
DISCRETE DIFFERENTIAL 
GEOMETRY:

AN APPLIED INTRODUCTION
Keenan Crane • CMU 15-458/858B • Fall 2017



Keenan Crane • CMU 15-458/858B • Fall 2017

DISCRETE DIFFERENTIAL 
GEOMETRY:

AN APPLIED INTRODUCTION

LECTURE 15:
DISCRETE CURVATURE I (INTEGRAL)



Discrete Curvature



Discrete Curvature—Visualized
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Curvature of Surfaces
• In smooth setting, had many different 

curvatures (normal, principal, Gauss, 
mean, geodesic, …)

• In discrete setting, appear to be many 
different choices for discretization

• Actually, there is a unified viewpoint 
that helps explain many common 
choices…
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A Unified Picture of Discrete Curvature
• By making some connections between smooth and 

discrete surfaces, we get a unified picture of many 
different discrete curvatures scattered throughout the 
literature

• To tell the full story we’ll need a few pieces:

• geometric derivatives

• Steiner polynomials

• sequence of curvature variations

• assorted theorems (Gauss-Bonnet, Schläfli, ∆f = 2HN)

• Start with integral viewpoint (1st lecture), then cover 
variational viewpoint (2nd lecture).



Quantities & Conventions
• Throughout we will consider the following basic quantities:

• fi — position of vertex i

• eij — vector from i to j

•      — length of edge ij

• Aijk — area of triangle ijk

• Nijk — unit normal of triangle ijk

•       — interior angle at vertex i of triangle ijk

• 𝜑ij — dihedral angle at oriented edge ij
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Q: Which of these quantities are discrete differential forms?  (And what kind?)



Discrete Gaussian Curvature



Euler Characteristic
The Euler characteristic of a simplicial 2-complex K=(V,E,F) is the constant

χ = 1 χ = 2χ = 0



Topological Invariance of the Euler Characteristic
Fact. (L’Huilier) For simplicial surfaces w/out boundary, the Euler 
characteristic is a topological invariant.  E.g., for a torus of genus g, χ = 2-2g 
(independent of the particular tessellation).

g = 0
g = 1

g = 2



Angle Defect
• The angle defect at a vertex i is the deviation of the sum of interior 

angles from the Euclidean angle sum of 2π:

Intuition: how “flat” is the vertex?

i

j

k



Angle Defect and Spherical Area
• Consider the discrete Gauss map…

• …unit normals on surface become points on the sphere
• …dihedral angles on surface become interior angles on sphere
• …interior angles on surface become dihedral angles on the sphere
• …angle defect on surface becomes area on the sphere
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Total Angle Defect of a Convex Polyhedron
• Consider a closed convex polyhedron in R3

• Q: Given that angle defect is equivalent to 
spherical area, what might we guess about total 
angle defect?

• A: Equal to 4π! (Area of unit sphere)

• More generally, can argue that total angle defect 
is equal to 4π for any polyhedron with spherical 
topology, and 2π(2-2g) for any polyhedron of 
genus g

• Should remind you of Gauss-Bonnet theorem



Review: Gauss-Bonnet Theorem
• Classic example of local-global 

theorems in differential geometry
• Gauss-Bonnet theorem says total 

Gaussian curvature is always 
2π times Euler characteristic χ

• For tori, Euler characteristic 
expressed in terms of the genus 
(number of “handles”)

g=0 g=1 g=2 g=3

Gauss-Bonnet



Gaussian Curvature as Ratio of Ball Areas
• Originally defined Gaussian curvature as product of principal curvatures

• Can also view it as “failure” of balls to behave like Euclidean balls

Roughly speaking,

More precisely:



Discrete Gaussian Curvature as Ratio of Areas
• For small values of ε, we have

Substitute
area of Euclidean ball

area of geodesic “wedge”

area of geodesic ball
Then

Angle defect is 
integrated curvature



Discrete Gauss Bonnet Theorem

Theorem.  For a simplicial surface of genus g, 
the total angle defect is

Theorem.  For a smooth surface of genus g, 
the total Gauss curvature is



Approximating Gaussian Curvature
• Many other ways to approximate Gaussian curvature
• E.g., locally fit quadratic functions, compute smooth Gaussian curvature

• Which way is “best”?
• values from quadratic fit won’t 

satisfy Gauss-Bonnet
• angle defects won’t converge1 unless 

vertex valence is 4 or 6
• In general, no best way; each choice 

has its own pros & cons

1Borrelli, Cazals, Morvan, “On the angular defect of triangulations and the pointwise approximation of curvatures”



Curvature Normals



Curvature Normals
• Earlier we saw vector area, which was 

the integral of the 2-form NdA

• This 2-form is one of three quantities we 
can naturally associate with a surface:

• Effectively mixed areas of change in position & normal (more later)

(area normal)

(Gauss curvature normal)

(mean curvature normal)



Curvature Normals—Derivation
• Let X1, X2 be principal curvature directions (recall that dN(Xi) = κi df (Xi)).  Then



• Recall smooth vector area:

• Idea: Integrate NdA over dual cell to get normal at vertex p

Discrete Vector Area

p
i

j

Q: What kind of quantity is the final expression?  Does that matter?



Discrete Mean Curvature Normal
Similarly, integrating HN over a circumcentric dual cell C yields

C

m
• Since N × is an in-plane 90-degree rotation, each term in the sum 

is parallel to the edge vector eij

• The length of the vector is the length of the dual edge
• Ratio of dual/primal length is given by cotan formula, yielding



Mean Curvature Normal via Laplace-Beltrami
• Another well-known fact: mean curvature normal can 

be expressed via the Laplace-Beltrami operator* ∆

• Fact.  For any smooth immersed surface f, ∆ f = 2HN.

• Can discretize ∆ via the cotangent formula, leading 
again to

*Will say much more in upcoming lectures!



Discrete Gauss Curvature Normal
• A similar calculation leads to an expression for the (discrete) 

Gauss curvature normal

• One key difference: rather than viewing N as linear along edges, 
we imagine it makes an arc on the unit sphere



Discrete Curvature Normals—Summary

area (NdA) mean (HNdA) Gauss (KNdA)

smooth

discrete

1
2 dN � dN



Steiner’s Formula



Steiner Approach to Curvature
• What’s the curvature of a discrete 

surface (polyhedron)?

• Simply taking derivatives of the 
normal yields a useless answer: zero 
except at vertices/edges, where 
derivative is ill-defined (“infinite”)

• Steiner approach: “smooth out” the 
surface; define discrete curvature in 
terms of this mollified surface



Example.Example.

Minkowski Sum
• Given two sets A, B in Rn, their Minkowski sum is the set of points

A
B
A+B Q: Does translation of A, B matter?



Mollification of Polyhedral Surfaces
• Steiner approach mollifies polyhedral surface by taking Minkowski sum 

with ball of radius ε > 0

• Measure curvature, take limit as ε goes to zero to get discrete definition

• (Have to think carefully about nonconvex polyhedra…)



Steiner Formula
• Theorem. (Steiner) Let A be any convex body in Rn, and let Bε be a ball 

of radius ε.  Then the volume of the Minkowski sum A+Bε can be 
expressed as a polynomial in ε:

• Constant coefficients are called quermassintegrals, and determine how 
quickly the volume grows

• This volume growth in turn has to do with (discrete) curvature, as we 
are about to see…



Gaussian Curvature of Mollified Surface
• Q: Consider a closed, convex polyhedron in R3; what’s the Gaussian 

curvature K of the mollified surface for a ball of radius ε?
• Triangles:
• Edges:
• Vertices?

• each contributes a piece of sphere of radius ε (K=1/ε2)
• recall (unit) spherical area given by angle defect Ωi 
• total curvature associated with vertex i is then

(Spherical polygon is all normals associated with vertex.)



Mean Curvature of Mollified Surface
• Q: What’s the mean curvature H of the mollified surface?

• Faces: H = 0
• Edges?

• each contributes a piece of a cylinder (H=1/2ε)
• area of cylindrical piece is
• total mean curvature for edge is hence

• Vertices?
• each contributes a piece of the sphere (H=1/ε)
• area is (Ωi/4π) 4πε2 = Ωiε2

• total mean curvature for vertex is then Hi = Ωiε



Area of a Mollified Surface
• Q: What’s the area of the mollified surface?

• Faces: just the original area Aijk

• Edges:

• Vertices: Ωiε2

• Total area of the whole surface is then

• By (discrete) Gauss-Bonnet, last term is also 2πχ



Volume of Mollified Surface
• Q: What’s the total volume of the mollified surface?

• Starting to see a pattern—if V0 is original volume, then

• Q: How did we get here from our area expression?

• A: Increasing radius by ε increases volume proportional to area

1/2 1/3



Steiner Polynomial for Polyhedra in R3

• Volume of mollified polyhedron is a polynomial in radius ε
• Derivatives w.r.t. ε give total area, mean curvature, Gauss curvature

Q: Why are there only four terms?



Steiner Polynomial for Surfaces in R3

• Not surprisingly, there is an analogous formula for surfaces in R3

• Taking a Minkowski sum with a ball* of radius ε is the same as 
shifting the surface in the normal direction a distance ε

• Consider a surface f : M ⟶ R3 with Gauss map N; let ft := f + tN
• How is the area of the “smoothed” surface changing?

*sufficiently small

Notice:

•surface area given by df ⋀ df
•spherical area dN ⋀ dN gives Gauss curvature
•mixed area df ⋀ dN gives mean curvature



Thanks!
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