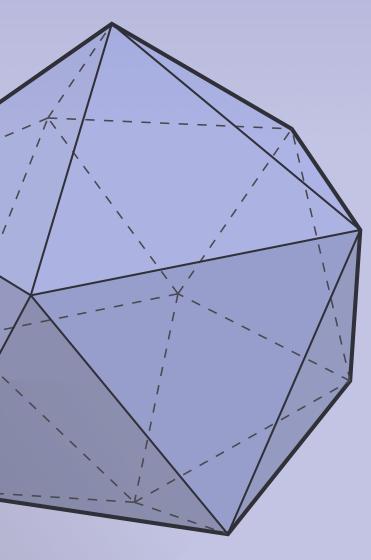


AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858B • Fall 2017

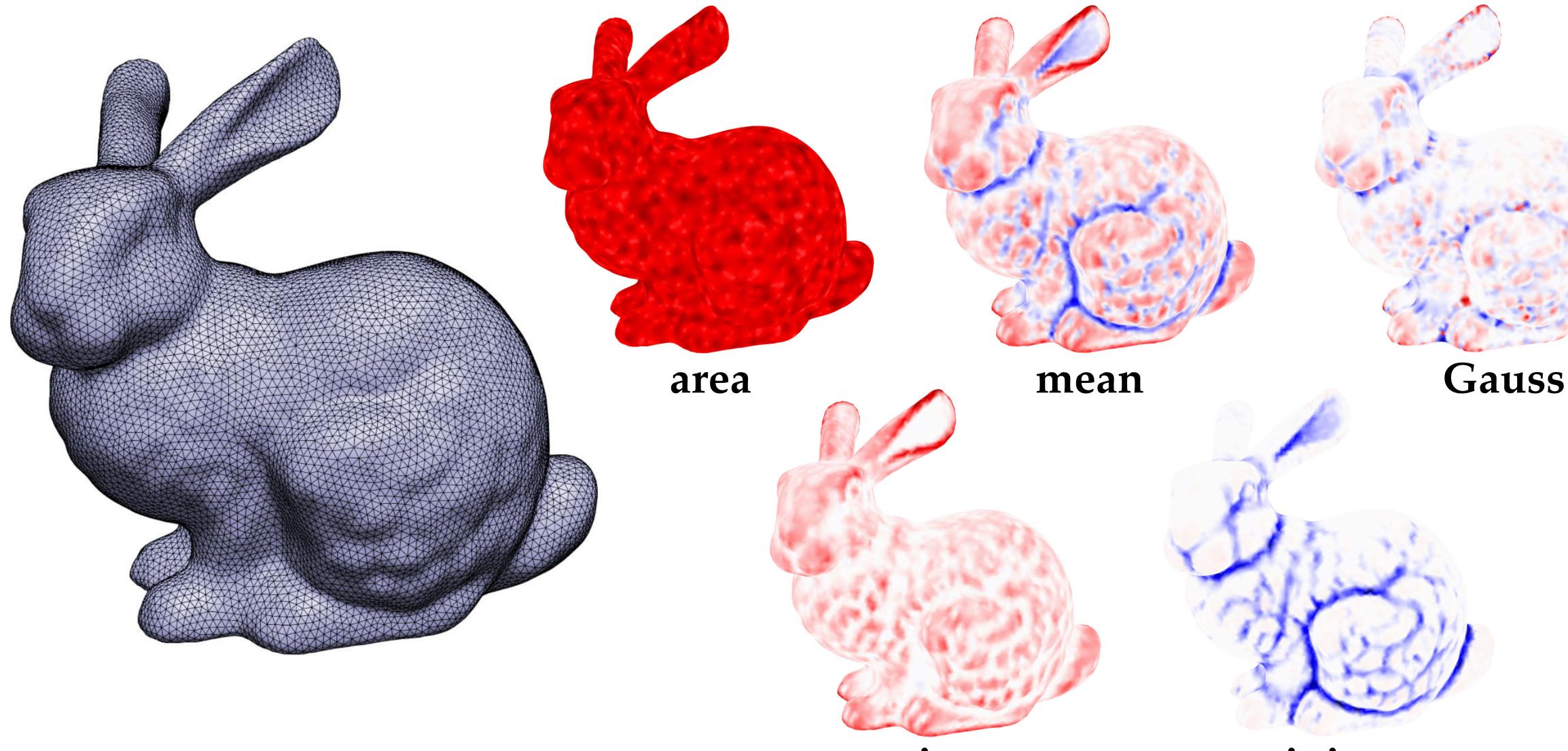
LECTURE 15: DISCRETE CURVATURE I (INTEGRAL)

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858B • Fall 2017



Discrete Curvature – Visualized

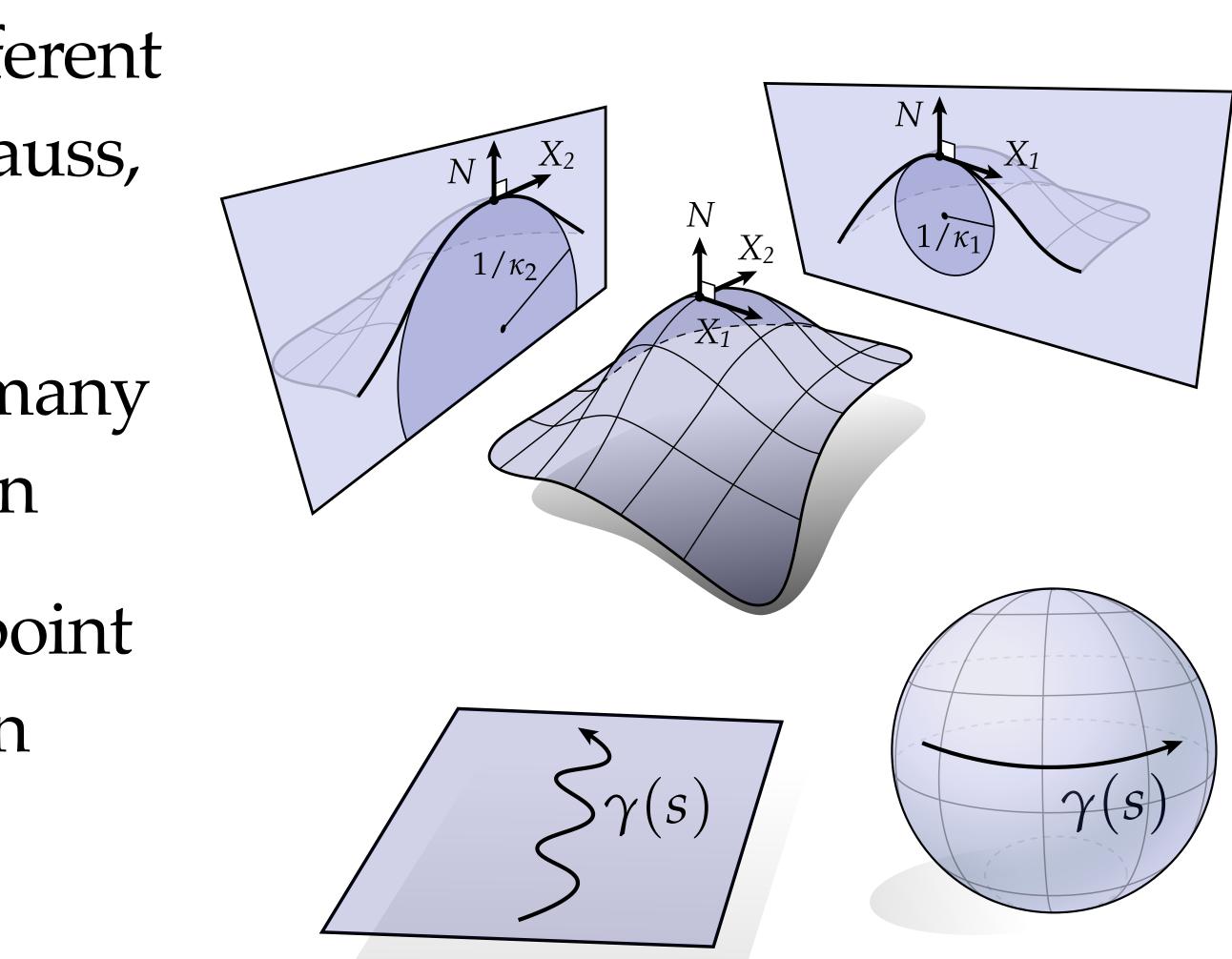


maximum

minimum

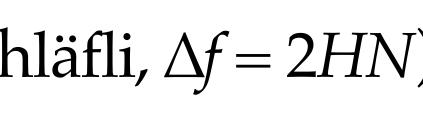
Curvature of Surfaces

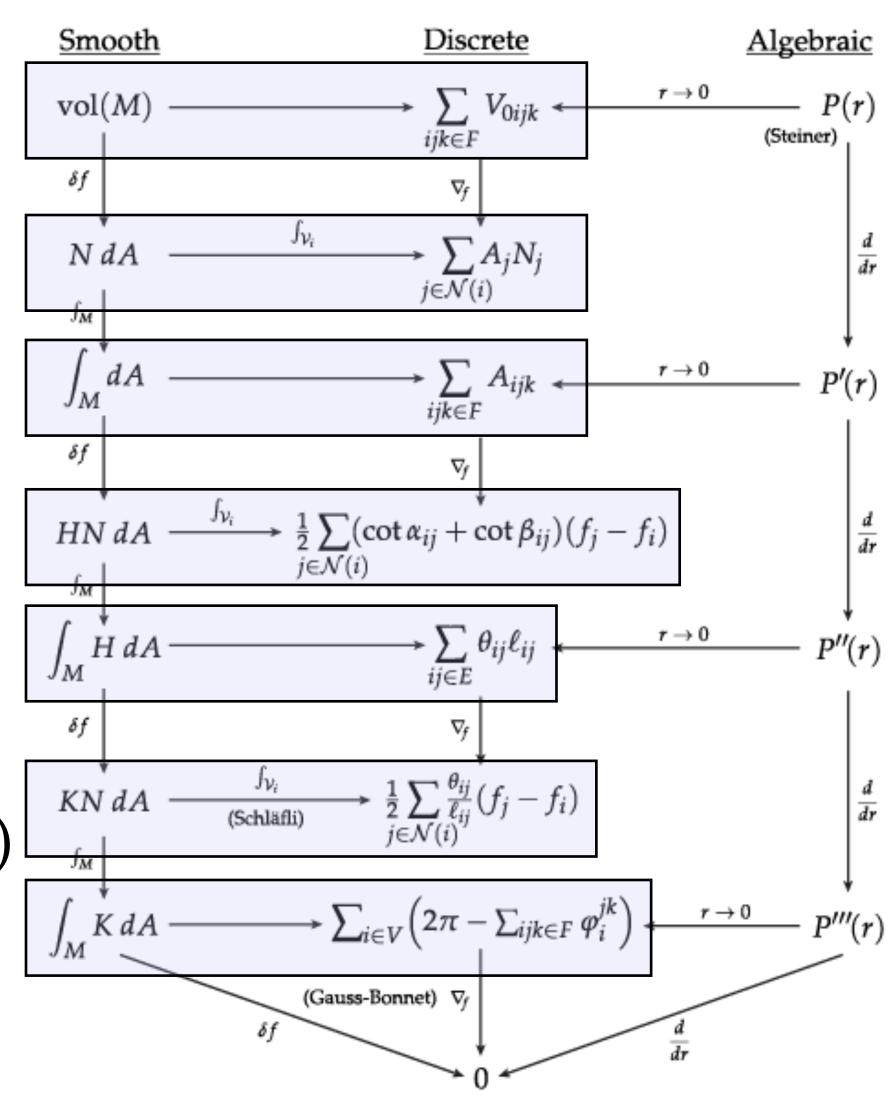
- In smooth setting, had many different curvatures (normal, principal, Gauss, mean, geodesic, ...)
- In discrete setting, appear to be many different choices for discretization
- Actually, there is a unified viewpoint that helps explain many common choices...



A Unified Picture of Discrete Curvature

- By making some connections between smooth and discrete surfaces, we get a unified picture of many different discrete curvatures scattered throughout the literature
- To tell the full story we'll need a few pieces:
 - geometric derivatives
 - Steiner polynomials
 - sequence of curvature variations
 - **assorted theorems** (Gauss-Bonnet, Schläfli, $\Delta f = 2HN$)
- Start with *integral* viewpoint (1st lecture), then cover variational viewpoint (2nd lecture).



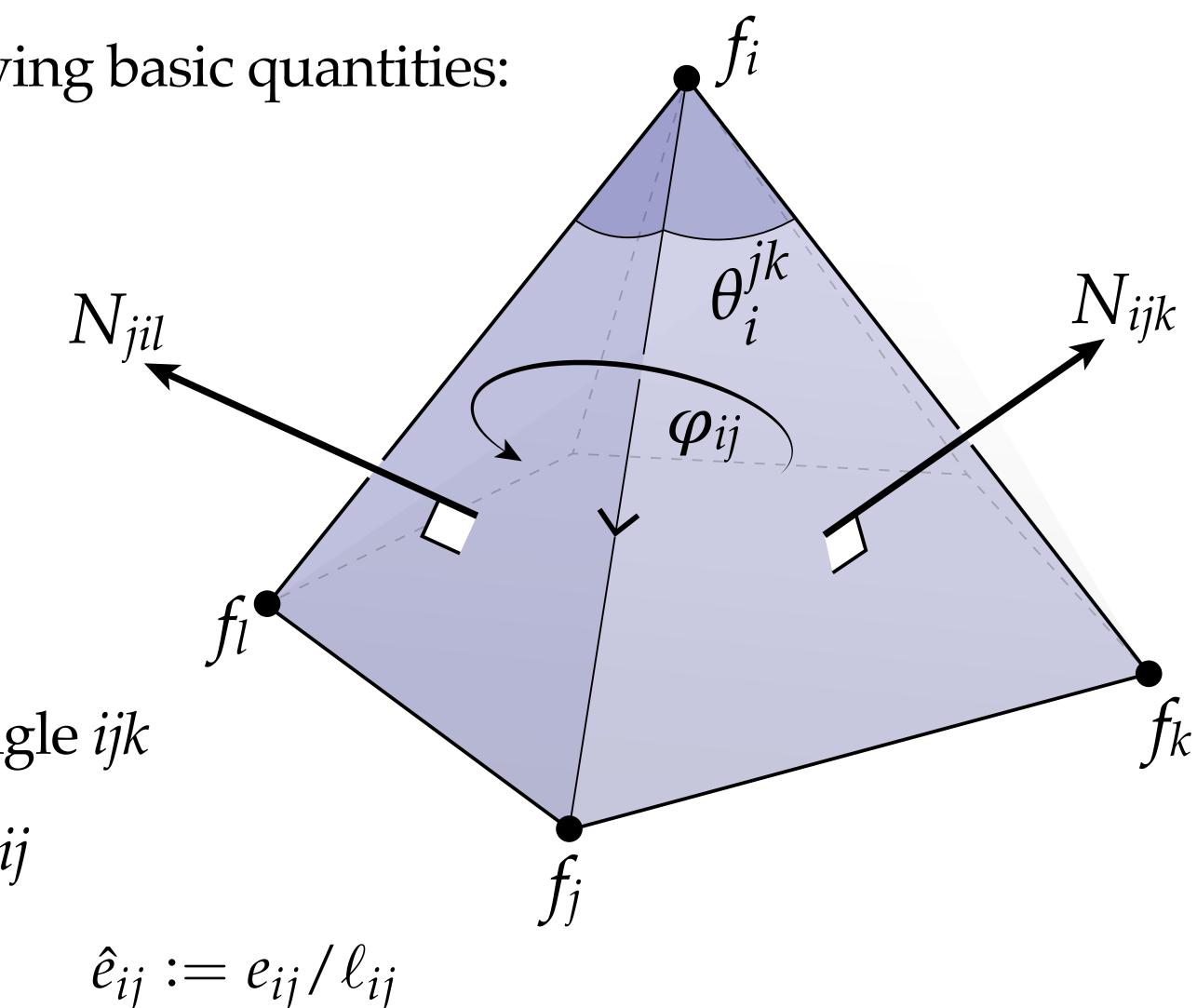


Quantities & Conventions

- Throughout we will consider the following basic quantities:
 - f_i position of vertex i
 - e_{ij} vector from *i* to *j*
 - ℓ_{ij} length of edge ij
 - A_{ijk} area of triangle *ijk*
 - N_{ijk} unit normal of triangle *ijk*
 - θ_i^{jk} interior angle at vertex i of triangle *ijk*
 - φ_{ij} dihedral angle at oriented edge *ij*

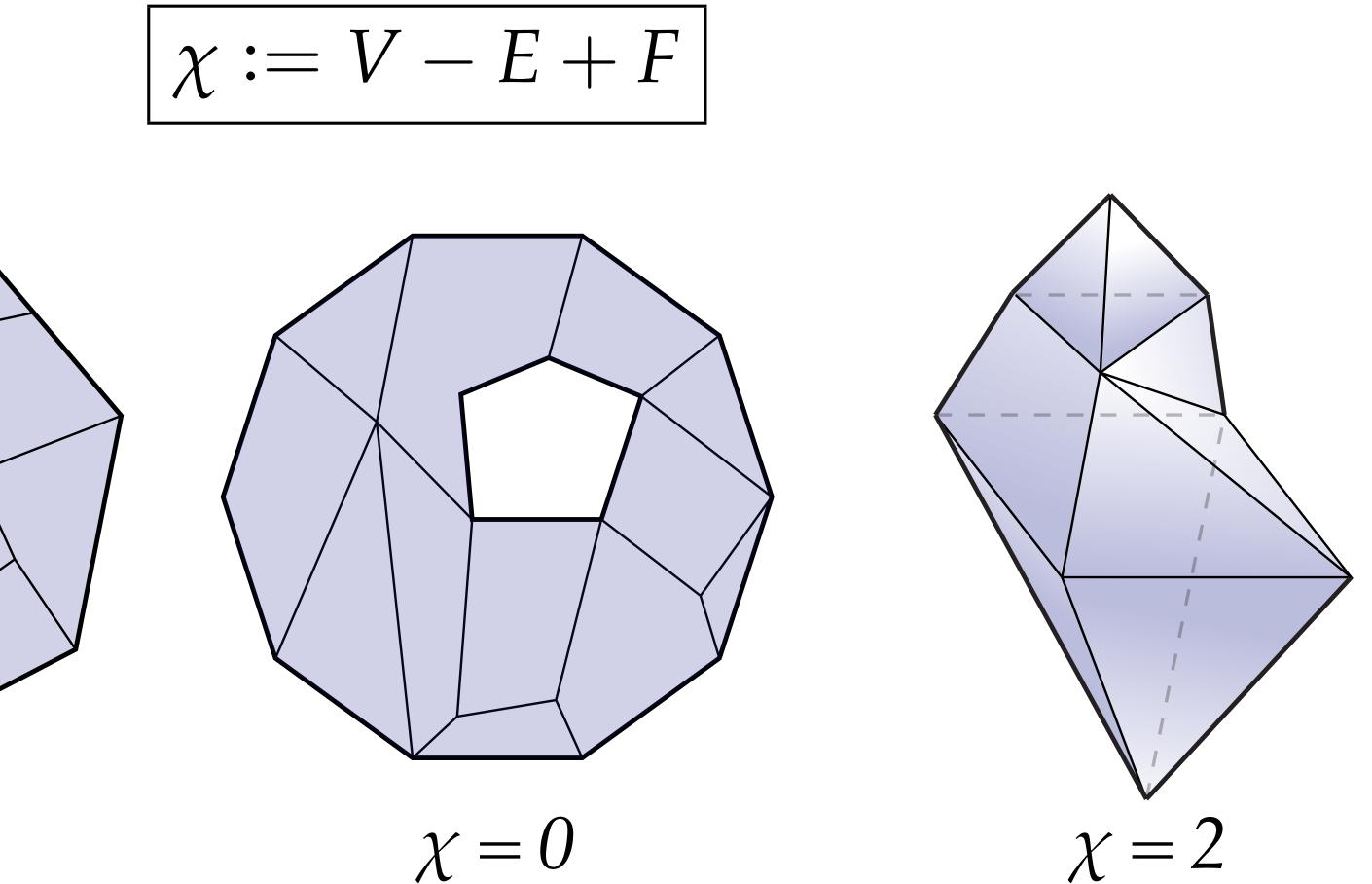
 $\varphi_{ii} := \operatorname{atan2}(\hat{e} \cdot N_{iik} \times N_{jil}, N_{ijk} \cdot N_{jil}), \qquad \hat{e}_{ij} := e_{ij} / \ell_{ij}$

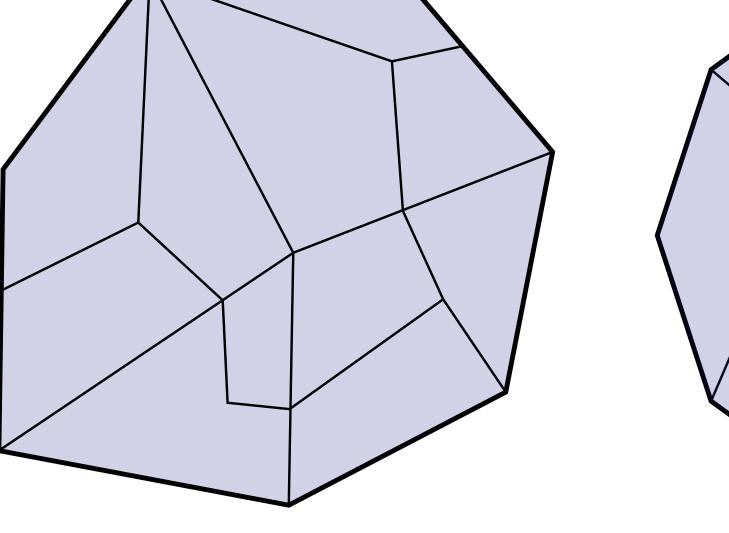
Q: Which of these quantities are discrete differential forms? (And what kind?)



Discrete Gaussian Curvature

Euler Characteristic

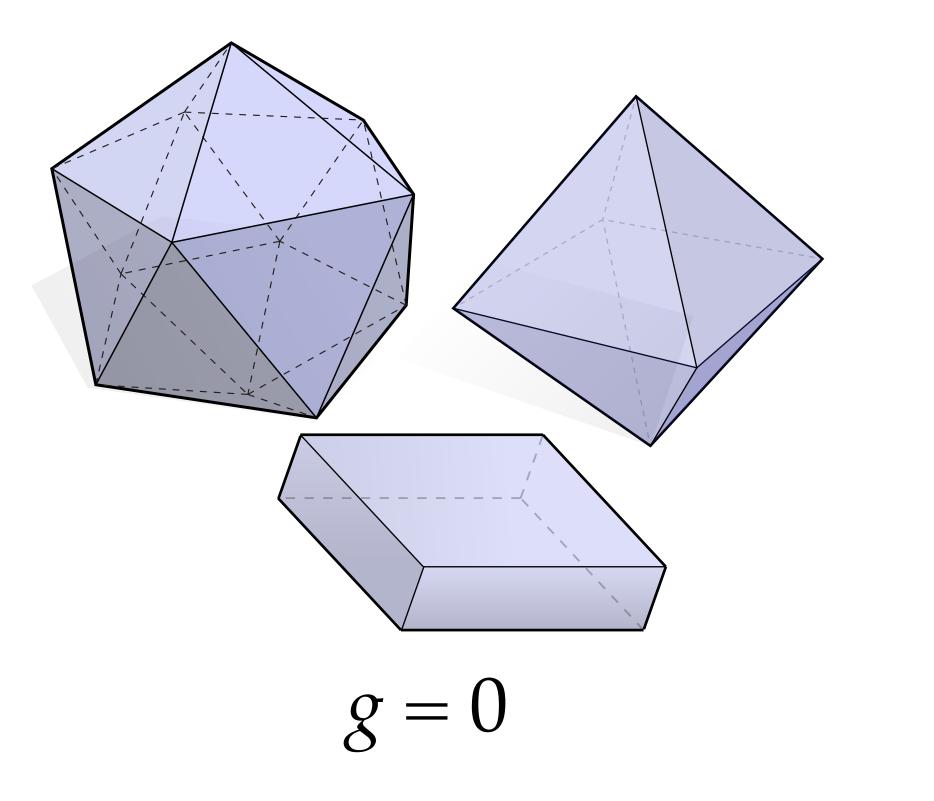




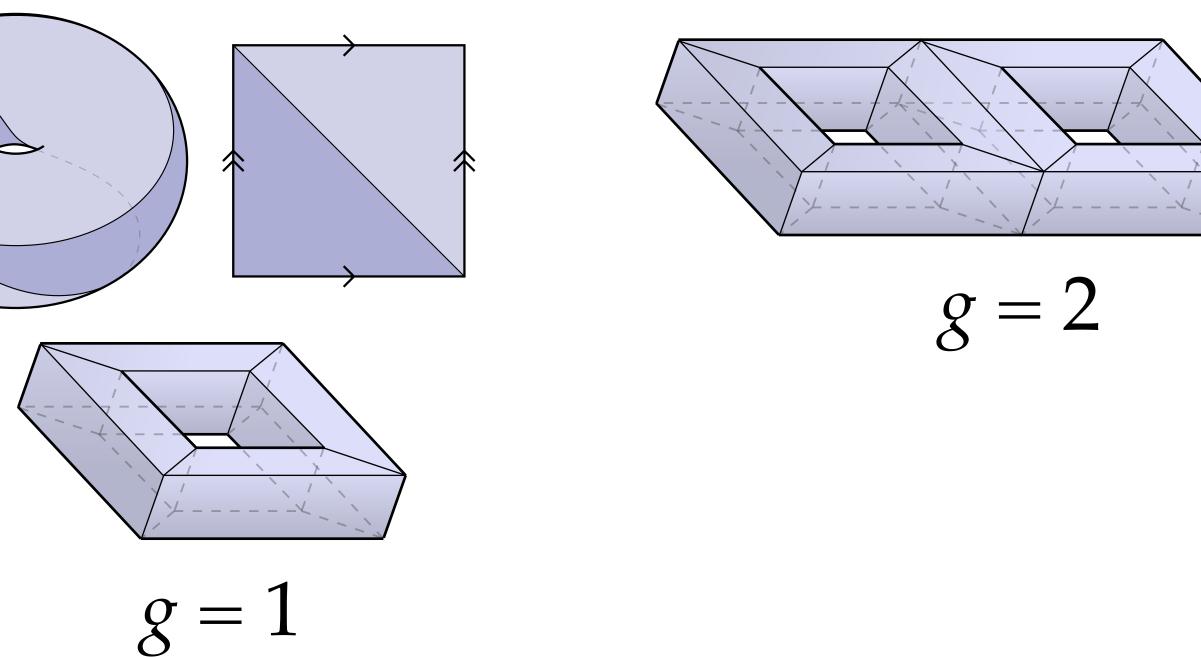
 $\chi = 1$

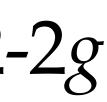
The **Euler characteristic** of a simplicial 2-complex K=(V,E,F) is the constant

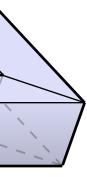
Fact. (L'Huilier) For simplicial surfaces w/out boundary, the Euler characteristic is a topological invariant. *E.g.*, for a torus of genus g, $\chi = 2-2g$ (independent of the particular tessellation).



Topological Invariance of the Euler Characteristic





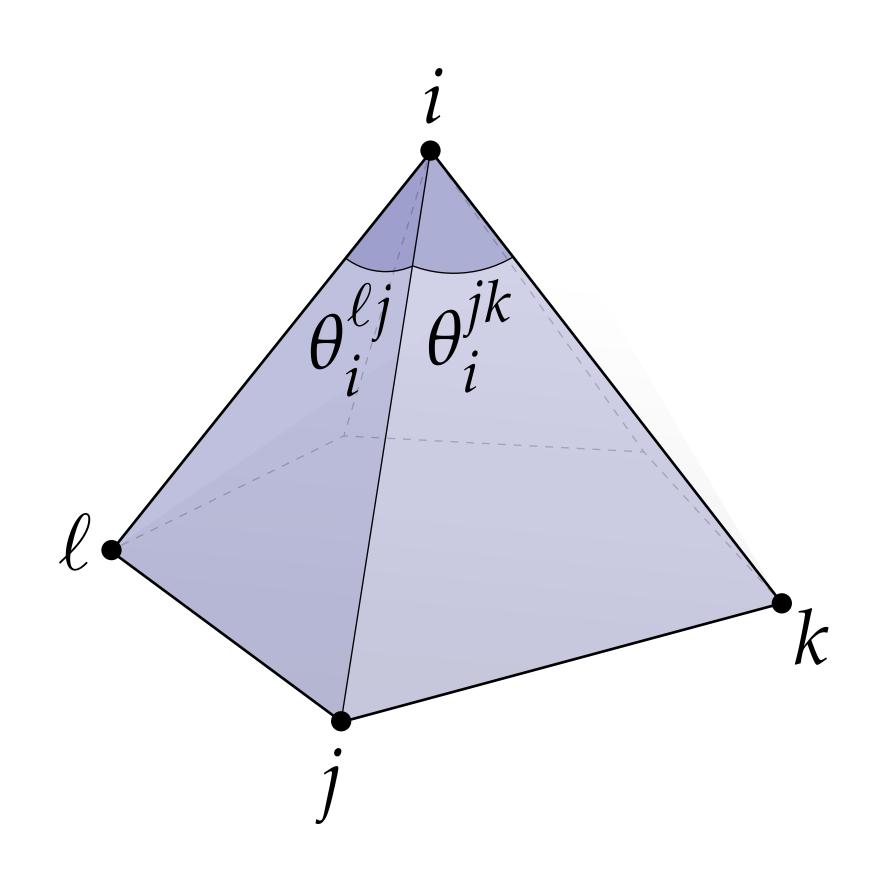


Angle Defect

• The **angle defect** at a vertex i is the deviation of the sum of interior angles from the Euclidean angle sum of 2π :

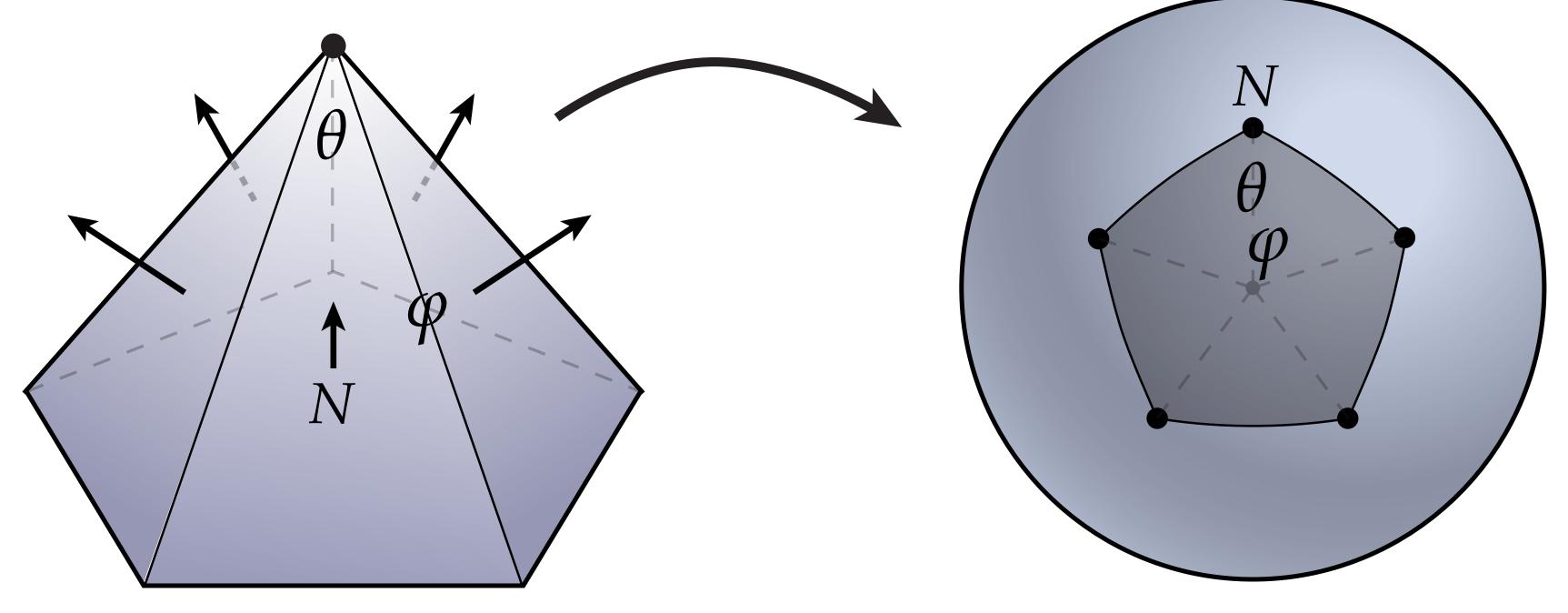
$$\Omega_i := 2\pi - \sum_{ijk} \theta_i^{jk}$$

Intuition: how "flat" is the vertex?



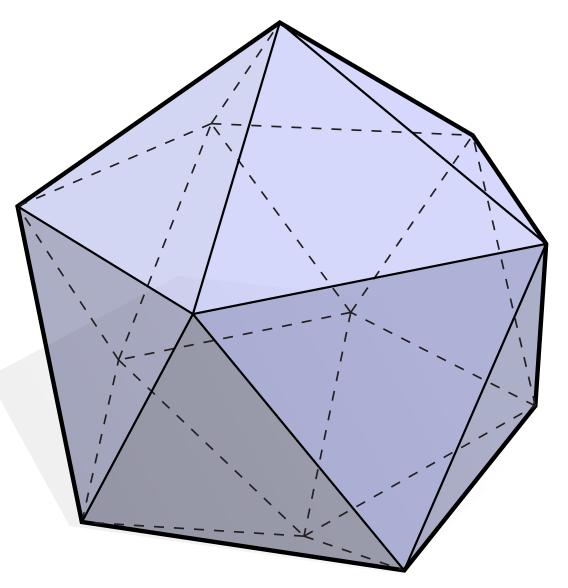
Angle Defect and Spherical Area

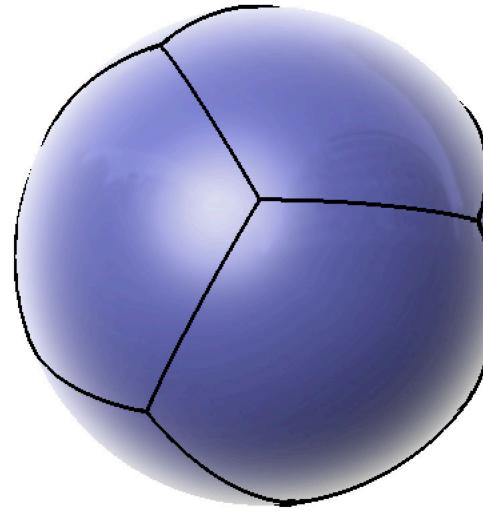
- Consider the discrete Gauss map...
 - ...unit normals on surface become points on the sphere
 - ...dihedral angles on surface become interior angles on sphere
 - ...interior angles on surface become dihedral angles on the sphere
 - ...angle defect on surface becomes area on the sphere



Total Angle Defect of a Convex Polyhedron

- Consider a closed convex polyhedron in *R*³
- **Q**: Given that angle defect is equivalent to spherical area, what might we guess about total angle defect?
- A: Equal to $4\pi!$ (Area of unit sphere)
- More generally, can argue that total angle defect is equal to 4π for *any* polyhedron with spherical topology, and $2\pi(2-2g)$ for any polyhedron of genus *g*
- Should remind you of *Gauss-Bonnet theorem*

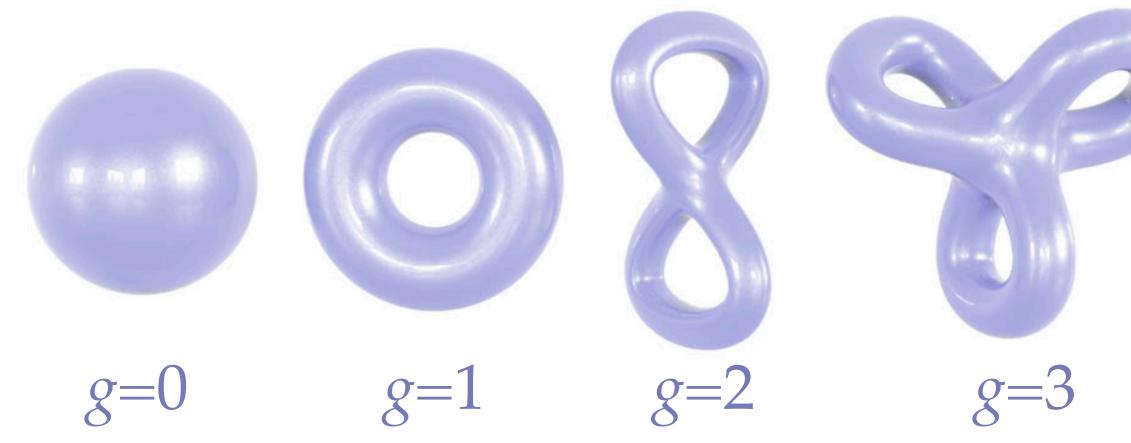




Review: Gauss-Bonnet Theorem

- Classic example of *local-global* theorems in differential geometry
- Gauss-Bonnet theorem says total Gaussian curvature is always 2π times Euler characteristic χ
- For tori, Euler characteristic expressed in terms of the genus (number of "handles")

$$\chi := 2 - 2g$$



Gauss-Bonnet $K dA = 2\pi\chi$

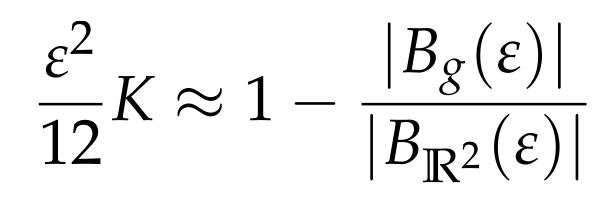
Gaussian Curvature as Ratio of Ball Areas

- Roughly speaking, $B_{\mathbb{R}^n}$ $|B_{g}(p,\varepsilon)| = |B_{\mathbb{R}^{2}}(p,\varepsilon)| \left(1 - \frac{K}{12}\varepsilon^{2} + O(\varepsilon^{3})\right)$
- Originally defined Gaussian curvature as product of principal curvatures • Can also view it as "failure" of balls to behave like Euclidean balls

$$K \propto 1 - \frac{|B_g|}{|B_{\mathbb{R}^2}|}$$

More precisely:

• For small values of ε, we have



Substitute

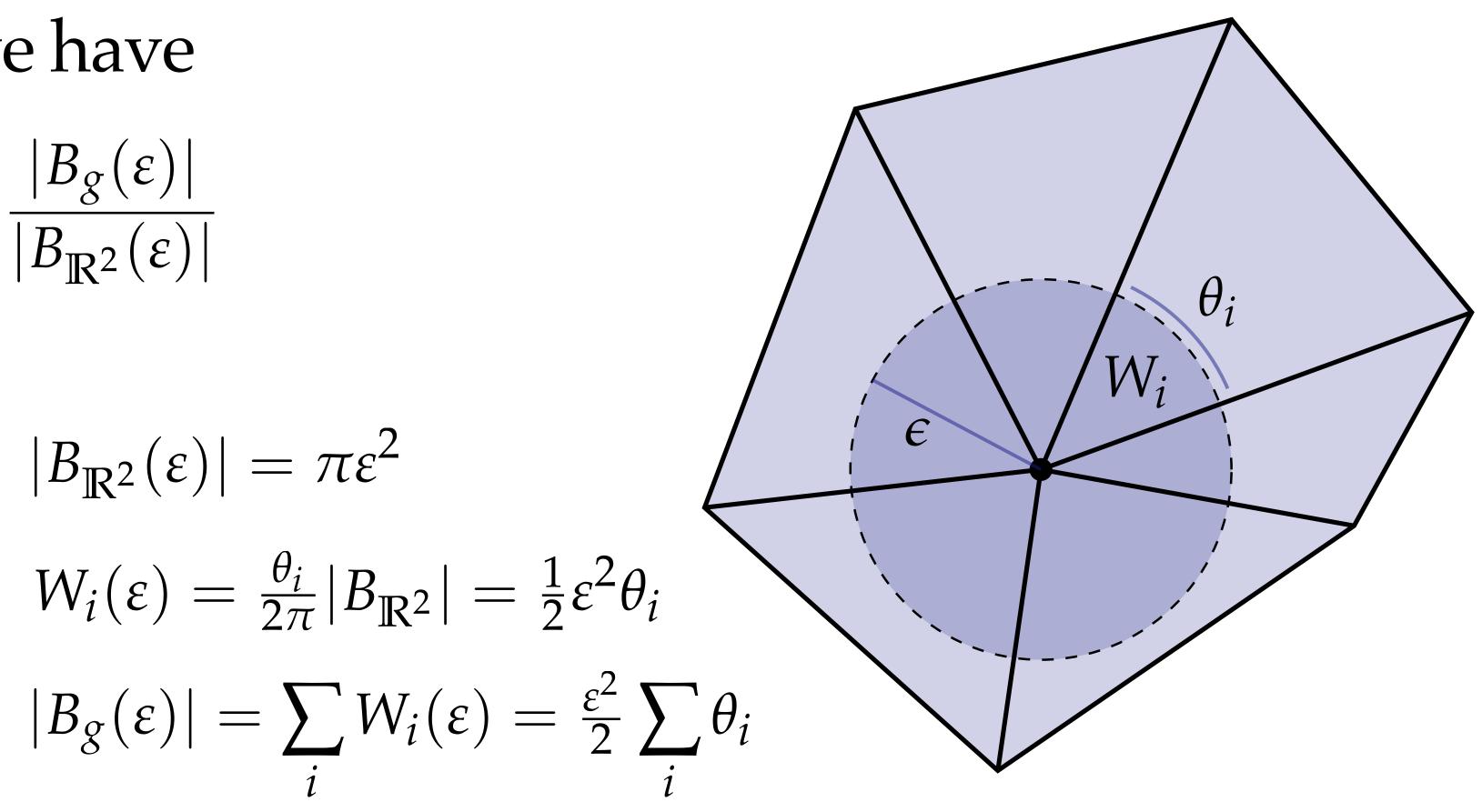
 $|B_{\mathbb{R}^2}(\varepsilon)| = \pi \varepsilon^2$ area of Euclidean ball

area of geodesic "wedge"

area of geodesic ball Then

 $\frac{\varepsilon^2}{12}K = 1 - \frac{1}{2\pi}\sum_i \theta_i \quad \Longleftrightarrow \quad \left| 2\pi - \sum_i \theta_i = \frac{1}{6}\pi\varepsilon^2 K \right|$

Discrete Gaussian Curvature as Ratio of Areas



Angle defect is integrated curvature

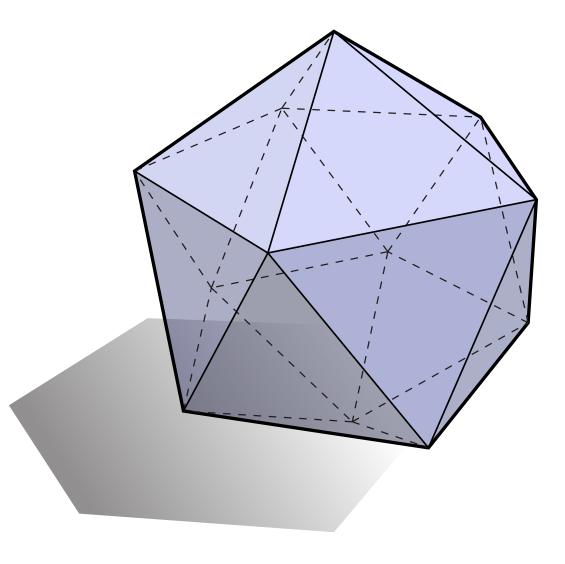
Discrete Gauss Bonnet Theorem

Theorem. For a smooth surface of genus *g*, the total Gauss curvature is

 $\int_{M} K \, dA = 2\pi \chi$

Theorem. For a simplicial surface of genus *g*, the total angle defect is

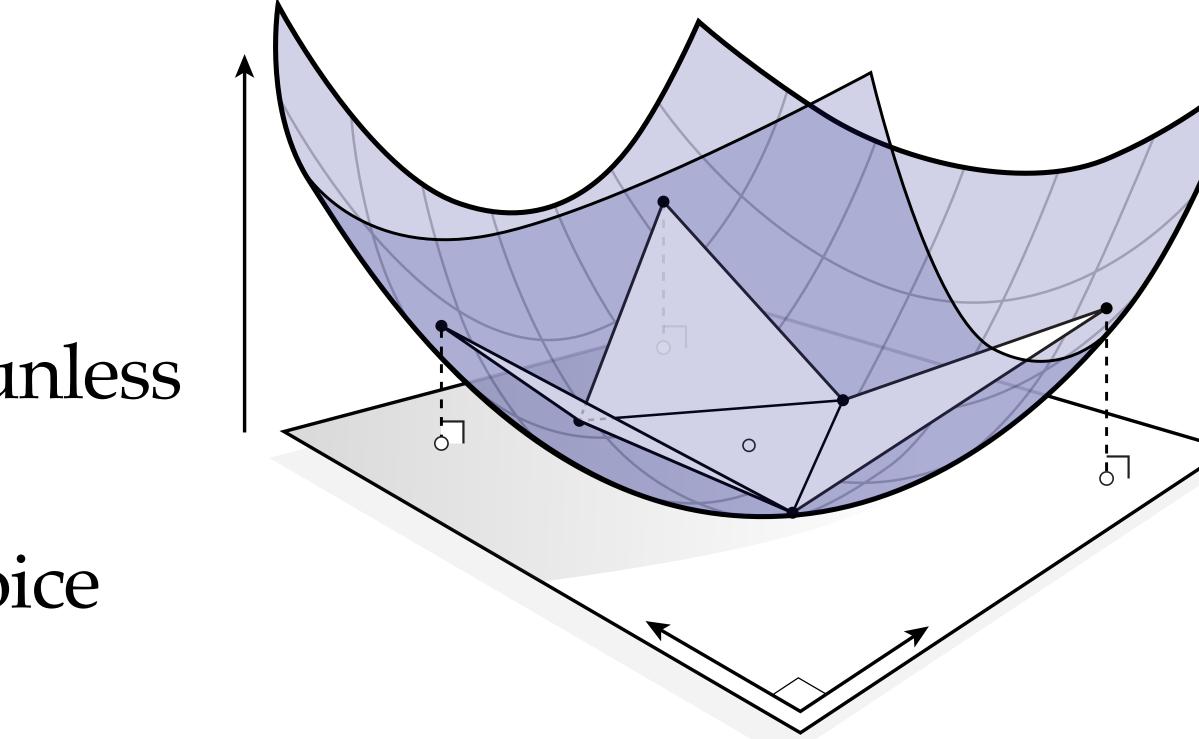
 $\Omega_i = 2\pi \chi$ l $i \in V$



Approximating Gaussian Curvature

- Many other ways to approximate Gaussian curvature
- E.g., locally fit quadratic functions, compute smooth Gaussian curvature
- Which way is "best"?
 - values from quadratic fit won't satisfy Gauss-Bonnet
 - angle defects won't converge¹ unless vertex valence is 4 or 6
- In general, no best way; each choice has its own pros & cons

¹Borrelli, Cazals, Morvan, "On the angular defect of triangulations and the pointwise approximation of curvatures"



Curvature Normals

Curvature Normals

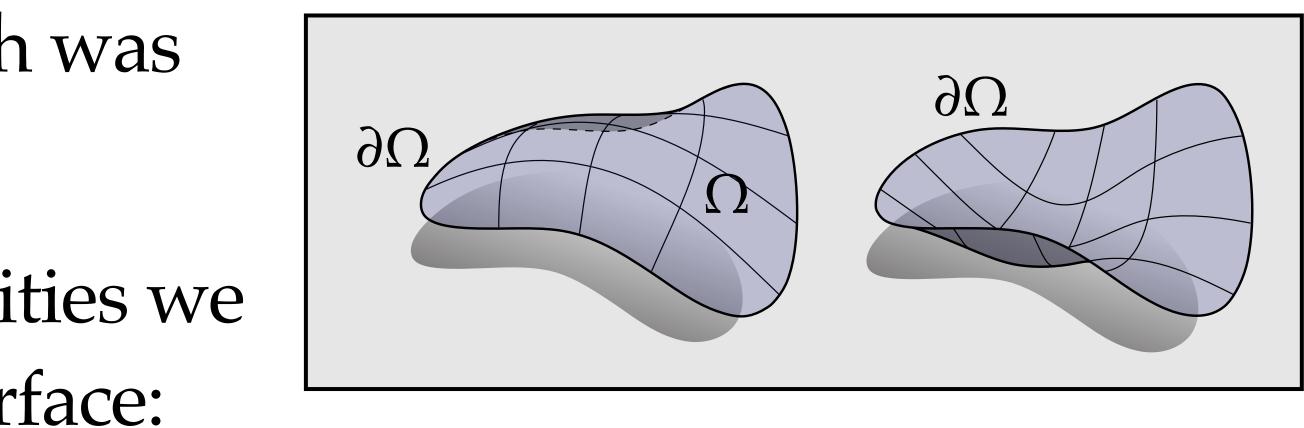
- Earlier we saw vector area, which was the integral of the 2-form *NdA*
- This 2-form is one of three quantities we can naturally associate with a surface:

$$\frac{1}{2} df \wedge df = N dA$$

 $\frac{1}{2} df \wedge dN = HNdA$ (mean curvature normal)

 $\frac{1}{2}dN \wedge dN = KNdA$

• Effectively *mixed areas* of change in position & normal (more later)



(area normal)

(Gauss curvature normal)

Curvature Normals – Derivation

- Let X_1 , X_2 be principal curvature directions (recall that $dN(X_i) = \kappa_i df(X_i)$). Then
 - $df \wedge df(X_1, X_2) = df(X_1) \times df(X_2)$ $2df(X_1) \times df(X_2)$
 - $df \wedge dN(X_1, X_2) = df(X_1) \times dN(X_2)$ $\kappa_1 df(X_1) \times df(X_2)$ $(\kappa_1 + \kappa_2) df(X_1) \times df(X_2)$
 - $dN \wedge dN(X_1, X_2) = dN(X_1) \times dN(X_1) \times dN(X_1) \times df$ $\kappa_1 \kappa_2 df(X_1) \times df$ $2Kdf(X_1) \times df(X_1) \times df(X_1$

$$-df(X_2) \times df(X_1) =$$
$$= 2NdA(X_1, X_2)$$

$$f_{2}(x_{2}) - df(X_{2}) \times dN(X_{1}) =$$

$$g(X_{2}) - \kappa_{2} df(X_{2}) \times df(X_{1}) =$$

$$f(X_{2}) = 2HNdA(X_{1}, X_{2})$$

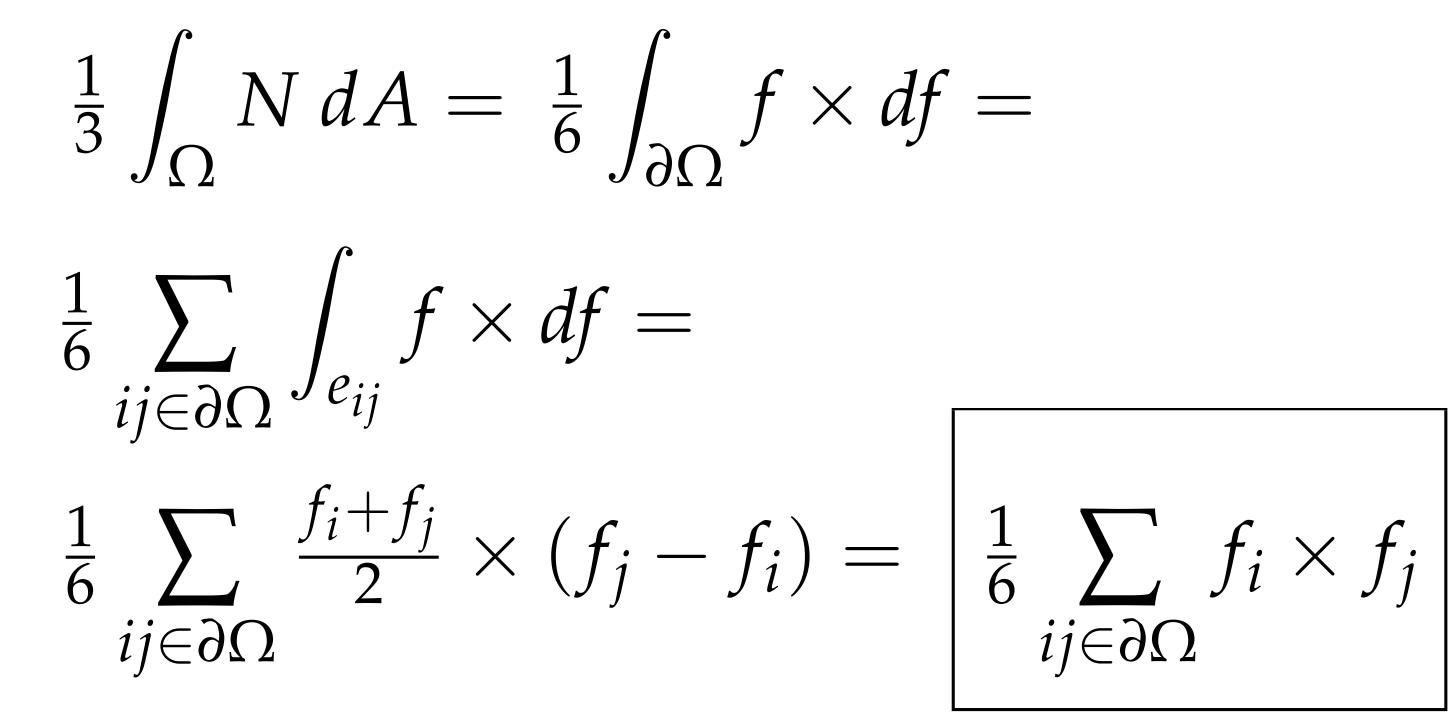
$$X_{2}) - dN(X_{2}) \times dN(X_{1}) =$$

$$f(X_{2}) - \kappa_{2}\kappa_{1}df(X_{2}) \times df(X_{1}) =$$

$$(X_{2}) = 2KNdA(X_{1}, X_{2})$$

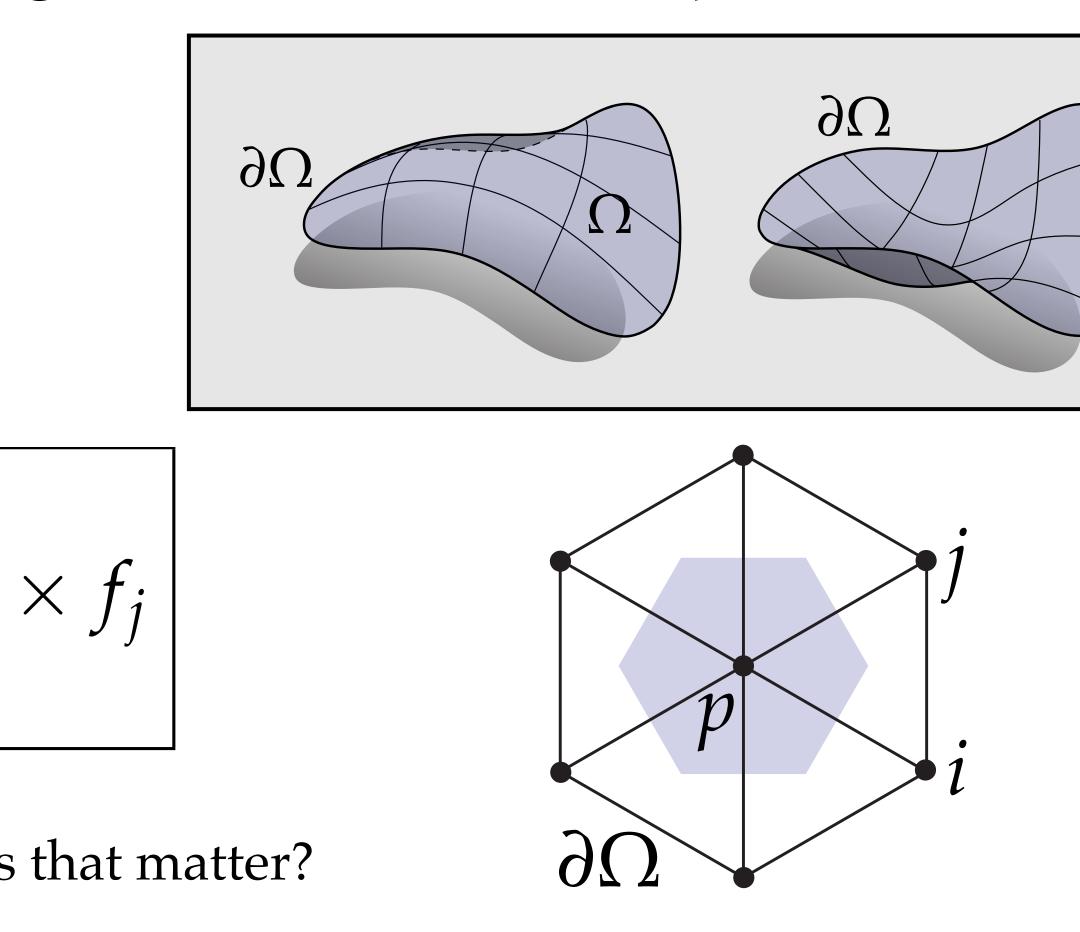
Discrete Vector Area

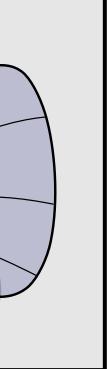
- Recall smooth vector area: $\int N d$
- Idea: Integrate NdA over dual cell to get normal at vertex p



Q: What kind of quantity is the final expression? Does that matter?

$$dA = \frac{1}{2} \int_{\Omega} df \wedge df = \frac{1}{2} \int_{\partial \Omega} f \times df$$





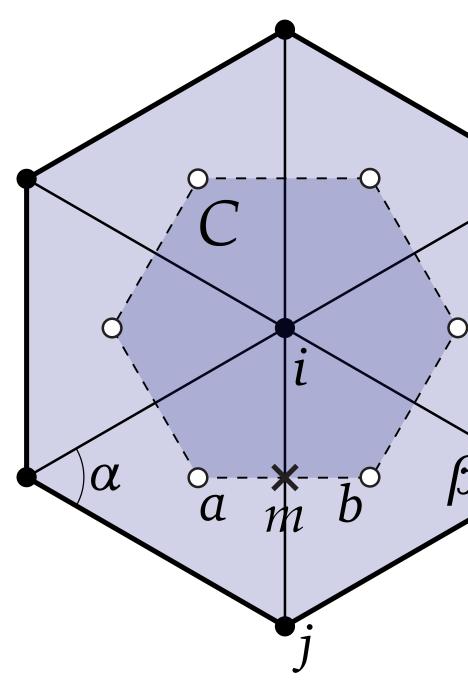
Discrete Mean Curvature Normal

Similarly, integrating *HN* over a circumcentric dual cell *C* yields

$$\int_{C} HN \, dA = \int_{C} df \wedge dN = \int_{C} dN \wedge df = \int_{C} d(N \wedge df) =$$
$$\int_{\partial C} N \wedge df = \sum_{j} \int_{e_{ij}^{\star}} N \wedge df = \sum_{j} N_{a} \times (m-a) + N_{b} \times (b-m)$$

- Since N × is an in-plane 90-degree rotation, each term in the sum is parallel to the edge vector e_{ij}
- The length of the vector is the length of the dual edge
- Ratio of dual/primal length is given by cotan formula, yielding

$$(HN)_i := \frac{1}{2} \sum_{ij \in E} (\cot \alpha_{ij} + \cot \beta_{ij}) (f_i - f_j)$$

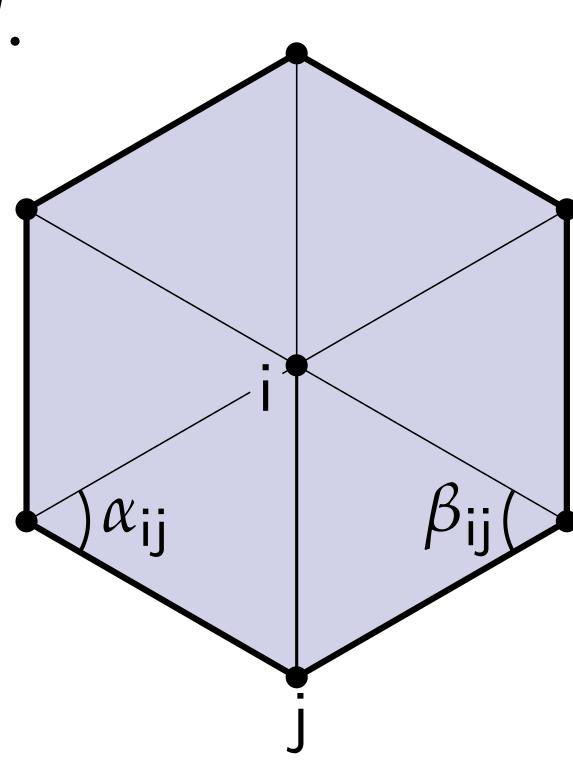


- Another well-known fact: mean curvature normal can be expressed via the Laplace-Beltrami operator Δ
- **Fact.** For any smooth immersed surface f, $\Delta f = 2HN$.
- Can discretize Δ via the *cotangent formula*, leading again to

$$(\Delta f)_i = \frac{1}{2} \sum_{ij \in E} (\cot \alpha_{ij} + \cot \beta_{ij}) (f_j - f_i)$$

*Will say *much* more in upcoming lectures!

Mean Curvature Normal via Laplace-Beltrami

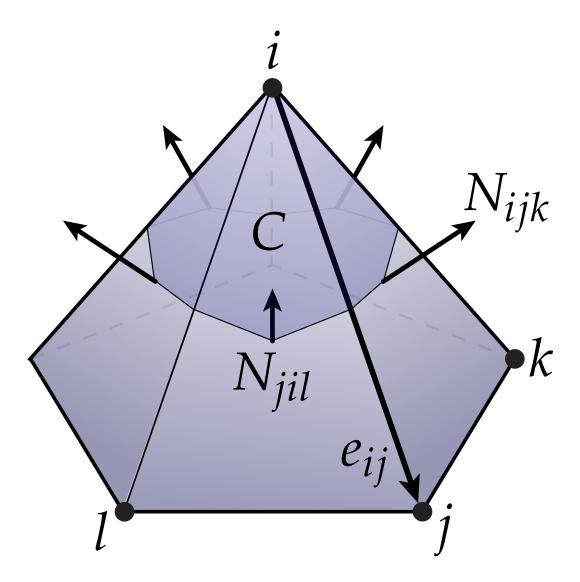


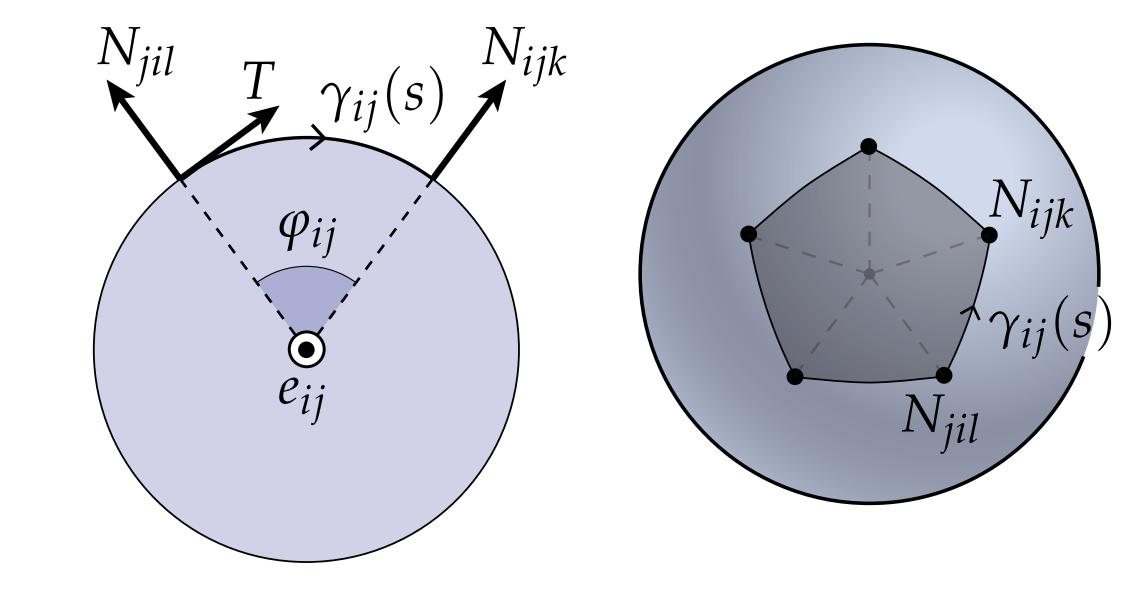
Discrete Gauss Curvature Normal

- A similar calculation leads to an expression for the (discrete) Gauss curvature normal
- One key difference: rather than viewing N as linear along edges, we imagine it makes an arc on the unit sphere

$$2\int_{C} KN \, dA = \int_{C} dN \wedge dN = \int_{C} d(N \wedge dN)$$
$$\int_{\partial C} N \wedge dN = \int_{\partial C} N \times dN(\gamma') \, ds =$$
$$\int_{\partial C} N \times T \, ds = \sum_{j} \int_{\partial C} \frac{e_{ij}}{|e_{ij}|} \, ds = \sum_{j} \frac{e_{ij}}{\ell_{ij}} q$$
$$\left[(KN)_{i} := \frac{1}{2} \sum_{ij \in E} \frac{\varphi_{ij}}{\ell_{ij}} (f_{j} - f_{i}) \right]$$

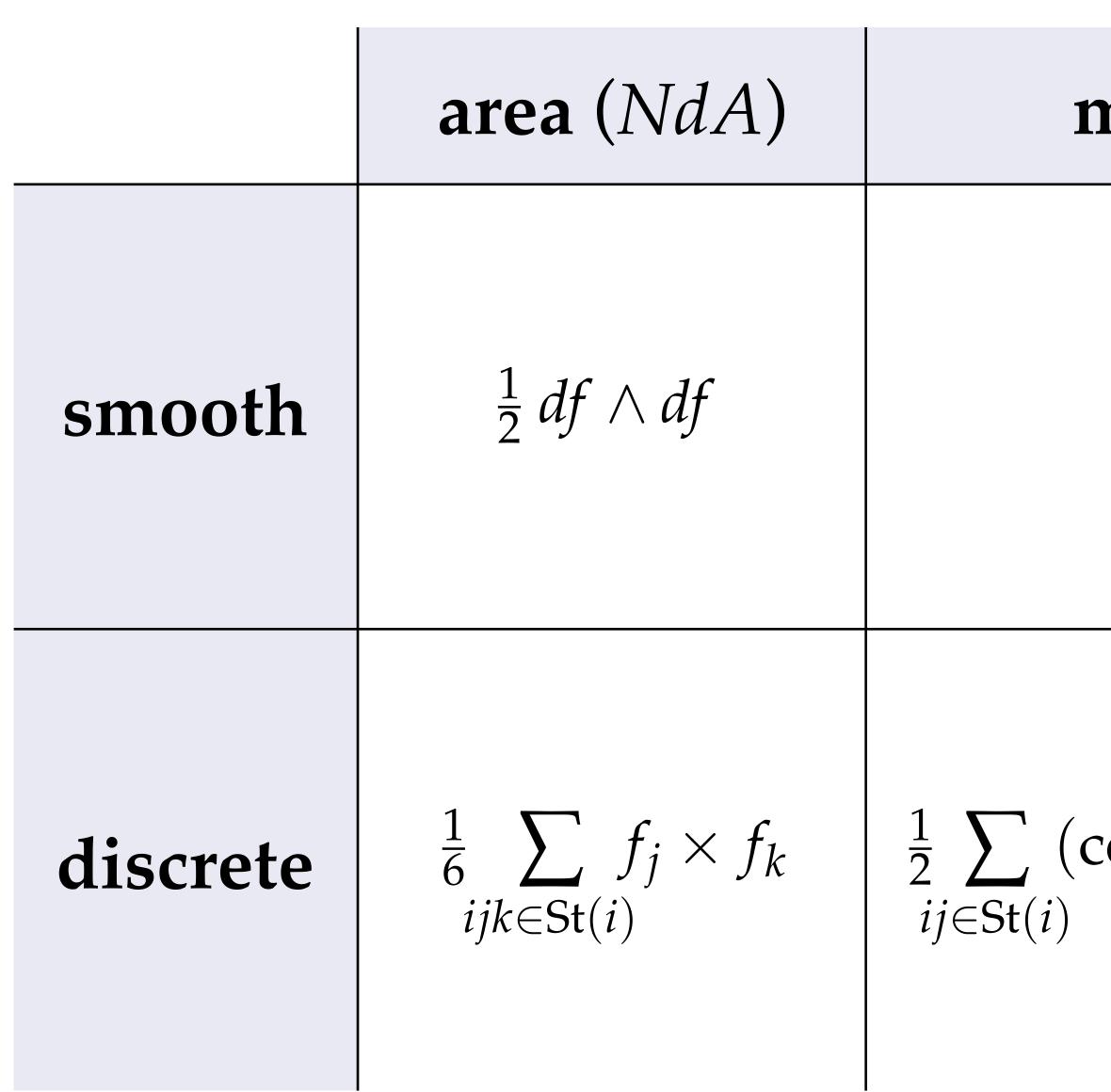
dN) =





Pij

Discrete Curvature Normals—Summary

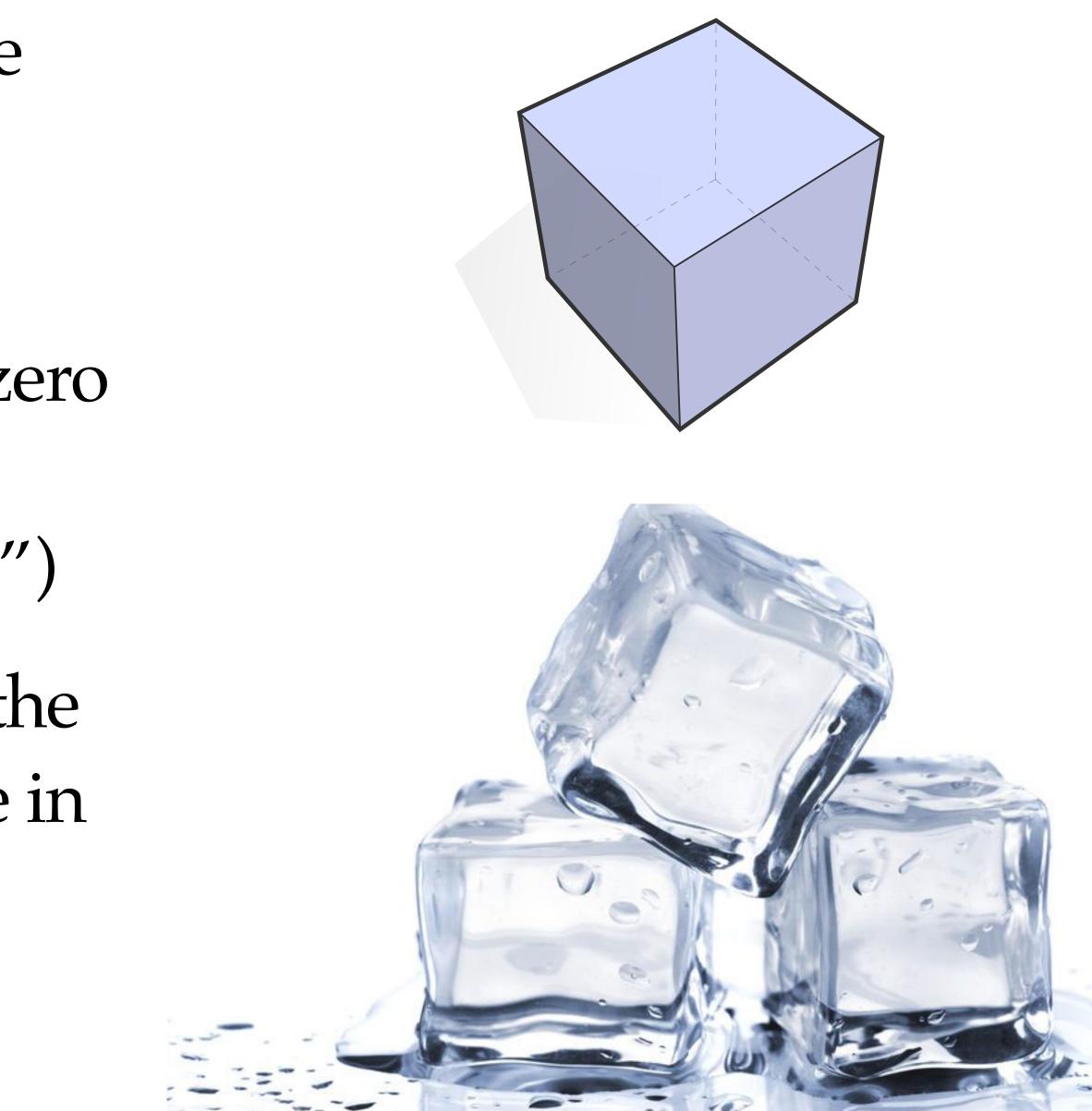


mean (HNdA)	Gauss (KNdA)
$\frac{1}{2} df \wedge dN$	$rac{1}{2} dN \wedge dN$
$\cot \alpha_{ij} + \cot \beta_{ij})(f_i - f_j)$	$\frac{1}{2} \sum_{ij \in \text{St}(i)} \frac{\varphi_{ij}}{\ell_{ij}} (f_j - f_i)$

Steiner's Formula

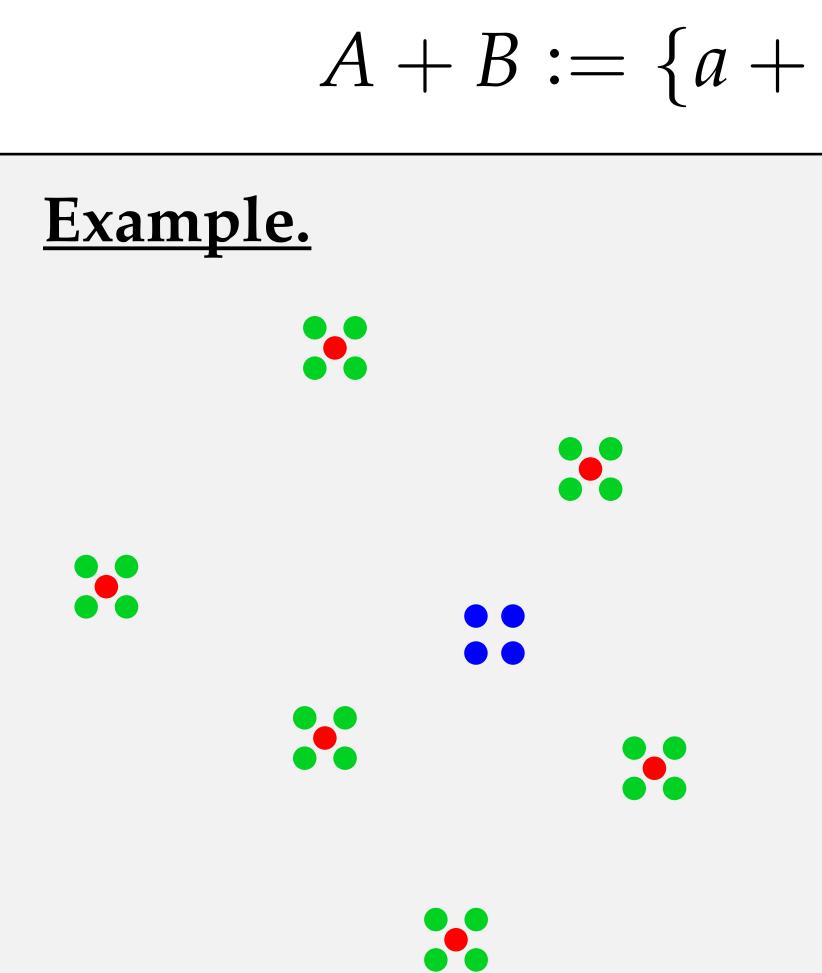
Steiner Approach to Curvature

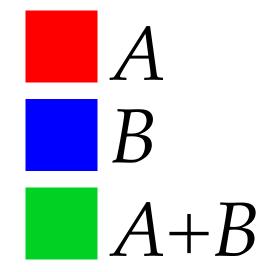
- What's the curvature of a discrete surface (polyhedron)?
- Simply taking derivatives of the normal yields a useless answer: zero except at vertices/edges, where derivative is ill-defined ("infinite")
- Steiner approach: "smooth out" the surface; define discrete curvature in terms of this *mollified* surface



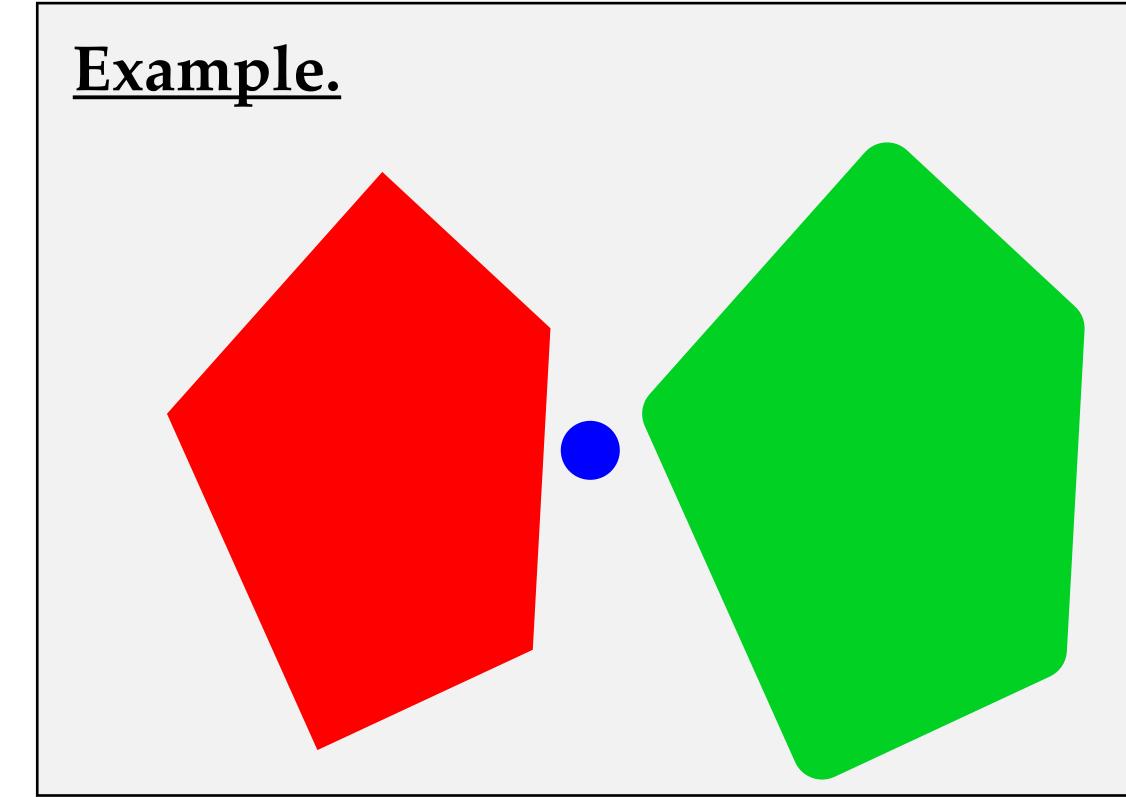
Minkowski Sum

• Given two sets A, B in Rⁿ, their Minkowski sum is the set of points





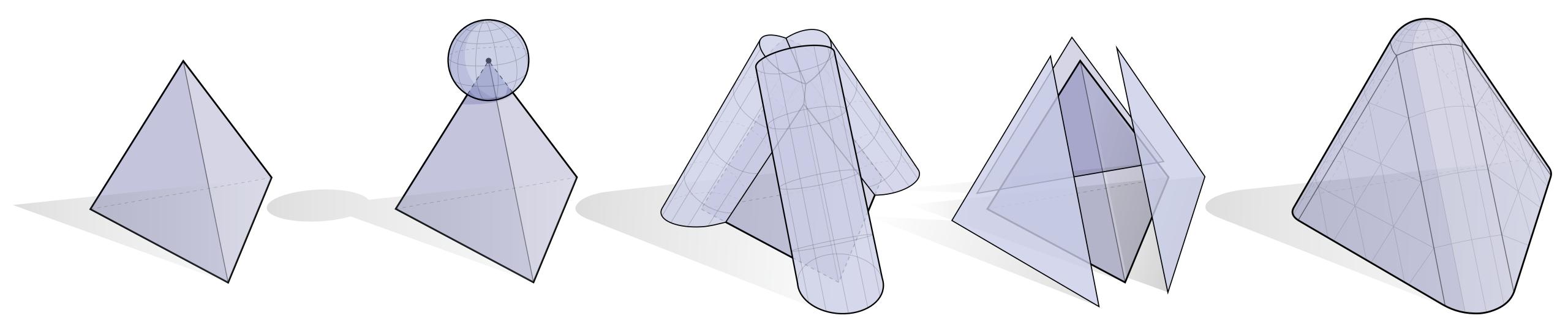
$A + B := \{a + b \mid a \in A, b \in B\}$



Q: Does translation of *A*, *B* matter?

Mollification of Polyhedral Surfaces

- Steiner approach mollifies polyhedral surface by taking Minkowski sum with ball of radius $\varepsilon > 0$
- Measure curvature, take limit as ε goes to zero to get discrete definition
- (Have to think carefully about nonconvex polyhedra...)



Steiner Formula

of radius ε . Then the volume of the Minkowski sum $A+B_{\varepsilon}$ can be expressed as a polynomial in ε :

$\operatorname{volume}(A + B_{\varepsilon}) = \operatorname{volume}(A + B_{\varepsilon})$

- quickly the volume grows
- are about to see...

• **Theorem.** (Steiner) Let A be any convex body in \mathbb{R}^n , and let B_{ε} be a ball

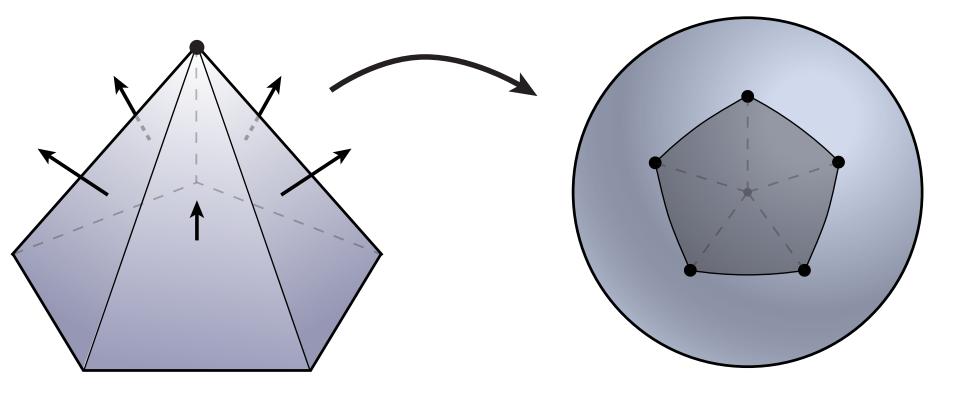
olume
$$(A) + \sum_{k=1}^{n} \Phi_k(A)\varepsilon^k$$

• Constant coefficients are called *quermassintegrals*, and determine how

• This volume growth in turn has to do with (discrete) curvature, as we

Gaussian Curvature of Mollified Surface

- **Q**: Consider a *closed*, *convex* polyhedron in *R*³; what's the Gaussian curvature *K* of the mollified surface for a ball of radius ε?
 - **Triangles:** K = 0
 - **Edges:** K = 0
 - Vertices?



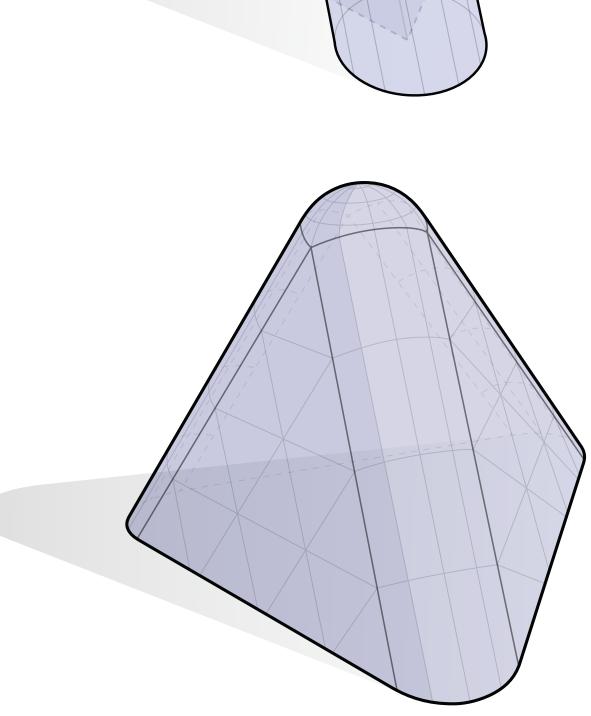
- each contributes a piece of sphere of radius ϵ (*K*=1/ ϵ^2) • recall (unit) spherical area given by *angle defect* Ω_i • *total* curvature associated with vertex *i* is then

$$A_i K_i = \left(\frac{\Omega_i}{4\pi} 4\pi\varepsilon^2\right) \frac{1}{\varepsilon^2} = \Omega_i$$

(Spherical polygon is all normals associated with vertex.)

Mean Curvature of Mollified Surface

- **Q**: What's the mean curvature *H* of the mollified surface?
 - Faces: H = 0
 - Edges?
 - each contributes a piece of a cylinder $(H=1/2\varepsilon)$
 - area of cylindrical piece is $\ell_{ij}\varphi_{ij}\varepsilon$
 - *total* mean curvature for edge is hence $H_{ij} = \frac{1}{2} \ell_{ij} \varphi_{ij}$
 - Vertices?
 - each contributes a piece of the sphere $(H=1/\epsilon)$
 - area is $(\Omega_i/4\pi) 4\pi \varepsilon^2 = \Omega_i \varepsilon^2$
 - *total* mean curvature for vertex is then $H_i = \Omega_i \varepsilon$

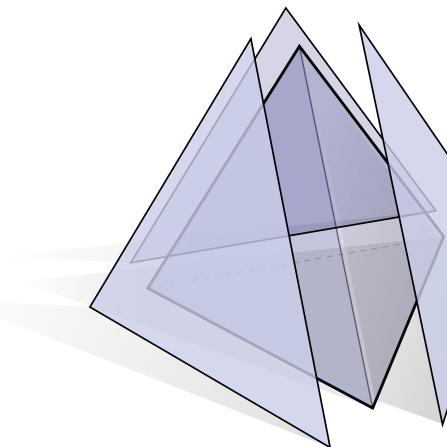


Area of a Mollified Surface

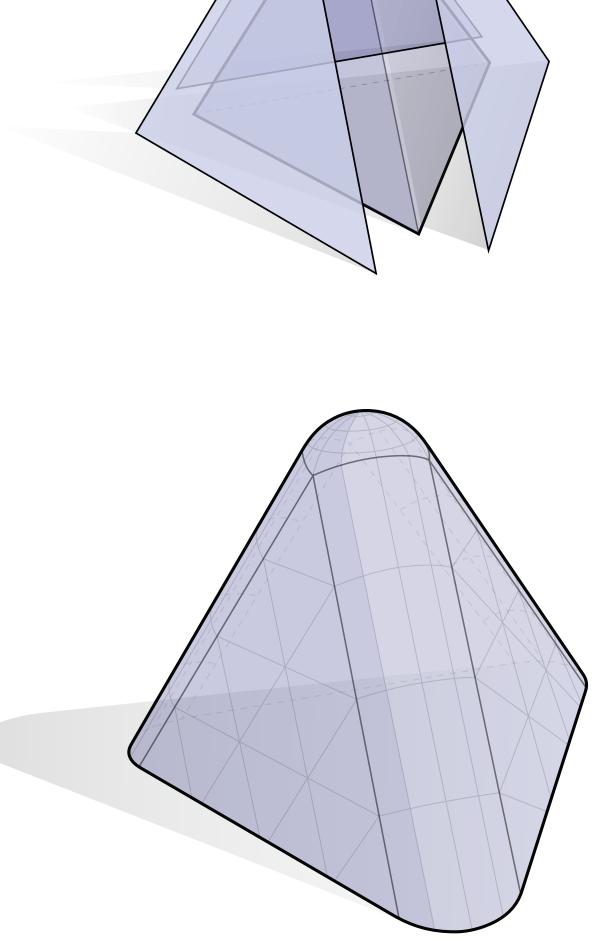
- **Q**: What's the area of the mollified surface?
 - **Faces:** just the original area A_{ijk}
 - **Edges:** $\ell_{ij}\varphi_{ij}\varepsilon$
 - Vertices: $\Omega_i \varepsilon^2$
- Total area of the whole surface is then

$$\operatorname{area}_{\varepsilon}(f) = \sum_{ijk\in F} A_{ijk} + \varepsilon \sum_{ij\in F} A_{ijk} = \varepsilon$$

• By (discrete) Gauss-Bonnet, last term is also $2\pi\chi$



$\sum_{i \in V} \ell_{ij} \varphi_{ij} + \varepsilon^2 \sum_{i \in V} \Omega_i$



Volume of Mollified Surface

- 1/2 1/3 $+ \varepsilon^2 \sum_{ij \in E} \ell_{ij} \varphi_{ij} + \varepsilon^3 \sum_{i \in V} \Omega_i$
- Q: What's the total volume of the mollified surface? • Starting to see a pattern—if V_0 is original volume, then

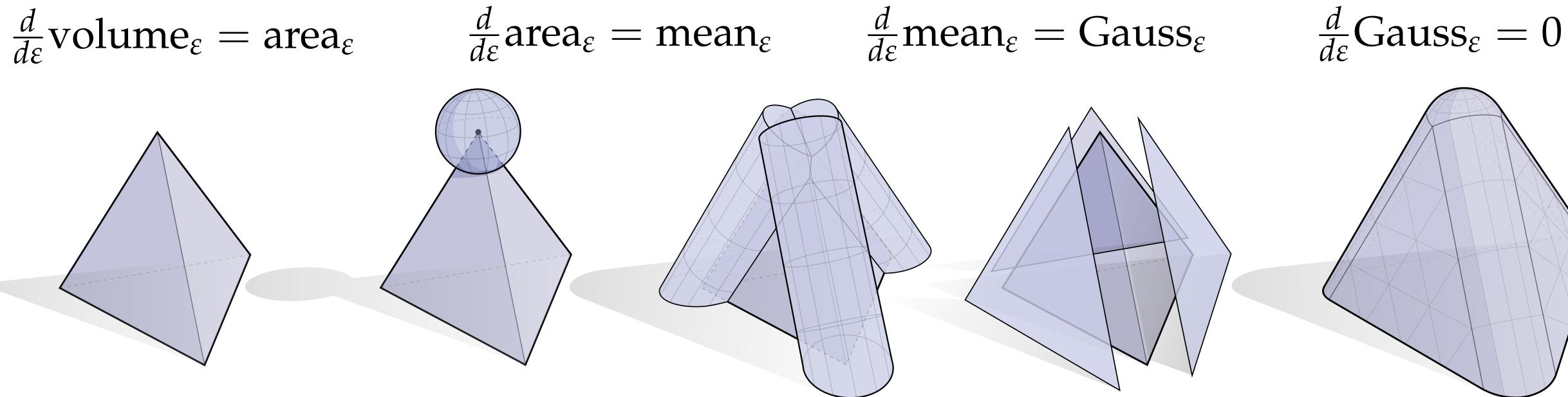
$$\operatorname{volume}_{\varepsilon}(f) = V_0 + \varepsilon \sum_{ijk \in F} A_{ijk}$$

- Q: How did we get here from our area expression?
- A: Increasing radius by ε increases volume proportional to area

Steiner Polynomial for Polyhedra in R³

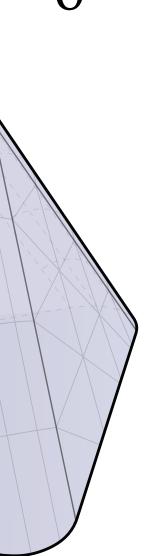
- Volume of mollified polyhedron is a polynomial in radius ε

volume_{$$\varepsilon$$}(f) = V₀ + $\varepsilon \sum_{ijk\in F} A_{ijk} + \varepsilon^2 \sum_{ij\in E} \ell_{ij}\varphi_{ij} + \varepsilon^3 \sum_{i\in V} \Omega_i$



Q: Why are there only four terms?

• Derivatives w.r.t. ε give total area, mean curvature, Gauss curvature



Steiner Polynomial for Surfaces in R³

- Not surprisingly, there is an analogous formula for surfaces in R^3 Taking a Minkowski sum with a ball* of radius ε is the same as shifting the surface in the normal direction a distance ε e + tN • Consider a surface $f: M \longrightarrow R^3$ with Gauss map N; let $f_t := f + tN$ • How is the area of the "smoothed" surface changing?

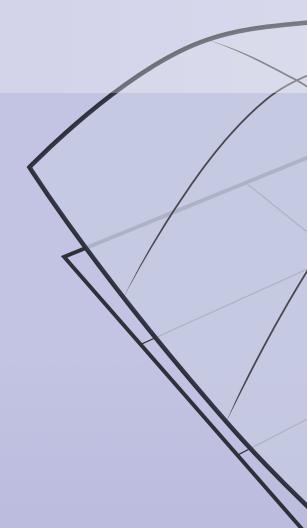
- $dA_t = \frac{1}{2} \langle N, df_t \wedge df_t \rangle$ $df_t \wedge df_t =$ $(df + tdN) \wedge (df + tdN) =$ $df \wedge df + 2tdf \wedge dN + t^2dN \wedge dN =$ $(1+2tH+t^2K)df \wedge df$

 $\implies dA_t = (1 + 2tH + t^2K)dA_0$

Notice:

- surface area given by $df \wedge df$
- spherical area $dN \wedge dN$ gives Gauss curvature •mixed area $df \wedge dN$ gives mean curvature

*sufficiently small



DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858B • Fall 2017

