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Discrete Curvature — Visualized
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Curvature of Surfaces

e In smooth setting, had many different

curvatures (normal, principal, Gauss,

mean, geodesig, ...)

* In discrete setting, appear to be many
different choices for discretization

e Actually, there is a unified viewpoint
that helps explain many common

choices...




A Unified Picture of Discrete Curvature

e By making some connections between smooth and - Siccrete -
discrete surfaces, we get a unified picture of many vol(M) O D ST M—
different discrete curvatures scattered throughout the afj - o
literature N dA b AN :

s e
e To tell the full story we’ll need a few pieces: MldA D P
| e
* geometric derivatives il — -
HN dA —2—s ?\Zggota” +cot Bij) (f — fi) -
* Steiner polynomials = | - ,_
’ HdA z))_} 0iilii P(r)
e sequence of curvature variations 2 , a
. KN dA Mi:,” -3y 2U—£) i
e assorted theorems (Gauss-Bonnet, Schlafli, Af=2HN)L N )
KdA Loy (27~ Eer o) 122 prty

e Start with integral viewpoint (1st lecture), then cover X —_ |
variational viewpoint (2nd lecture). \ l /



Quantities & Conventions

e Throughout we will consider the following basic quantities: fi

* f;— position of vertex 1

* ¢;j— vector fromitoj Nii . Nijk
o (jj— length of edge ij \ O

* A — area of triangle 77k

* Nix — unit normal of triangle 7jk fi

. 95 K — interior angle at vertex i of triangle ijk T
e ¢;— dihedral angle at oriented edge i f

(Pij .= atanZ(é ' Nijk X Njil/ Nijk ° Njil)/ él] .= ei]-/&-]-

Q: Which of these quantities are discrete differential forms? (And what kind?)



Discrete Gaussian Curovature



Euler Characteristic

The Euler characteristic of a simplicial 2-complex K=(V/,E,F) is the constant

X =V -—-E+4+F
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Topological Invariance of the Euler Characteristic

Fact. (L'Huilier) For simplicial surfaces w/out boundary, the Euler
characteristic is a topological invariant. E.g., for a torus of genus g, xy =2-2¢
(independent of the particular tessellation).
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Angle Defect

e The angle defect at a vertex i is the deviation of the sum of interior
angles from the Euclidean angle sum of 2:

1
, A
Qi = 27T — ZQZk
17k

Intuition: how “flat” is the vertex?



Angle Defect and Spherical Area

e Consider the discrete Gauss map...
e ...unit normals on surface become points on the sphere
e ...dihedral angles on surface become interior angles on sphere

e ...interior angles on surface become dihedral angles on the sphere

o ...angle defect on surface becomes area on the sphere
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Total Angle Defect of a Convex Polyhedron

e Consider a closed convex polyhedron in R3

e Q: Given that angle defect is equivalent to
spherical area, what might we guess about total
angle defect?

e A: Equal to 47t! (Area of unit sphere)

e More generally, can argue that total angle defect
is equal to 4t for any polyhedron with spherical
topology, and 27mt(2-2¢) for any polyhedron of
genus g

e Should remind you of Gauss-Bonnet theorem



Review: Gauss-Bonnet Theorem

 Classic example of local-global
theorems in differential geometry

e Gauss-Bonnet theorem says total
Gaussian curvature is always
27t times Euler characteristic x

e For tori, Euler characteristic
expressed in terms of the genus

(number of “handles”) Gauss-Bonnet
Xi=2-28 /KdA:ZNX
M




Gaussian Curvature as Ratio of Ball Areas

 Originally defined Gaussian curvature as product of principal curvatures

e Can also view it as “failure” of balls to behave like Euclidean balls

Roughly speaking,

More precisely:

B (1, €)| = By (p,9)] (1- 136 +0()




Discrete Gaussian Curvature as Ratio of Areas

e For small values of €, we have

2 b
G
12 B ()

Substitute

area of Euclidean ball  |Brz(€)| = e

area of geodesic “wedge”  Wi(e) = 7% |Bga| = 3€%6,

area of geodesic ball ~ |Bg(e)] = ) Wi(e) = 3 )0
Then | |

2 _ R Angle defect is
EK=1-,Y0 <« |27 )b = gmeK|  Ang
i i integrated curvature




Discrete Gauss Bonnet Theorem

Theorem. For a smooth surface of genus g,
the total Gauss curvature is

/ KdA =2y
M

Theorem. For a simplicial surface of genus g,
the total angle defect is

2 Qi — 271')(
eV




Approximating Gaussian Curvature

e Many other ways to approximate Gaussian curvature

e E.¢., locally fit quadratic functions, compute smooth Gaussian curvature

e Which way is “best”?

e values from quadratic fit won't
satisty Gauss-Bonnet

e angle defects won’t convergel unless
vertex valence is 4 or 6

e In general, no best way; each choice
has its own pros & cons

IBorrelli, Cazals, Morvan, “On the angular defect of triangulations and the pointwise approximation of curvatures”
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Curvature Normals

e Earlier we saw vector area, which was

. - 0\ 2()
the integral of the 2-form NdA 00) /‘#% %
e This 2-form is one of three quantities we ~

can naturally associate with a surface:

% df Ndf = NdA (area normal)
2 df ANdN

HNdAdA (mean curvature normal)

% AN NdN = KNdJdA (Gauss curvature normal)

e Effectively mixed areas of change in position & normal (more later)



Curvature Normals — Derivation

e Let Xj, X2 be principal curvature directions (recall that dN(X;) = «; df (Xi)). Then

df Ndf (Xq,Xp) = df(Xq) x df (Xo) —df (Xz) x df (X7) =
2df (X1) x df (X2) = |2NdA(X3, X2)

df NAN(Xy, Xp) = df (X1) x dAN(Xp) —df (X2) x AN(X;) =

adf (X1) % df(X2) — radf (Xz) x df(Xy) =
(K1 + Kz)df(xl) X df(Xz) — ZHNdA(Xl,Xz)

AN AdN(Xq, Xo) = dN(Xq) x dAN(X3) — dN(X5) x dAN(X;) =

K1kodf (X1) x df (X5) — xok1df (Xp) x df (X;) =
2Kdf (X1) x df (X2) = | 2KNdA(X1, X7)




Discrete Vector Area

* Recall smooth vector area: / NdA = ; / df Ndf =5 | f xdf
() () 0()

* Idea: Integrate NdA over dual cell to get normal at vertex p

20 d() %2

° Ja 6 an /
LY [ pxdr
7€) ¥ €ij
fit
%Z > X (fij— fi) = %Zflel
17€0() 17€0()

Q: What kind of quantity is the final expression? Does that matter? 0()




Discrete Mean Curvature Normal

Similarly, integrating HN over a circumcentric dual cell C yields

/CHNdA:/C:dedN:LdNAdf:_Ld(NAdf):

/BCN/\df Z/ N Adf = ZN m—a)+ Ny x (b—m)

e Since N x is an in-plane 90-degree rotation, each term in the sum
is parallel to the edge vector e;;

e The length of the vector is the length of the dual edge

e Ratio of dual/primal length is given by cotan formula, yielding

(HN); == 3 Y ( cota;i + cot B;i) (fi — fi)

1]€E




Mean Curvature Normal via Laplace-Beltrami

e Another well-known fact: mean curvature normal can
be expressed via the Laplace-Beltrami operator™ A

e Fact. For any smooth immersed surface f, A f = 2HN.

e Can discretize A via the cotangent formula, leading
again to

(Af); % Z cot a;; +cotﬁ2])(f]- — i) <
ijeE

*Will say much more in upcoming lectures!



Discrete Gauss Curvature Normal

e A similar calculation leads to an expression for the (discrete)
(Gauss curvature normal

e One key difference: rather than viewing N as linear along edges,
we imagine it makes an arc on the unit sphere

Z/KNdA /dN/\dN /d N AdN) =

N A dN = N x dN(7") ds =
o0C oC

N x T ds = / I ds = el]
9C Z ac léijl ] g i

(KN)i3=§ 1 20— f)

1]€L




Discrete Curvature Normals — Summary

area (NdA) mean (HNdJA) Gauss (KNdA)
smooth > df A df Ldf AdN LAN A dN
discrete | 5 2 Ji % f 7 2 (cotay;+ cot Bij) (fi — f;) %OZ%](f]’_fz)

1jESt(i)




Formula
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Steiner Approach to Curvature

e What's the curvature of a discrete
surface (polyhedron)?

e Simply taking derivatives of the

normal yields a useless answer: zero
except at vertices/edges, where
derivative is ill-defined (“infinite”)

e Steiner approach: “smooth out” the
surface; define discrete curvature in
terms of this mollified surface




Minkowski Sum

e Given two sets A, B in R, their Minkowski sum is the set of points
A+B:={a+blac A beB}

Example. Example.

Q: Does translation of A, B matter?




Mollification of Polyhedral Surfaces

e Steiner approach mollifies polyhedral surface by taking Minkowski sum
with ball of radius € >0

* Measure curvature, take limit as € goes to zero to get discrete definition

e (Have to think carefully about nonconvex polyhedra...)

L 4N &



Steiner Formula

* Theorem. (Steiner) Let A be any convex body in R”, and let B, be a ball
of radius ¢. Then the volume of the Minkowski sum A+B; can be
expressed as a polynomial in é&:

n
volume(A + Bg) = volume(A) + ) | Dy (A)e"
k=1

e Constant coefficients are called quermassintegrals, and determine how
quickly the volume grows

e This volume growth in turn has to do with (discrete) curvature, as we
are about to see...



Gaussian Curvature of Mollified Surface

e Q: Consider a closed, convex polyhedron in R3; what's the Gaussian
curvature K of the mollified surface for a ball of radius €?

* Triangles: K = 0
e Edges: K = 0 ‘)
* Vertices?

e each contributes a piece of sphere of radius ¢ (K=1/ €2)

e recall (unit) spherical area given by angle defect Q);

e total curvature associated with vertex i is then

();
AiKi — <E4ﬂ'€ ) glz — Qi

(Spherical polygon is all normals associated with vertex.)



Mean Curvature of Mollified Surface

e O: What's the mean curvature H of the mollified surface?
e Faces: =0
* Edges?

e each contributes a piece of a cylinder (H=1/2¢)

e area of cylindrical piece is £;;¢;;€

e total mean curvature for edge is hence H;; = i = 1 5Lii Pij
* Vertices?

e each contributes a piece of the sphere (H=1/¢)

o area is (Q;/47) 4re2 = ();e2

¢ fotal mean curvature for vertex is then H; = Q¢



Area of a Mollified Surface

e OQ: What's the area of the mollified surface?
 Faces: just the original area Ajj
* Edges: (;ip;i¢
* Vertices: ();€?
e Total area of the whole surface is then
areac(f) = ) Ajx+e ) liipii+ e= ) O
i1k F 1j€L eV

e By (discrete) Gauss-Bonnet, last term is also 27ty



Volume of Mollified Surface

e Q: What's the total volume of the mollified surface?
e Starting to see a pattern—if V) is original volume, then
1/2 1/3
volume,(f) = Vo +¢e ) Ajjr+ £ ) Lipii + &2 ) Q)
ifkeF 1jeE eV
e Q: How did we get here from our area expression?

* A:Increasing radius by ¢ increases volume proportional to area



Steiner Polynomial for Polyhedra in R3

e Volume of mollified polyhedron is a polynomial in radius ¢
* Derivatives w.r.t. € give total area, mean curvature, Gauss curvature

volume; (f) = Vo + ¢ Z Aijk -+ g2 Z éz](Pz] —+ = Z ()
ijkeF jeE %

jgvolumeg — areag 58 area, = mean, d ~mean, = Gauss; Gauss8 = (

L&A

Q: Why are there only four terms?



Steiner Polynomial for Surfaces in R3

e Not surprisingly, there is an analogous formula for surfaces in R

e Taking a Minkowski sum with a ball* of radius ¢ is the same as

N
shifting the surface in the normal direction a distance ¢ (‘

e Consider a surface f: M — R3 with Gauss map N; let f; :=f + tN

e How is the area of the “smoothed” surface changing?

dA; = L(N,df; Ndfy)

dfy Ndf; =

(df +tdN) A (df +tdN) =

df Ndf +2tdf NAN + t*dN A dN =
(14 2tH + t°K)df Ndf

— dA; = (1+2tH + t*K)d A

N

Notice:

esurface area given by df A df

espherical area dN A dN gives Gauss curvature
emixed area df A dN gives mean curvature

*sufficiently small



Thanks!
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