

DISCRETE DIFFERENTIAL GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

LECTURE 8:

DISCRETE DIFFERENTIAL FORMS

DISCRETE DIFFERENTIAL

GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

Review — Exterior Calculus

- Last lecture we saw exterior calculus (differentiation & integration of forms)
- As a review, let's try solving an equation involving differential forms

Given: the 2-form $\omega := dx \wedge dy$ on \mathbb{R}^2

Find: a 1-form α such that $d\alpha = \omega$.

Well, any 1-form on \mathbb{R}^2 can be expressed as $\alpha = udx + vdy$ for some pair of coordinate functions $u, v : \mathbb{R}^2 \to \mathbb{R}$.

We therefore want to find u, v such that $du \wedge dx + dv \wedge dy = dx \wedge dy$.

Recalling that $dx \wedge dy = -dy \wedge dx$, we must have $v = \frac{1}{2}x$ and $u = -\frac{1}{2}y$.

In other words,
$$\alpha = \frac{1}{2}(xdy - ydx)$$
.

(...is that what you expected?)

Discrete Exterior Calculus—Motivation

- Solving even very easy differential equations by hand can be hard!
- If equations involve data, *forget* about solving them by hand!
- Instead, need way to approximate solutions via computation

- Basic idea:
 - replace domain with mesh
 - replace differential forms with values on mesh
 - replace differential operators with matrices

(pictures: Elcott et al, "Stable, Circulation-Preserving, Simplicial Fluids")

Discrete Exterior Calculus—Basic Operations

- In smooth exterior calculus, we saw many operations (wedge product, Hodge star, exterior derivative, sharp, flat, ...)
- For solving equations on meshes, the most basic operations are typically the **discrete exterior derivative** (d) and the **discrete Hodge star** (\star), which we'll ultimately encode as sparse matrices.

$$d\phi = \frac{\partial \phi}{\partial x^{i}} dx^{i}$$

$$\begin{bmatrix}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
1 & 0 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1
\end{bmatrix} \begin{bmatrix} \phi_{1} \\ \phi_{2} \\ \phi_{3} \\ \phi_{4} \end{bmatrix}$$

Composition of Operators

• By composing matrices, we can easily solve equations involving operators like those from vector calculus (grad, curl, div, Laplacian...) but in much greater generality (e.g., curved surfaces, k-forms...) and on complicated domains (meshes)

$$\operatorname{grad} \longrightarrow d_0$$

$$\operatorname{curl} \longrightarrow \star_2 d_1$$

$$\operatorname{div} \longrightarrow \star_0^{-1} d_0^T \star_1$$

$$\Delta \longrightarrow \star_0^{-1} d_0^T \star_1 d_0$$

$$\Delta_k \longrightarrow d_{k-1} \star_{k-1}^{-1} d_{k-1}^T \star_k + \star_k^{-1} d_k^T \star_{k+1} d_k$$

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.

Discretization & Interpolation

- Two basic operations needed to translate between smooth & discrete quantities:
 - **Discretization** given a continuous object, how do I turn it into a finite (or *discrete*) collection of measurements?
 - **Interpolation** given a discrete object (representing a finite collection of measurements), how do I come up with a continuous object that agrees with (or *interpolates*) it?

Discretization & Interpolation — Differential Forms

- In the particular case of a differential *k*-form:
 - **Discretization** happens via *integration* over oriented *k*-simplices (known as the *de Rham map*)
 - **Interpolation** is performed by taking linear combinations of continuous functions associated with *k*-simplices (known as *Whitney interpolation*)
- With these operations, becomes easy to translate some pretty sophisticated equations into algorithms!

Discretization—Basic Idea

Given a continuous differential form, how can we approximate it on a mesh?

Basic idea: integrate *k*-forms over *k*-simplices.

Doesn't tell us everything about the form... but enough to solve interesting equations!

Discretization of Forms (de Rham Map)

Let K be an oriented simplicial complex on \mathbb{R}^n , and let ω be a differential kform on \mathbb{R}^n . For each simplex $\sigma \in K$, the corresponding value of the discrete k-form $\hat{\omega}$ is given by

$$\hat{\omega}_{\sigma} := \int_{\sigma} \omega$$

The map from continuous forms to discrete forms is called the *discretization map*, or sometimes the *de Rham map*.

Key idea: *discretization* just means "integrate a *k*-form over *k*-simplices." Result is just a list of values.

Integrating a 0-form over Vertices

- Suppose we have a 0-form ϕ
- What does it mean to integrate it over a vertex *v*?
- Easy: just take the value of the function at the location *p* of the vertex!

Example:

$$\phi(x,y) := x^2 + y^2 + \cos(4(x+y))$$

$$p = (1,-1)$$

$$\int_{v} \phi = \phi(p) = 1 + 1 + \cos(0) = 3$$

Key idea: integrating a 0-form at vertices of a mesh just "samples" the function

Integrating a 1-form over an Edge

- Suppose we have a 1-form α in the plane
- How do we integrate it over an edge *e*?
- Basic recipe:
 - Compute unit tangent T
 - Apply α to T, yielding function $\alpha(T)$
 - Integrate this scalar function over edge
- Result gives "total circulation"
- Can use numerical quadrature for tough integrals
 - In practice, rare to actually integrate!
 - More often, discrete 1-form values come from, e.g., operations on discrete 0-form

$$\hat{\alpha}_e := \int_e^L \alpha = \int_0^L \alpha(T) \, ds$$

$$\int_{e} \alpha \approx \operatorname{length}(e) \left(\frac{1}{N} \sum_{i=1}^{N} \alpha_{p_{i}}(T) \right)$$

Integrating a 1-Form over an Edge—Example

In \mathbb{R}^2 , consider a 1-form $\alpha := xydx - x^2dy$ and an edge e with endpoints $p_0 := (-1,2)$ $p_1 := (3,1)$

Q: What is $\int_e \alpha$?

A: Let's first compute the edge length *L* and unit tangent *T*:

$$L := |p_1 - p_0| = \sqrt{17}$$
 $T := (p_1 - p_0)/L = (4, -1)/\sqrt{17}$
Hence, $\alpha(T) = (4xy + x^2)/\sqrt{17}$.

An arc-length parameterization of the edge is given by

$$p(s) := p_0 + \frac{s}{L}(p_1 - p_0), \quad s \in [0, L]$$

By plugging in all these expressions/values, our integral simplifies to

$$\int_{0}^{L} \alpha(T)_{p(s)} ds = \frac{7}{17} \int_{0}^{L} 4s - L ds = 7$$

...why not let $T := (p_0-p_1)/L$?

Orientation & Integration

$$\int_{a}^{b} \frac{\partial \phi}{\partial x} dx = \phi(b) - \phi(a) = -(\phi(a) - \phi(b)) = -\int_{b}^{a} \frac{\partial \phi}{\partial x} dx$$

Discretizing a 1-form—Example

Example. Let M be the unit square $[0,1]^2$ with a complex K embedded as shown on the right. Using x,y to denote coordinates on M, the 1-form $\omega := 2dx$ is discretized by integrating over each edge:

$$\widehat{\omega}_{1} = \int_{e_{1}} \omega = \int_{0}^{1} \omega \left(\frac{\partial}{\partial x}\right) d\ell = \int_{0}^{1} 2 d\ell = 2.$$

$$\widehat{\omega}_{2} = \int_{e_{2}} \omega = \int_{0}^{1} \omega \left(\frac{\partial}{\partial y}\right) d\ell = \int_{0}^{1} 0 d\ell = 0.$$

$$\widehat{\omega}_{3} = \int_{e_{3}} \omega = \int_{0}^{\sqrt{2}} \omega \left(\frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)\right) d\ell = \int_{0}^{\sqrt{2}} \frac{2}{\sqrt{2}} d\ell = 2.$$

$$\dots = \dots$$

Question: Why does $\widehat{\omega}_1 = \widehat{\omega}_3$?

Integrating a 2-form Over a Triangle

- Suppose we have a 2-form ω in \mathbb{R}^3
- How do we integrate it over a triangle *t*?
- Similar recipe to 1-form:
 - Compute orthonormal basis T_1, T_2 for triangle
 - Apply ω to T_1, T_2 , yielding a function $\omega(T_1, T_2)$
 - Integrate this scalar function over triangle
- Value encodes how well triangle is "lined up" with 2-form on average, times area of triangle
- Again, rare to actually integrate explicitly!

Q: Here, what determines the *orientation* of t?

$$\int_{t} \omega \approx \operatorname{area}(t) \left(\frac{1}{N} \sum_{i=1}^{N} \omega_{p_{i}}(T_{1}, T_{2}) \right)$$

Orientation and Integration

- In general, reversing the **orientation** of a simplex will reverse the **sign** of the integral.
- E.g., suppose we have a discrete 1-form α . Then for each edge ij,

$$\alpha_{ij} = -\alpha_{ji}$$

• Q: Suppose we have a 2-form β . What do you think the relationship is between...

$$\beta_{ijk} = \beta_{jki}$$
 $\beta_{jik} = -\beta_{kij}$

- Q: What's the rule in general?
- A: Discrete k-form values change sign under odd permutation. (Sound familiar? :-))

Discrete Differential Forms

Discrete Differential k-Form

- Abstractly, a *discrete differential k-form* is just any assignment of a value to each oriented *k*-simplex.
- For instance, in 2D:
 - values at **vertices** encode a discrete **0-form**
 - values at edges encode a discrete 1-form
 - values at faces encode a discrete 2-form
- Conceptually, values represent integrated k-forms
- In practice, almost never comes from direct integration!
- More typically, values start at vertices (samples of some function); 1-forms, 2-forms, *etc.*, arise from applying operators like the (discrete) exterior derivative

Matrix Encoding of Discrete Differential k-Forms

- We can encode a discrete *k*-form as a column vector with one entry for every *k*-simplex.
- To do so, we need to first assign a unique *index* to each *k*-simplex
 - The order of these indices can be completely arbitrary
 - We just need some way to put elements of our mesh into correspondence with entries of the vector
- Simplest example: a discrete 0-form can be encoded as a vector with |V| entries

$$\phi = [\phi_1 \cdots \phi_{|V|}]$$

Careful: In code, indices often start from 0 rather than 1!

Matrix Encoding of Discrete Differential 1-Form

- A discrete differential 1-form is a value per edge of an oriented simplicial complex.
- To encode these values as a column vector, we must first assign a unique index to each edge of our complex.
- If we then have values on edges, we know how to assign them to entries of the vector encoding the discrete 1-form.

$$\alpha = \begin{bmatrix} -8.7 & -1.1 & 0.89 & 1.2 & 0.5 & 9.4 \end{bmatrix}^{\mathsf{T}}$$

Careful that if we ever change the orientation of an edge, we must also negate the value in our row vector!

Matrix Encoding of Discrete Differential 2-Form

- Same idea for encoding a discrete differential 2-form as a column vector
- Assign indices to each 2-simplex; now we know which values go in which entries

$$\omega = [.41 \ .22 \ .35 \ .41 \ .57]$$

Chains & Cochains

In the discrete setting, duality between "things that get measured" (k-vectors) and "things that measure" (k-forms) is captured by notion of chains and cochains.

Simplicial Chain

- Suppose we think of each *k*-simplex as its own basis vector
- Can specify some region of a mesh via a linear combination of simplices.

Example.

Q: What does it means when we have a coefficient other than 0 or 1? (Or negative?)

A: Roughly speaking, "*n* copies" of that simplex. (Or opposite *orientation*.)

(Formally: *chain group* C_k is the free abelian group generated by the k-simplices.)

Arithmetic on Simplicial Chains

$$c_{1} = e_{3} - e_{12} + e_{18} - e_{15} + e_{6} - e_{1}$$

$$c_{2} = e_{15} + e_{19} - e_{17} - e_{8} - e_{2} - e_{6}$$

$$c_{1} + c_{2} = e_{3} - e_{12} + e_{18} - e_{15} + e_{6} - e_{1} + e_{15} + e_{19} - e_{17} - e_{8} - e_{2} - e_{6}$$

$$= e_{3} - e_{12} + e_{18} - e_{1} + e_{19} - e_{17} - e_{8} - e_{2} =: c_{3}$$

Boundary Operator on Simplices

Definition. Let $\sigma := (v_{i_0}, \dots, v_{i_k})$ be an oriented k-simplex. Its boundary is the oriented k-1-chain

$$\partial \sigma := \sum_{p=0}^{k} (-1)^p (v_{i_0}, \dots, v_{i_p}, \dots, v_{i_k}),$$

where v_{jp} indicates that the pth vertex has been omitted.

Example. Consider the 2-simplex $\sigma := (v_0, v_1, v_3)$. Its boundary is the 1-chain $(v_0, v_1) + (v_1, v_3) + (v_3, v_0)$.

Example. Consider the 1-simplex $e := (v_0, v_1)$. Its boundary is the 0-chain $\partial e = v_1 - v_0$.

Example. Consider the 0-simplex (v_1) . Its boundary is the empty set.

Boundary Operator on Simplicial Chains

The boundary operator can be extended to any chain by linearity, i.e.,

Note: boundary of boundary is always empty!

Coboundary Operator on Simplices

The *coboundary* of an oriented *k*-simplex σ is the collection of all oriented (*k*+1)-simplices that contain σ , and which have the same relative orientation.

(Analogy: simplicial star)

Simplicial Cochain

A *simplicial k-cochain* is basically any **linear** map from a simplicial *k-*chain to a number.

$$\alpha(c_1\sigma_1 + \cdots + c_n\sigma_n) = \sum_{i=1}^n \alpha_i c_i$$

(Formally: cochain group is group of homomorphisms from cochains to reals.)

Simplicial Cochains & Discrete Differential Forms

Suppose a simplicial *k*-cochain is given by the integrated values from a discrete *k*-form

Q: What does it mean (geometrically) when we apply it to a simplicial *k*-chain?

A: Our discrete *k*-form values come from integrating a smooth *k*-form over each *k*-simplex. So, we just get the integral over the region specified by the chain:

$$c := \int_{\sigma} \alpha \qquad c = \sigma_3 + \sigma_4 + \sigma_7 + \sigma_8$$

$$\hat{\alpha}(c) = \hat{\alpha}_3 + \hat{\alpha}_4 + \hat{\alpha}_7 + \hat{\alpha}_8$$

$$= \int_{\sigma_3 \cup \sigma_4 \cup \sigma_7 \cup \sigma_8} \alpha$$

Discrete Differential Form

Definition. Let M be a manifold simplicial complex. A (primal) *discrete differential* k-form is a simplicial k-cochain on M. We will use Ω_k to denote the set of k-forms.

Interpolation—0-Forms

On any simplicial complex K, the *hat function* a.k.a. *Lagrange basis* ϕ_i is a real-valued function that is linear over each simplex and satisfies

$$\phi_i(v_j) = \delta_{ij},$$

for each vertex v_j , *i.e.*, it equals 1 at vertex i and 0 at vertex j. Given a (primal) discrete 0-form $u: V \to \mathbb{R}$, we can construct an *interpolating* 1-form via

$$\sum_{i}u_{i}\phi_{i},$$

i.e., we simply weight the hat functions by values at vertices.

Note: result is a continuous 0-form.

Barycentric Coordinates—Revisited

- Recall that any point in a *k*-simplex can be expressed as a weighted combination of the vertices, where the weights sum to 1.
- The weights t_i are called the *barycentric* coordinates.
- The Lagrange basis for a vertex *i* is given explicitly by the barycentric coordinates of *i* in each triangle containing *i*.

$$\sigma = \left\{ \sum_{i=0}^k t_i p_i \middle| \sum_{i=0}^k t_i = 1, \ t_i \ge 0 \ \forall i \right\}$$

Interpolation-k-Forms (Whitney Map)

Definition. Let ϕ_i be the hat functions on a simplicial complex. The *Whitney 1-forms* are differential 1-forms associated with each oriented edge ij, given by

$$\phi_{ij} := \phi_i \, d\phi_j - \phi_j \, d\phi_i$$

(Note that $\phi_{ij} = -\phi_{ji}$). The Whitney 1-forms can be used to interpolate a discrete 1-form $\widehat{\omega}$ (value per edge) via

$$\sum_{ij} \widehat{\omega}_{ij} \phi_{ij}$$
.

More generally, the *Whitney k-form* associated with an oriented k-simplex (i_0, \ldots, i_k) is given by

$$\sum_{p=0}^{k} (-1)^p \phi_{i_p} d\phi_{i_0} \wedge \cdots \wedge d\phi_{i_p} \wedge \cdots \wedge d\phi_{i_k}$$

Discretization & Interpolation

• <u>Fact</u>: Suppose we have a discrete differential *k*-form. If we interpolate by Whitney bases, then discretize via the de Rham map (i.e., by integration), then we recover the exact same discrete *k*-form.

Q: What about the other direction? If we discretize a continuous *k*-form then interpolate, will we always recover the same continuous *k*-form?

Discrete Differential Forms—Summary

• A *discrete differential k-form* amounts to a value stored on each oriented *k*-simplex

• **Discretization:** given a smooth differential k-form, can approximate by a discrete differential k-form by integrating over each k-simplex

• **Interpolation:** given a discrete differential k-form, construct a continuous one by taking a weighted sum basis k-forms

• *In practice*, almost never comes from direct integration. More typically, values start at vertices (samples of some function); 1-forms, 2-forms, *etc.*, arise from applying operators like the (discrete) exterior derivative.

• Next lecture: develop these operators!

DISCRETE DIFFERENTIAL GEOMETRY AN APPLIED INTRODUCTION