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Discrete Surfaces



• Two primary models of surfaces in discrete differential geometry:

• Simplicial

– surfaces are simplicial 2-manifolds

– natural fit with discrete exterior calculus

• Nets

– surfaces are piecewise integer lattices

– natural fit with discrete integrable systems

• Simplicial surfaces more common in applications; focus of our course

Discrete Models of Surfaces



Simplicial Surface—Short Story
• Loosely speaking, a simplicial surface is 

just a “triangle mesh”

• But, being more careful about this 
definition enables us to connect “triangle 
meshes” to differential geometry

• As with smooth surfaces, will have 
regularity conditions that make life easier:

– topology: connectivity is manifold

– geometry: vertex coordinates describe a 
simplicial immersion



Abstract Simplicial Surface
• An (abstract) simplicial surface is a 

manifold simplicial 2-complex

– highest-degree simplices are triangles

– every edge contained in two triangles 
(or one, along boundary)

– every vertex contained in a single edge-
connected cycle of triangles                     
(or path, along boundary)

• Will typically denote by K=(V,E,F)

Key idea: no “shape”—just connectivity



Simplicial Map
• How do we give a “shape” to an 

abstract simplicial surface?

• Assign coordinates fi to each vertex 
(discrete Rn-valued 0-form)

• Linearly interpolate over edges, 
triangles via barycentric coordinates

• Image of each simplex in our abstract 
surface is now a simplex in Rn

• Any map from simplices to simplices 
is called a simplicial map



Simplicial Map, continued
• What’s really going on here?  I.e., 

what’s the domain of our map f ?
• Abstract simplicial complex is just a 

set of subsets…  How do we talk 
about points “inside” a simplex?

• Barycentric coordinates effectively 
associate each abstract simplex with 
a a copy of the standard simplex

• Domain of f is then the (disjoint) 
union of all these simplices, “glued” 
together along shared edges*

K = { {i,j,k}, {j,k,l}, {i,j}, {j,k}, {k,i}, …}
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*Formally: quotient w.r.t. an equivalence relation on barycentric coords.



Discrete Differential
• Map f is a discrete, Rn-valued 0-form

• Discrete differential df is just discrete exterior 
derivative of f — one value per oriented edge ij

• What do these values mean geometrically?

• Recall that a discrete 1-form represents the 
integral of a smooth 1-form over a 1-simplex σij:

• In other words, discrete differential is nothing more than the edge vectors!

• Like any other 1-form, antisymmetric w.r.t. orientation:  (df)ji = –(df)ij



Review: Immersion
A parameterized surface f is an immersion if its differential is 
nondegenerate, i.e., if df (X) = 0 if and only if X = 0.

Motivation: map is “nice enough” to define other differential quantities

immersion



Discrete Immersion
• How do we faithfully translate this 

“nondegenerate” condition into the 
discrete setting?

• Naïvely, a nondegenerate discrete 
differential just means there are no 
zero edge lengths…

• Doesn’t faithfully capture 
important features of smooth 
immersions!

– E.g., no branch points



Simplicial Immersion
• Instead, capture more basic 

property of smooth immersions: 
local injectivity

• Definition. A discrete immersion is 
a locally injective simplicial map

• Basic notion of regularity for 
discrete surfaces

• Fact. A simplicial map is locally 
injective if and only if every vertex 
star is embedded

Key idea: “nonzero areas / lengths / angles” is necessary, but not sufficient!
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NO

NO

NO



Discrete Gauss Map



Discrete Gauss Map
• For a discrete immersion, the Gauss map 

is simply the triangle normals

• Discrete exterior calculus: dual discrete 
R3-valued 0-form (vector per triangle)

• Can visualize as points on the unit sphere

• Connecting adjacent normals by arcs 
corresponds to family of normals 
orthogonal to edge
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Discrete Vertex Normal?
• Discrete Gauss map still doesn’t define 

normals at vertices (or edges)

• Many possible ad-hoc definitions for 
vertex normal, but may behave poorly…

• E.g., uniformly averaging face normals 
yields results that depend on tessellation 
rather than geometry

• Better approach: start in the smooth 
setting & apply principled discretization

?



• Recall smooth vector area:

• Idea: Integrate NdA over dual cell to get normal at vertex p

Discrete Vector Area

p
i

j

Note: Doesn’t depend on the location of p!



Other Natural Definitions
• area-weighted vertex normal

– sum of triangle normals times triangle areas

– corresponds to exact volume variation

• angle weighted vertex normal

– sum of triangle normals times interior angles

– gives same result, independent of triangulation

Please: just anything but uniformly weighted!



Discrete Exterior Calculus on Curved Surfaces



Discrete Exterior Calculus on Curved Surfaces
• In the smooth setting, we first defined 

exterior calculus in Rn, then saw how to 
augment it to work on curved surfaces

• Key observation: just need to change the 
Hodge star, which encodes all geometric 
information (length, angle, area, …)

• For simplicial surfaces in R3, life is even 
easier: each simplex is already flat!

• Will have to make essentially no change 
to our discrete Hodge star from Rn…

u
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Diagonal Hodge Star on a Surface
Recall that on a simplicial surface, we discretized the Hodge star via 
diagonal matrices storing primal-dual volume ratios:

Q: What happens if our mesh is no longer flat?

2-forms0-forms 1-forms



Diagonal Hodge Star on a Curved Surface
• A: Nothing changes! We can still apply 

the same formulas—which depend only 
on primal lengths and interior angles

• E.g., for the 1-form Hodge star, we are 
effectively taking a length ratio involving 
the dual distance “along” the surface

• For 0-/2-form Hodge star, just summing 
up little areas from pieces of triangles

• This makes sense: Hodge star operators 
are purely “intrinsic”: they do not depend 
at all on how a surface sits in space.

Key idea: 2D formulas also work for simplicial surfaces



Discrete Laplace-Beltrami Operator
• From here, we can immediately build discrete differential operators for curved 

surfaces by just composing our existing discrete exterior derivative and discrete 
Hodge star operators

• For instance, the ordinary 2D Laplacian now becomes the Laplace-Beltrami operator

• Using our expressions for the discrete Hodge star, can write the discrete 
Laplace-Beltrami operator via the famous cotan formula:



Recovery of Discrete Surfaces



Recovery of Discrete Surfaces
• In a variety of situations, geometry can be recovered from differential 

quantities:

• (Ordinary functions can be recovered from their derivative)

• Plane curves can be recovered from their curvature

• Space curves can be recovered from their curvature and torsion

• Smooth surfaces can be recovered from 1st & 2nd fundamental form

• Convex surfaces can be recovered from their Riemannian metric…



Shape from Normals—Simplicial
• Q: Given only discrete Gauss map, can we recover 

the immersion? (I.e., given only triangle normals, 
can we get vertex positions?)

• A: Yes!  Basic recipe:
• Cross product of normals gives edge directions
• Dot product of edges gives interior angles
• Three angles determine triangle up to scale; 

normal determines plane of each triangle
• Build triangles one-by-one and “glue” together

• Q: Does this recipe always work?

N1

N2



Shape from Normals—Smooth
• Q: Is it strange that we can recover a discrete surface 

from Gauss map?  Can we do something similar in 
the smooth setting?

• Consider a simpler case: Gauss map on a curve

• N(s) := (cos(s), sin(s))

• Problem: unless we know curve is arc-length 
parameterized, N is the Gauss map of any convex 
curve! Need additional data (parameterization)

• Same story for any convex discrete curves, or any 
convex smooth surfaces: normals are not enough!

Mystery: Why don’t we need additional data to 
recover simplicial surfaces?  (Even convex ones…)



Recovery from Metric
• What data is sufficient to describe a surface?

• Theorem. (Cohn-Vossen) Smooth convex 
surface is uniquely determined (up to rigid 
motions) by its Riemannian metric.

• Theorem. (Alexandrov-Connelly) A convex 
polyhedron is uniquely determined by its 
edge lengths.

Note: not always true in nonconvex case!



Recovery of Nonconvex Shapes from Metric?



Algorithm: Shape from Metric
• Recent algorithm (approximately! usually!) recovers mesh from lengths

• Chern et al, “Shape from Metric” (2018)

• Nice read if you want to get deeper into discrete surfaces: discrete 
immersion, discrete spin structure…

http://page.math.tu-berlin.de/~chern/projects/ShapeFromMetric/

http://page.math.tu-berlin.de/~chern/projects/ShapeFromMetric/


Thanks!
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