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Discrete Models of Surfaces

e Two primary models of surfaces in discrete differential geometry:
* Simplicial
— surfaces are simplicial 2-manifolds

— natural fit with discrete exterior calculus

* Nets

— surfaces are piecewise integer lattices

— natural fit with discrete inteqrable systems

e Simplicial surfaces more common in applications; focus of our course



Simplicial Surface— Short Story

* [oosely speaking, a simplicial surface is
just a “triangle mesh”

e But, being more careful about this
definition enables us to connect “triangle
meshes” to differential geometry

e As with smooth surfaces, will have
regularity conditions that make life easier:

— topology: connectivity is manifold

— geometry: vertex coordinates describe a
simplicial immersion
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Abstract Simplicial Surface

* An (abstract) simplicial surface is a
manifold simplicial 2-complex

— highest-degree simplices are triangles

— every edge contained in two triangles
(or one, along boundary)

— every vertex contained in a single edge- <
connected cycle of triangles \
(or path, along boundary)

e Will typically denote by K=(V,E,F)

Key idea: no “shape”—just connectivity



Stmplicial Map

e How do we give a “shape” to an
abstract simplicial surface?

e Assign coordinates f; to each vertex
(discrete R"-valued 0-form)

* [inearly interpolate over edges,
triangles via barycentric coordinates

e Image of each simplex in our abstract

surface is now a simplex in R"

* Any map from simplices to simplices

is called a simplicial map v € L0.0)



Simplicial Map, continued

e What's really going on here? l.e., K= (kL Gkl (i) Gk k) )
what’s the domain of our map f? bR Lis ] l

* Abstract simplicial complex is just a
set of subsets... How do we talk
about points “inside” a simplex?

* Barycentric coordinates etfectively
associate each abstract simplex with
a a copy of the standard simplex

e Domain of fis then the (disjoint)
union of all these simplices, “glued”
together along shared edges™

“Formally: quotient w.r.t. an equivalence relation on barycentric coords.



Discrete Differential

® Map fis a discrete, R"-valued 0-form J/

* Discrete differential df is just discrete exterior
derivative of f — one value per oriented edge 1]

* What do these values mean geometrically?

* Recall that a discrete 1-form represents the
integral of a smooth 1-form over a 1-simplex o;;:

W)= [ dfgyds= | df = | f=f~Ff

O'i]' ;i 80'2']'

e In other words, discrete differential is nothing more than the edge vectors!

* Like any other 1-form, antisymmetric w.r.t. orientation: (df);;i = —(df);j



Review: Immersion

A parameterized surtface f is an immersion if its ditferential is
nondegenerate, i.e., if df (X) =0 if and only if X = 0.

Immersion
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Motivation: map is “nice enough” to define other differential quantities



Discrete Immersion

e How do we faithfully translate this
“nondegenerate” condition into the
discrete setting?

e Naively, a nondegenerate discrete
differential just means there are no
zero edge lengths...

e Doesn't faithfully capture
important features of smooth
immersions!

— E.q., no branch points




Stmplicial Immersion

* Instead, capture more basic
property of smooth immersions: 1oy
local injectivity % NO
* Definition. A discrete immersion is /

-
a locally injective simplicial map
e Basic notion of regularity for Q<>
discrete surfaces _1.\13
f NO
* Fact. A simplicial map is locally oot
injective if and only if every vertex fg s
star is embedded 4
fs f2
<V

Key idea: “nonzero areas [ lengths [ angles” is necessary, but not sufficient! 1 %



ete Gauss Map




Discrete Gauss Map

e For a discrete immersion, the Gauss map
is simply the triangle normals

e Discrete exterior calculus: dual discrete
R3-valued 0-form (vector per triangle)

e Can visualize as points on the unit sphere

e Connecting adjacent normals by arcs
corresponds to family of normals
orthogonal to edge




Discrete Vertex Normal?

* Discrete Gauss map still doesn’t detine
normals at vertices (or edges)

* Many possible ad-hoc definitions for
vertex normal, but may behave poorly...

e L.¢., uniformly averaging face normals
yields results that depend on tessellation

rather than geometry

e Better approach: start in the smooth

setting & apply principled discretization




Discrete Vector Area

* Recall smooth vector area: / NdA = ; / df Ndf =5 | f xdf
() () 0()

* Idea: Integrate NdA over dual cell to get normal at vertex p

L[ Nda= 1| fxdf = aQ af%

s 2 | fxdf=
ijcaQ) v €ij
1 it 1 |
s 2 o x(fi—fi)= g L fixf /
17€0() 17€0()
!
Note: Doesn’t depend on the location of p! 00)




Other Natural Definitions

* area-weighted vertex normal

— sum of triangle normals times triangle areas

— corresponds to exact volume variation

e angle weighted vertex normal

— sum of triangle normals times interior angles X
) 0; Nijx
— gives same result, independent of triangulation | \jangle

Please: just anything but uniformly weighted! %




Discrete Exterior Calculus on Curved Surfaces



Discrete Exterior Calculus on Curved Surfaces

e In the smooth setting, we first defined dA; f
exterior calculus in R", then saw how to o
augment it to work on curved surfaces

e Key observation: just need to change the

k

Hodge star, which encodes all geometric !

information (length, angle, area, ...) Y 7 ‘
* For simplicial surfaces in R’, life is even ‘@ ‘
easier: each simplex is already flat! / \
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e Will have to make essentially no change

to our discrete Hodge star from R"...



Diagonal Hodge Star on a Surface

Recall that on a simplicial surface, we discretized the Hodge star via
diagonal matrices storing primal-dual volume ratios:

0-forms 2
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Q: What happens if our mesh is no longer flat?




Diagonal Hodge Star on a Curved Surface

e A: Nothing changes! We can still apply
the same formulas—which depend only
on primal lengths and interior angles

e E.¢., for the 1-form Hodge star, we are
effectively taking a length ratio involving
the dual distance “along” the surface

e For 0-/2-form Hodge star, just summing
up little areas from pieces of triangles

e This makes sense: Hodge star operators
are purely “intrinsic”: they do not depend
at all on how a surface sits in space.

Key idea: 2D formulas also work for simplicial surtaces



Discrete Laplace-Beltrami Operator

e From here, we can immediately build discrete differential operators for curved
surfaces by just composing our existing discrete exterior derivative and discrete
Hodge star operators

e For instance, the ordinary 2D Laplacian now becomes the Laplace-Beltrami operator

AP = xd x d¢

e Using our expressions for the discrete Hodge star, can write the discrete
Laplace-Beltrami operator via the famous cotan formula:

(Au)i — % .ZE(CO’C 0jj cot ,BZ])(M] — Mi)
ije




Recovery of Discrete Surfaces



Recovery of Discrete Surfaces

* In a variety of situations, geometry can be recovered from differential
quantities:

* (Ordinary functions can be recovered from their derivative)

e Plane curves can be recovered from their curvature

e Space curves can be recovered from their curvature and torsion

e Smooth surfaces can be recovered from 1st & 2nd fundamental form

e Convex surfaces can be recovered from their Riemannian metric...

Q: What data is sufficient to describe a discrete surtace?




Shape from Normals— Simplicial

* Q: Given only discrete Gauss map, can we recover
the immersion? (L.e., given only triangle normals,
can we get vertex positions?) N>

* A: Yes! Basic recipe:
e Cross product of normals gives edge directions
* Dot product of edges gives interior angles

e Three angles determine triangle up to scale;
normal determines plane of each triangle

e Build triangles one-by-one and “glue” together

e Q: Does this recipe always work?

»L\;




Shape from Normals— Smooth

e Q:Is it strange that we can recover a discrete surface
from Gauss map? Can we do something similar in
the smooth setting?

* Consider a simpler case: Gauss map on a curve
e N(s):=(cos(s), sin(s))

* Problem: unless we know curve is arc-length
parameterized, N is the Gauss map of any convex
curve! Need additional data (parameterization)

* Same story for any convex discrete curves, or any
convex smooth surfaces: normals are not enough!

Mystery: Why don’t we need additional data to
recover simplicial surfaces? (Even convex ones...)




Recovery from Metric

e What data is sufficient to describe a surface?

e Theorem. (Cohn-Vossen) Smooth convex
surface is uniquely determined (up to rigid
motions) by its Riemannian metric.

* Theorem. (Alexandrov-Connelly) A convex
polyhedron is uniquely determined by its
edge lengths.

Note: not always true in nonconvex case!
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Recovery of Nonconvex Shapes from Metr
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Algorithm: Shape from Metric

e Recent algorithm (approximately! usually!) recovers mesh from lengths
e Chern et al, “Shape from Metric” (2018)

* Nice read if you want to get deeper into discrete surfaces: discrete
immersion, discrete spin structure...

http://page.math.tu-berlin.de/~chern/projects/ShapeFromMetric/


http://page.math.tu-berlin.de/~chern/projects/ShapeFromMetric/

Thanks!
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