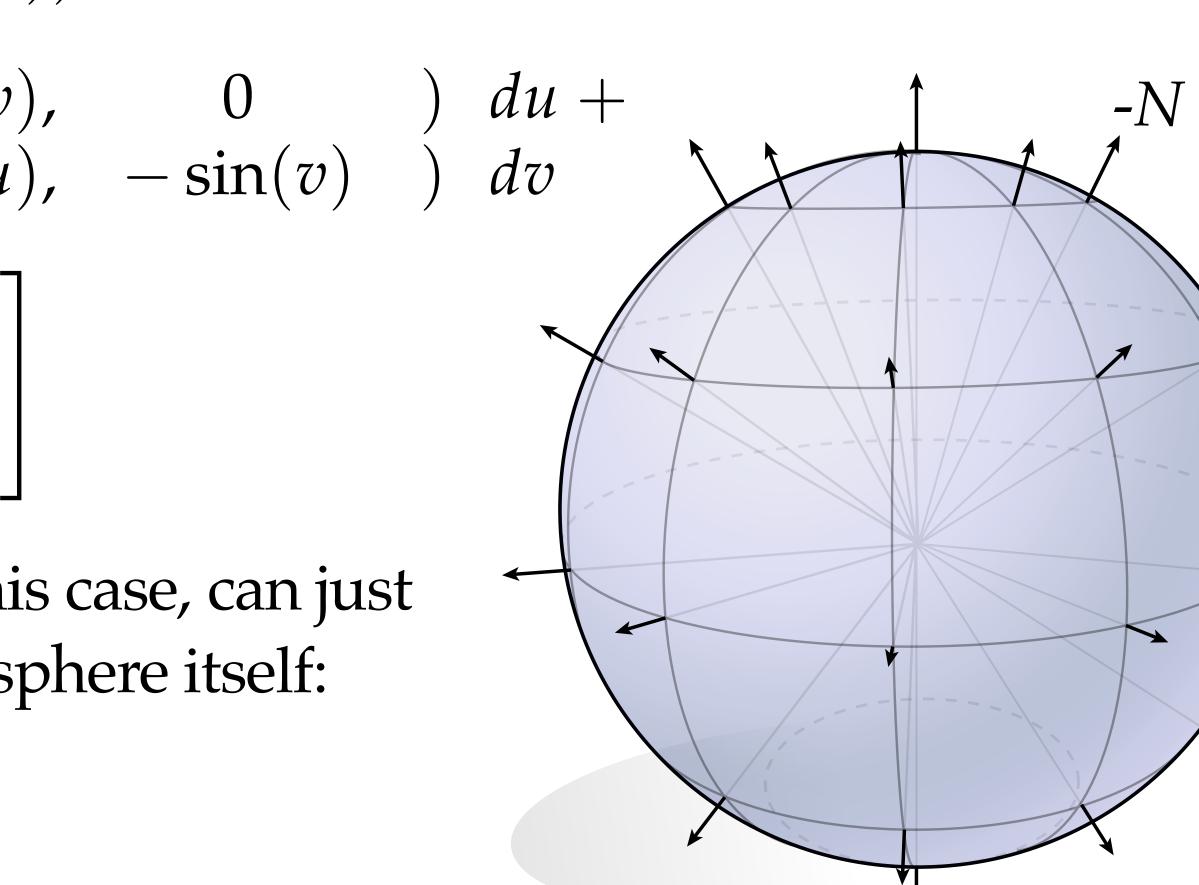
- $f := (\cos(u)\sin(v), \sin(u)\sin(v), \cos(v))$
- $df = \begin{pmatrix} -\sin(u)\sin(v), & \cos(u)\sin(v), & 0 \\ \cos(u)\cos(v), & \cos(v)\sin(u), & -\sin(v) \end{pmatrix} dv$

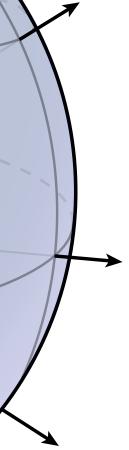
$$df(\frac{\partial}{\partial u}) \times df(\frac{\partial}{\partial v}) = \begin{bmatrix} -\cos(u)\sin^2(v) \\ -\sin(u)\sin^2(v) \\ -\cos(v)\sin(v) \end{bmatrix}$$

To get *unit* normal, divide by length. In this case, can just notice we have a constant multiple of the sphere itself:

$$\Rightarrow N = -f$$

*Must not be parallel!



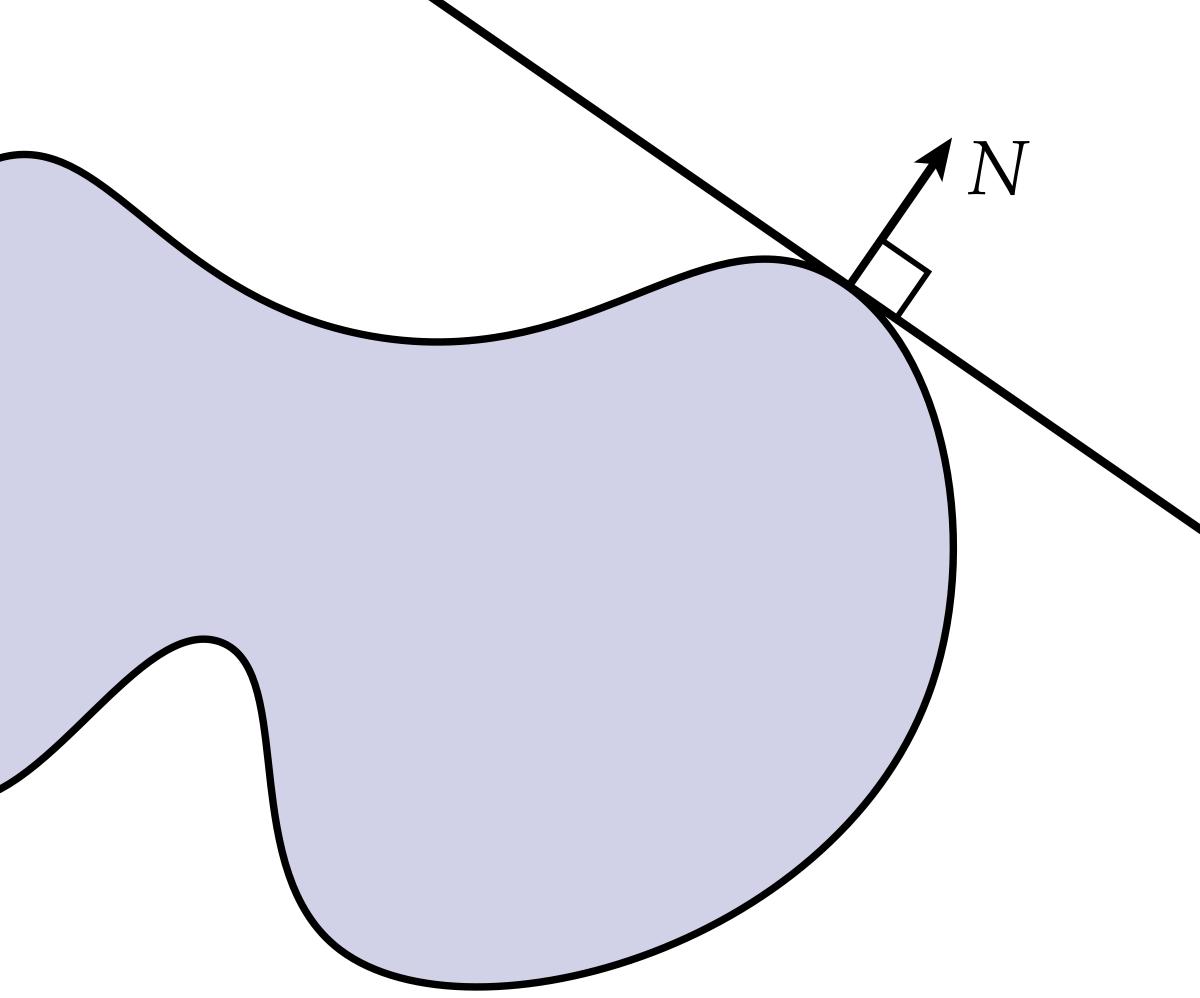


Surjectivity of Gauss Map

- has this normal? (N = u)
- Yes! **Proof** (Hilbert):

Q: Is the Gauss map *injective*?

• Given a unit vector *u*, can we always find some point on a surface that



Vector Area

- Given a little patch of surface Ω , what's the "average normal"?
- Can simply integrate normal over the patch, divide by area:

 $\frac{1}{\operatorname{area}(\Omega)}$

- Integrand *N dA* is called the **vector area**. (Vector-valued 2-form)
- Can be easily expressed via exterior calculus*:
 - $df \wedge df(X,Y) = df(X)$

2df(Z

2Nd

 $\implies \left| \mathcal{A} = \frac{1}{2} df \wedge df \right|$

what's the "average normal"? er the patch, divide by area:

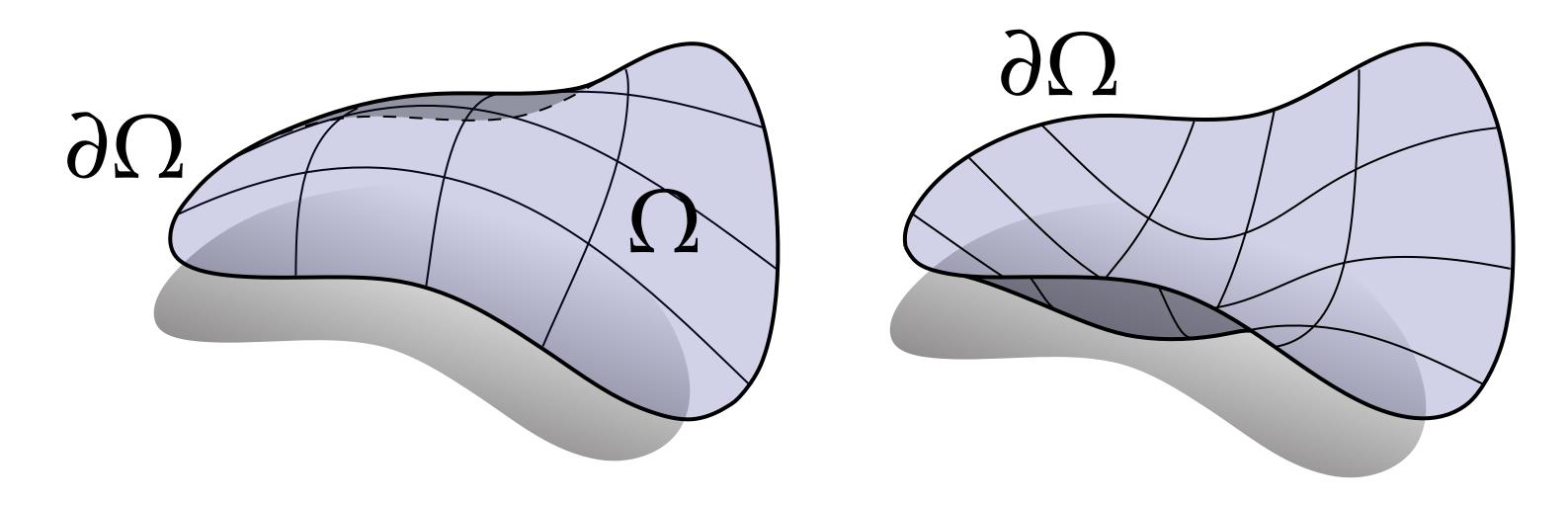
$$\overline{O}\int_{\Omega} N dA$$

or area. (Vector-valued 2-form) rior calculus*:

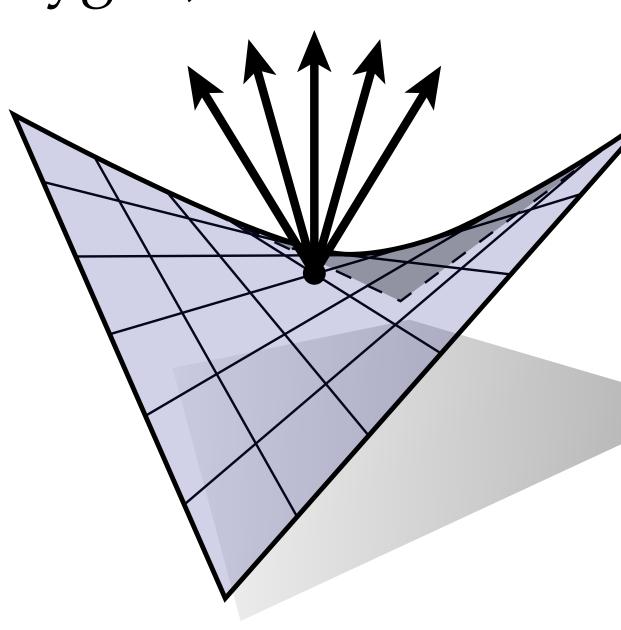
$$f(X) \times df(Y) - df(Y) \times df(X) = X \times df(Y) = A(X, Y)$$

Vector Area, continued

- By expressing vector area this way, we make an interesting observation: $2\int_{O} N \, dA = \int_{O} df \wedge df = \int_{O} d(f \, df)$
- Hence, vector area is the same for any two patches w/ same boundary
- Can define "normal" given **only** boundary (*e.g.*, nonplanar polygon)
- **Corollary:** *integral of normal vanishes for any closed surface*



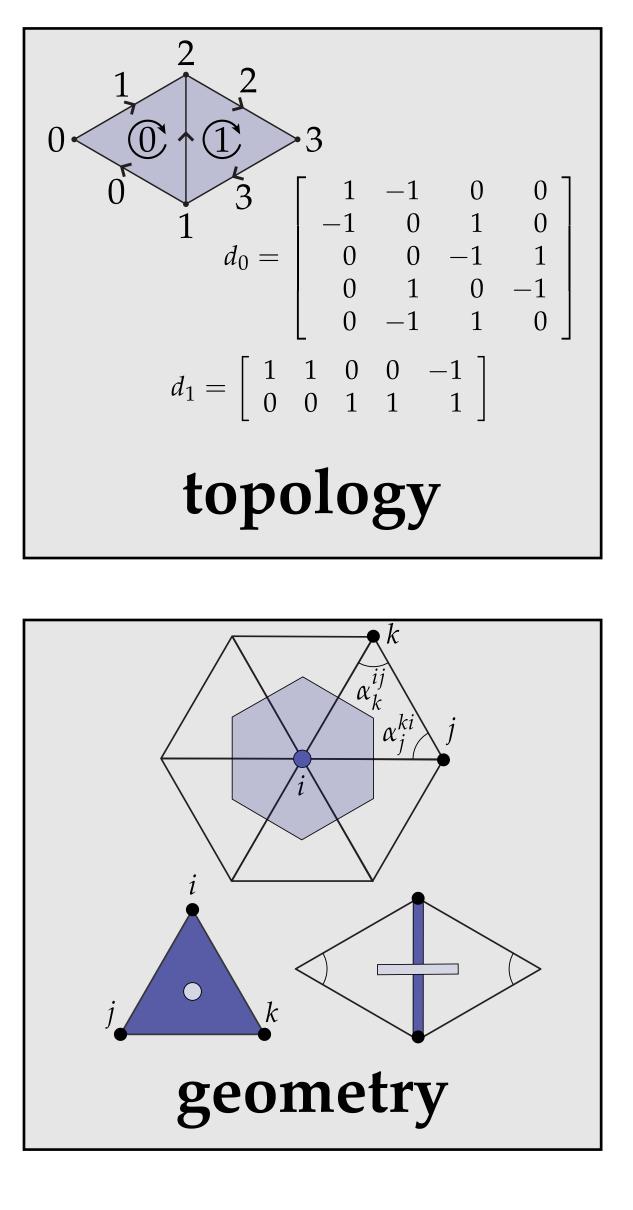
$$f(x) = \int_{\partial \Omega} f df = \int_{\partial \Omega} f(s) \times df(T(s)) ds$$



Exterior Calculus on Immersed Surfaces

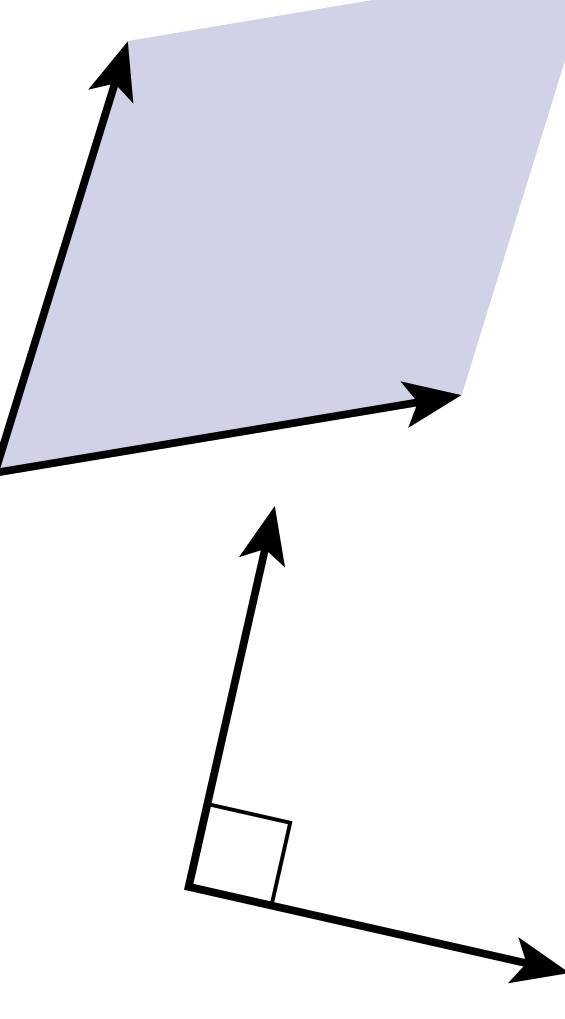
Exterior Calculus on Curved Domains

- Initial study of differential forms was in **flat** Euclidean *Rⁿ* • How do we do exterior calculus on **curved** spaces? • Recall that operators nicely "split up" topology & geometry: • (topology) wedge product (^), exterior derivative (*d*)
- - (geometry) Hodge star (★)
- For instance, discrete *d* uses only mesh connectivity (topology); discrete **★** involves only ratios of volumes (geometry)
- Therefore, to get exterior calculus to work with curved spaces, we just need to figure out what the Hodge star looks like!
- Traditionally taught from abstract **intrinsic** point of view; we'll start with the concrete extrinsic picture (which fewer people know... but is more directly relevant for real applications!)



Exterior Calculus on Immersed Surfaces

- For surface immersed in 3D, just need two pieces of data:
 - Area form—"how big is a given region?"
 - lets us define Hodge star on 0/2-forms
 - can express via cross product in R^3
 - **Complex structure**—*"how do we rotate by* 90°?"
 - lets us define Hodge star on 1-forms
 - can express via cross product w/ surface normal
- All of this data also determined by induced metric



Induced Area 2-Form

- What signed area should we associate with a pair of vectors X, Y on the domain?
- Not just their cross product! Need to account for "stretching" caused by immersion f • What's the signed area of the stretched vector? Let's start here:

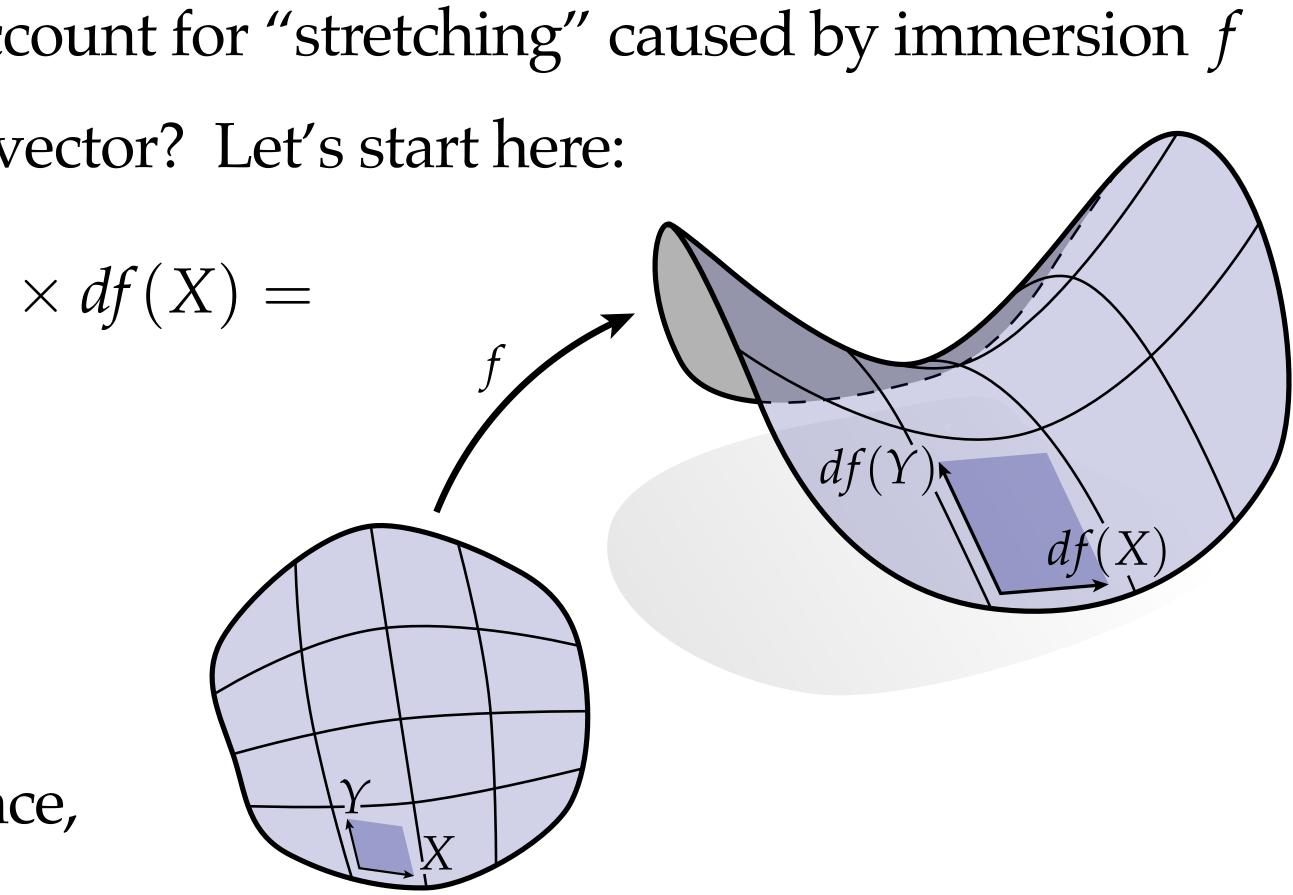
$$df \wedge df(X, Y) = df(X) \times df(Y) - df(Y)$$
$$2df(X) \times df(Y)$$

Since df(X) and df(Y) are tangent, we get

 $df \wedge df(X,Y) = 2NdA(X,Y)$

where dA is the area 2-form on f(M). Hence,

$$dA = \frac{1}{2} \langle N, df \wedge df \rangle$$



Induced Hodge Star on O-Forms

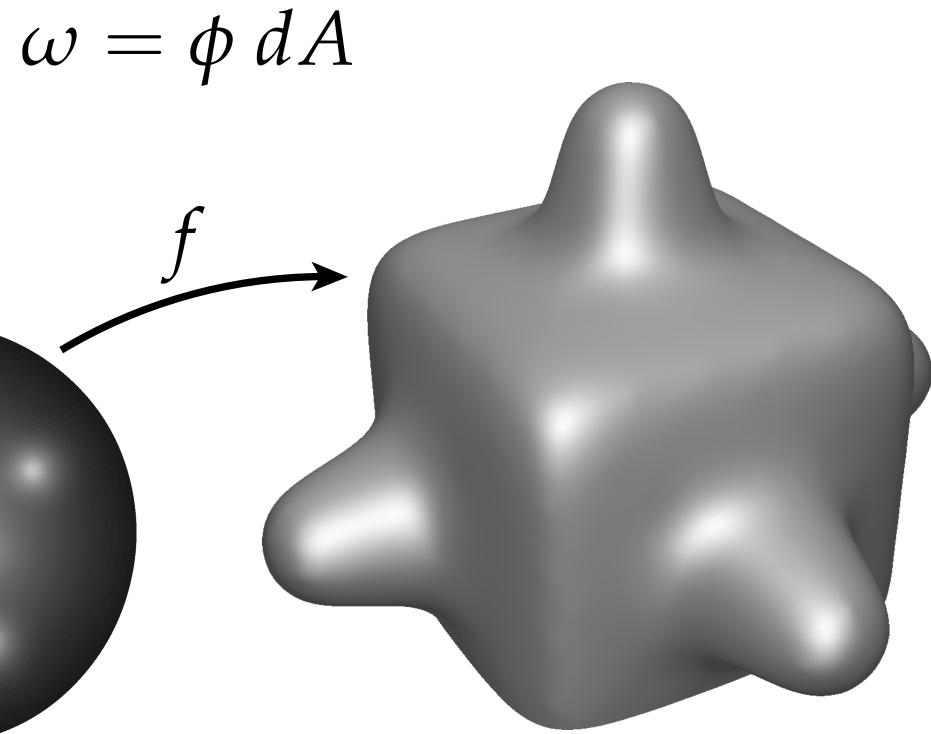
- Given the area 2-form dA, can easily define Hodge star on 0-forms: $\phi \stackrel{\star}{\longmapsto} \phi \, dA$
- Meaning? Applying this new 2-form to a unit area on the surface yields the original function value at that point.

$$dA\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right)$$

Induced Hodge Star on 2-Forms

- To get the 2-form Hodge star, we just go the other way
- Suppose ω is a 2-form on f(M). Then its Hodge dual is the unique 0-form ϕ such that

 $dA\left(\frac{\partial}{\partial u},\frac{\partial}{\partial v}\right)$ \mathcal{U} U



Complex Structure

- The *complex structure** tells us how to rotate by 90°
- In R^2 , we just replace (x,y) with (-y,x):

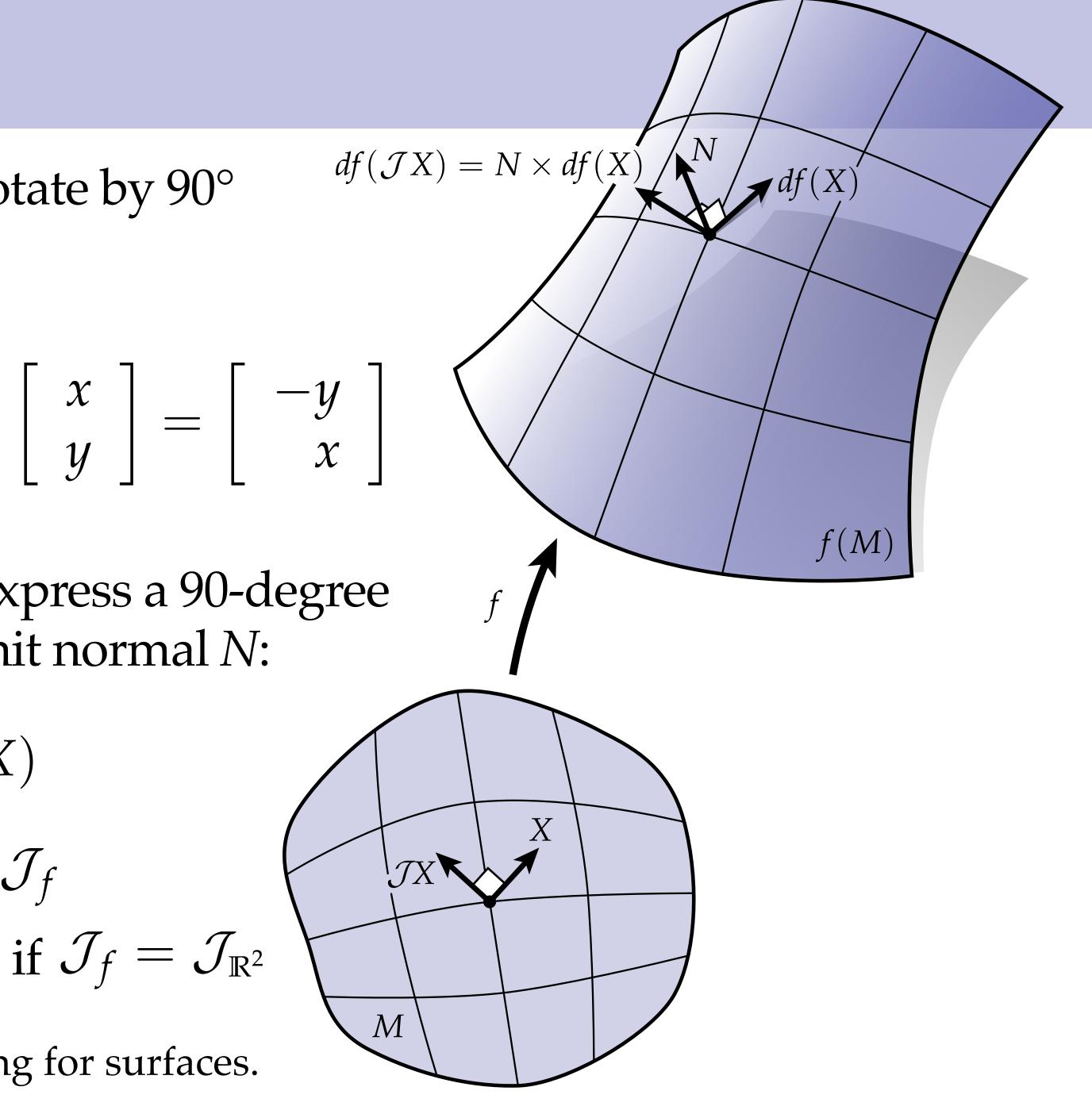
$$\mathcal{J}_{\mathbb{R}^2} := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \qquad \mathcal{J}_{\mathbb{R}^2}$$

• For a surface immersed in *R*³, we can express a 90-degree rotation via a cross product with the unit normal *N*:

$$df(\mathcal{J}_f X) := N \times df(X)$$

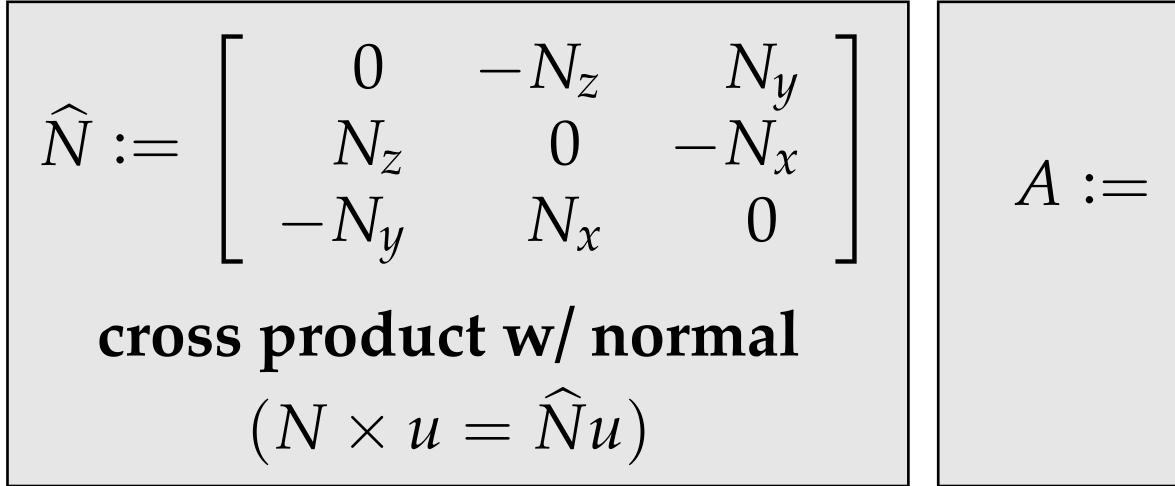
- This relationship uniquely determines \mathcal{J}_f
- An immersion is conformal if and only if $\mathcal{J}_f = \mathcal{J}_{\mathbb{R}^2}$

*Sometimes called *linear complex structure*; same thing for surfaces.



Complex Structure in Coordinates

- Similar strategy to shape operator: solve a matrix equation for \mathcal{J}



$$df(\mathcal{J}X) = N \times df(X)$$

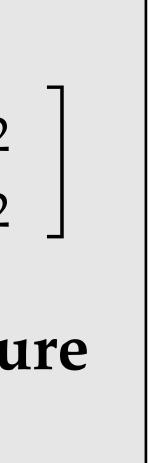
*Note: not something you do much in practice, but may help make definition feel more concrete...

• Suppose we want to explicitly compute the linear complex structure*

$$\begin{bmatrix} \partial f_x / \partial u & \partial f_x / \partial v \\ \partial f_y / \partial u & \partial f_y / \partial v \\ \partial f_z / \partial u & \partial f_z / \partial v \end{bmatrix}$$

$$J := \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix}$$
complex structed

 $\implies |J = (A^{I} A)^{-1} (A^{I} NA)|$



Induced Hodge Star on 1-Forms

• Recall that for a 1-form α in the plane, applying $\star \alpha$ to a vector X is the same as applying α to a 90-degree rotation of *X*:

 $\star_{\mathbb{R}^2} \alpha(X)$

• For 1-forms on an immersed surface *f*, we instead want to apply a 90degree rotation with respect to the surface itself:

 $\star_f \alpha(X)$

• At this point we have everything we need to do calculus on curved surfaces: 0-, 1-, and 2-form Hodge star. (Will see more general/abstract/ intrinsic definitions for *n*-manifolds later on.)

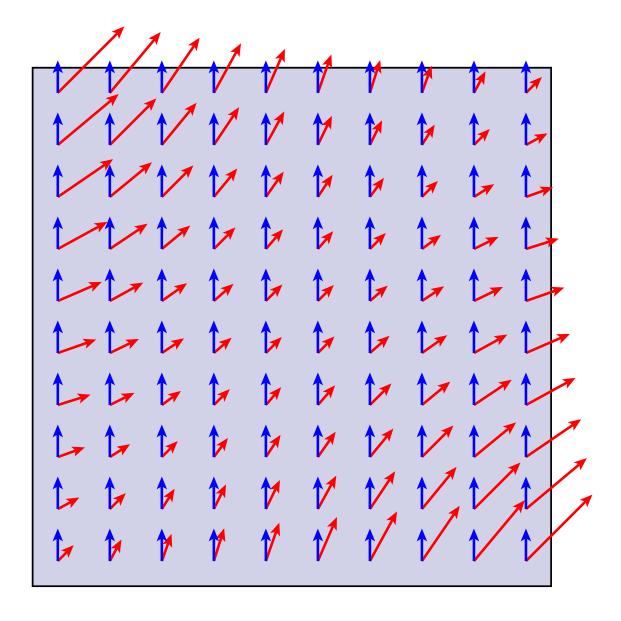
$$) = lpha (\mathcal{J}_{\mathbb{R}^2} X)$$

$$) = \alpha(\mathcal{J}_{f}X)$$

Sharp and Flat on a Surface

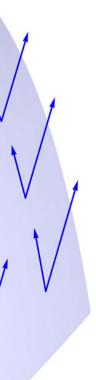
- Can use induced metric to translate between vector fields and 1-forms: $X^{\flat}(Y) := g(X, Y) \qquad \qquad g(\alpha^{\sharp}, Y) := \alpha(Y)$
- No longer just a trivial "transpose" (as in Euclidean R^n)
- E.g., flat correctly encodes inner product on surface

 $X \cdot Y \neq df(X) \cdot df(Y)$



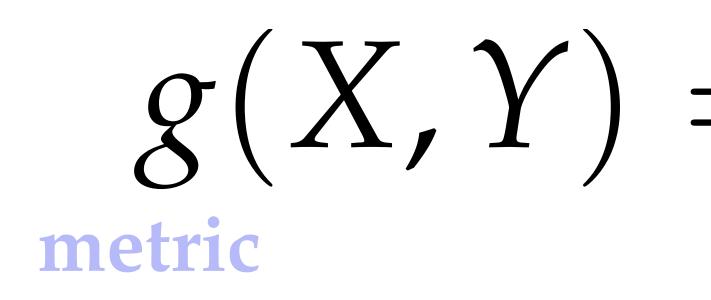
 $X^{\flat}(Y) = df(X) \cdot df(Y)$

 $df(X) \cdot df(Y)$



Metric, Area Form, and Complex Structure

complex structure:



Q: In the plane, how is this relationship related to the cross product, dot product, and 90-degree rotation?

• Riemannian metric on a surface can be decomposed into area form,

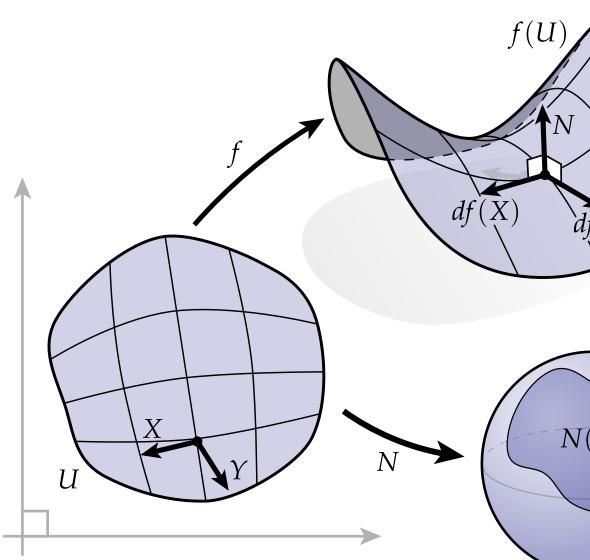
complex structure g(X,Y) = dA(X,JY)area form

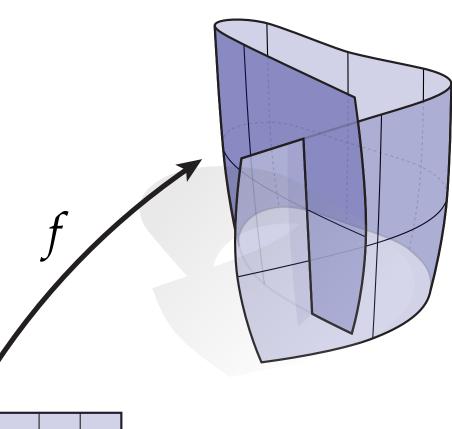
Summary

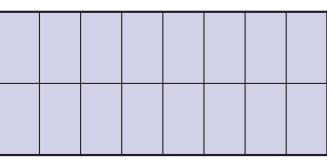
Smooth Surfaces – Summary

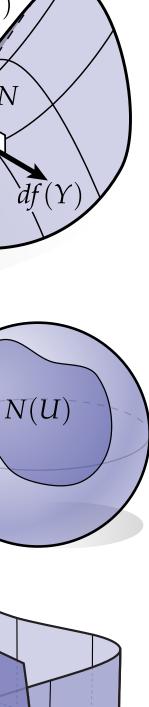
- Can describe shape a surface patch via a function $f: U \longrightarrow R^3$ • embedded if no self-intersection, preserves global topology • exterior calculus: R³-valued differential 0-form on U

- Differential $df: TU \longrightarrow TR^3$ "pushes forward" tangent vectors
 - df(X) "stretches out" tangent vector X
 - surface is immersed if df is nondegenerate $(df(X) \neq 0 \text{ for } X \neq 0)$
 - exterior calculus: R³-valued differential 1-form
- Induced metric $g(X,Y) = \langle df(X), df(Y) \rangle$ gives "true" inner product
- Normal described by a function $N: U \longrightarrow R^3$ (Gauss map)
 - can also be viewed as a map to the sphere



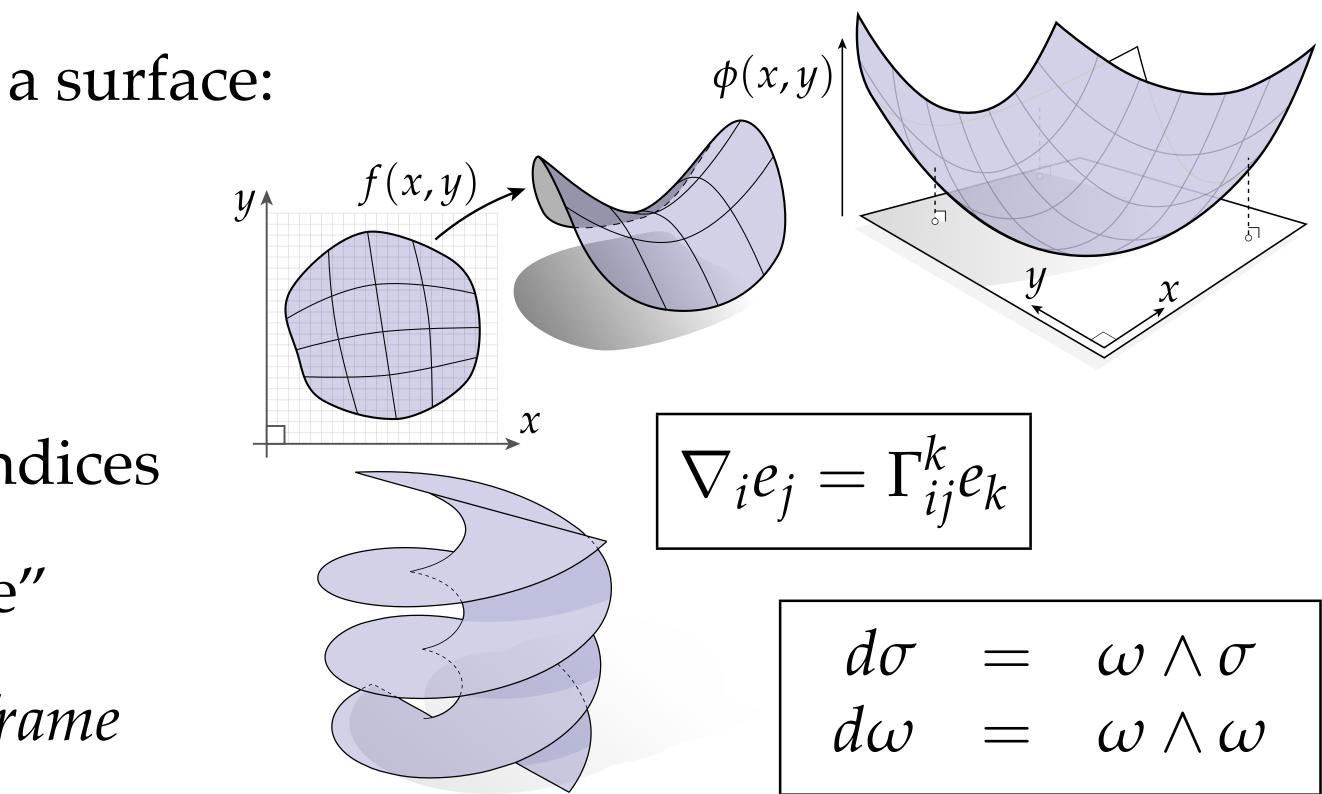




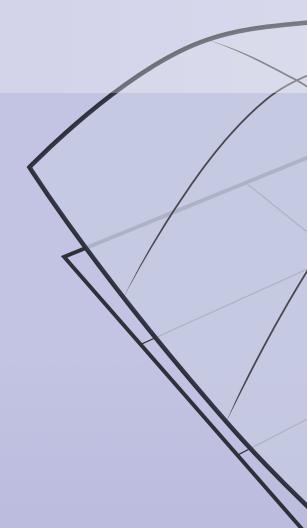


Only Scratched the Surface!

- Many ways to express the geometry of a surface:
 - height function over tangent plane
 - local parameterization
 - Christoffel symbols coordinates / indices
 - differential forms "coordinate free"
 - moving frames change in *adapted frame*
 - Riemann surfaces (*local*); Quaternionic functions (*global*)
- Some references on web to further reading...



• Each dialect provides additional power—and can lead to totally different *algorithms!*



DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

