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Review — Exterior Calculus

e Last lecture we saw exterior calculus (differentiation & integration of forms)

* As a review, let’s try solving an equation involving ditferential forms

Given: the 2-form w := dx A dy on R?

Find: a 1-form « such that da = w.

Well, any 1-form on IR* can be expressed as & = udx + vdy for some pair of

coordinate functions u, v : R* — RR.

We therefore want to find u, v such that du A dx + do N dy = dx N dy.

Recalling that dx A dy = —dy N\ dx, we must have v = %x and u = — 1y

In other words,

= 1 (xdy — ydx).

2 )

(...is that what you expected?)



Discrete Exterior Calculus — Motivation

e Solving even very easy differential equations by hand can be hard!

¢ [f equations involve data, forget about solving them by hand!

* Instead, need way to approximate solutions via computation

e Basic idea:
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e replace domain with mesh

e replace differential forms with values on mesh

o replace differential operators with matrices

pictures: Elcott et al, “Stable, Circulation-Preserving, Simplicial Fluids”)



Discrete Exterior Calculus — Basic Operations

 In smooth exterior calculus, we saw many operations (wedge product, Hodge star,
exterior derivative, sharp, flat, ...)

e For solving equations on meshes, the most basic operations are typically the discrete
exterior derivative (d) and the discrete Hodge star ( % ), which we’ll ultimately
encode as sparse matrices.

dp = gfcbl dx’ *(ocldxl + oczdx — —ardx + aydx’
1 1 0 07 ¢ b "w;, 0 0 0 0 &1
0 -1 1 0 ¢1 0 w, 0 0 O &
1 0 -1 0 ¢2 0 0 w3y 0 O &3
-1 0 0 1 4)3 0 0 0 wy O o
0 0 1 -1 |L"- 0 0 0 0 ws || as




Composition of Operators

e By composing matrices, we can easily solve equations involving operators like those
from vector calculus (grad, curl, div, Laplacian...) but in much greater generality
(e.g., curved surfaces, k-forms...) and on complicated domains (meshes)

grad — dj curl — *pdq

- —1

A — %y Ldd %1 dg

Basic recipe: load a mesh, build a few basic matrices, solve a linear system.



Discretization & Interpolation

* Two basic operations needed to
translate between smooth & discrete
quantities:

* Discretization — given a continuous
object, how do I turn it into a finite
(or discrete) collection of
measurements?

* Interpolation — given a discrete
object (representing a finite collection
of measurements), how do I come up
with a continuous object that agrees
with (or interpolates) it?
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Discretization & Interpolation — Differential Forms

¢ In the particular case of a differential k-
form:

* Discretization happens via
inteqgration over oriented k-simplices

(known as the de Rham map)

* Interpolation is performed by taking
linear combinations of continuous
functions associated with k-simplices

(known as Whitney interpolation)

e With these operations, becomes easy to
translate some pretty sophisticated
equations into algorithms!
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Discretization — Basic Idea

Given a continuous differential form, how can we approximate it on a mesh?
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Basic idea: integrate k-forms over k-simplices.

Doesn’t tell us everything about the form... but enough to solve interesting equations!



Discretization of Forms (de Rham Map)

Let K be an oriented simplicial complex on IR"”, and let w be a differential k-
form on R". For each simplex ¢ € K, the corresponding value of the discrete

k-form @ is given by I
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Key idea: discretization just means “integrate a k-form over k-simplices.”
Result is just a list of values.




Integrating a O-form over Vertices

e Suppose we have a 0-form ¢
e What does it mean to integrate it over a vertex v?

e Easy: just take the value of the function at the
location p of the vertex!

Example:
d(x,y) := x° +y* + cos(4(x +y))
p=(1,-1)

/U(p: H(p) = 1+ 1+ cos(0) = 3

Key idea: integrating a 0-form at vertices of a mesh just “samples” the function



Integrating a 1-form over an Edge
e
/

e Suppose we have a 1-form a in the plane

* How do we integrate it over an edge e?

* Basic recipe: /

e Compute unit tangent T

e Apply a to T, yielding function a(T)
e Integrate this scalar function over edge Ry = / N — /

* Result gives “total circulation”

e Can use numerical quadrature for tough integrals / x ~ length(e) ( Z N )
N Pz

* [n practice, rare to actually integrate! )

* More often, discrete 1-form values come from, e.q., operations on discrete 0-form



Integrating a 1-Form over an Edge — Example

In IR?, consider a 1-form a := xydx — x*dy
and an edge e with endpoints g (—1,2)
P1 3,1)

7~ N

Q: What is fe n?

A: Let’s first compute the edge length L and unit tangent T:
Li=|p—pol =VI7  T:= (p1— po)/L = (4, —1)/V17

Hence, x(T) = (4xy + x%)//17.

An arc-length parameterization of the edge is given by

p(s) :=po+ t(p1—po), s€l0,L]

By plugging in all these expressions/values, our integral simplifies to

L L
/0 & (T)p(s) ds = 177/0 4s — Lds = 7

...why not let T := (po-p1)/L?



Orientation & Integration
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Discretizing a 1-form — Example

Example. Let M be the unit square [0, 1]* with a complex
K embedded as shown on the right. Using x, y to denote
coordinates on M, the 1-form w := 2dx is discretized by
integrating over each edge:

0] = elw:folw % dézfolzdfzz.

. 1 1

Uy = ezw:fofw % dészOdsz.f

. 2 2

w3 = [, w= [ w(\%(aax aay)> al = |, \%GM:Z.

Question: Why does W = Ws?

(0,1)

(0,0)
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(1,1)

(1,0)



Integrating a 2-form QOver a Triangle

e Suppose we have a 2-form w in R3

* How do we integrate it over a triangle ¢?

* Similar recipe to 1-form:
e Compute orthonormal basis T1,T> for triangle
e Apply w to T1,T>, yielding a function w(T1,12)
e Integrate this scalar function over triangle

e Value encodes how well triangle is “lined up”
with 2-form on average, times area of triangle

* Again, rare to actually integrate explicitly!
t

Q: Here, what determines the orientation of t?



Orientation and Integration

 In general, reversing the orientation of a simplex will reverse the sign of the integral.

eE.o., suppose we have a discrete 1-form . Then for each edge ij,

i] ji ; X
* Q: Suppose we have a 2-form 3. What do you think the relationship is between...
A
k | ]

bik = Pijki Pjik = — Prij ]
2N
1

e Q: What's the rule in general?

e A: Discrete k-form values change sign under odd permutation. (Sound familiar? :-))



Discrete Differential Forms



Discrete Differential k-Form

» Abstractly, a discrete differential k-form is just any
assignment of a value to each oriented k-simplex.

¢ For instance, in 2D:
* values at vertices encode a discrete 0-form
e values at edges encode a discrete 1-form
e values at faces encode a discrete 2-form
» Conceptually, values represent integrated k-forms
® [n practice, almost never comes from direct integration!

e More typically, values start at vertices (samples of some
function); 1-forms, 2-forms, etc., arise from applying
operators like the (discrete) exterior derivative




Matrix Encoding of Discrete Differential k-Forms

* We can encode a discrete k-form as a column p:V—>R
vector with one entry for every k-simplex.

*'To do so, we need to first assign a unique
index to each k-simplex

e The order of these indices can be
completely arbitrary

* We just need some way to put elements of
our mesh into correspondence with entries
of the vector

e Simplest example: a discrete 0-form can be P = [ P10 Py }

encoded as a vector with | V| entries
Careful: In code, indices often start from O rather than 1!



Matrix Encoding of Discrete Differential 1-Form

o A discrete differential 1-form is a

. indices values
value per edge of an oriented
simplicial complex.
N N
e To encode these values as a column ) 5 \ 1 11 05 \-8.7
vector, we must first assign a
unique index to each edge of our 6 4 9.4 1.2
complex.
P > >
3 0.89

e [f we then have values on edges,

we know how to assign them to
entries of the vector encoding the x=| —-87 —11 089 12 05 94 }T
discrete 1-form.

Careful that if we ever change the orientation of an edge, we must also negate the value in our row vector!



Matrix Encoding of Discrete Differential 2-Form

e Same idea for encoding a discrete ditferential 2-form as a column vector

 Assign indices to each 2-simplex; now we know which values go in which entries

indices values

w=1[.41 22 35 41 57 ]



Chains & Cochains

In the discrete setting, duality between “things that get measured” (k-vectors) and
“things that measure” (k-forms) is captured by notion of chains and cochains.

SMOOTH DISCRETE
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Stmplicial Chain

e Suppose we think of each k-simplex as its own basis vector

e Can specify some region of a mesh via a linear combination of simplices.

i T
& & &P

Example.

N> N

03404+ 06+ 07409 03 + 305 + 03
Q: What does it means when we have a coefficient other than 0 or 1? (Or negative?)
A: Roughly speaking, “n copies” of that simplex. (Or opposite orientation.)

(Formally: chain group Ck is the free abelian group generated by the k-simplices.)



Arithmetic on Simplicial Chains

C1 =63 — €12 618 — €15 T € — €1

— €15 T €19 — €17 — €8 — €2 — &6
C1+C)=e€3—¢€p+e18— €65 +e6—€1t+ers+e19—e17y—e8—€r—¢6¢

= €3 —€1p T €18 —€1 1T €619 — €17 —eg — €2 =:! (3



Boundary Operator on Simplices

Definition. Let 0 := (v;,,...,v; ) be an oriented k-simplex. Its boundary is the
oriented k — 1-chain

k
00 = Z()(—l)p(vio,...,%...,Uik), 0
p:
where % indicates that the pth vertex has been omitted. ‘
01 02

Example. Consider the 2-simplex o := (vg, v1, v3).
[ts boundary is the 1-chain (vg, v1) + (v1,v3) + (v3,7p).

Example. Consider the 1-simplex e := (vg, v1).
[ts boundary is the 0-chain de = v — vy.

Example. Consider the 0-simplex (v7).
Its boundary is the empty set.



Boundary Operator on Simplicial Chains

The boundary operator can be extended to any chain by linearity, i.e.,

aZCiO'i — Zciaiﬁi.
1 1 e

Example. .

0

Note: boundary of boundary is always empty!



Coboundary Operator on Simplices

The coboundary of an oriented k-simplex o is the collection of all oriented (k+1)-
simplices that contain o, and which have the same relative orientation.

Example.

Example.

—

- ‘ (Orientation?)

—

(Analogy: simplicial star)



Stmplicial Cochain
A simplicial k-cochain is basically any linear map from a simplicial k-chain to a number.

n
a(c1oq + -+ Ccu0y) = Y wic;
1=1

Ay

Vi,

Example.

=14+34+1=5

| |
O = OO WOk OO
| |

N

O'i):1 03 + 305 + 03

(Formally: cochain group is group of homomorphisms from cochains to reals.)



Simplicial Cochains & Discrete Differential Forms

Suppose a simplicial k-cochain is given by the integrated values from a discrete k-form
Q: What does it mean (geometrically) when we apply it to a simplicial k-chain?

A: Our discrete k-form values come from integrating a smooth k-form over each k-
simplex. So, we just get the integral over the region specified by the chain:

dra T

Av A(c) = &z + fy + &y + Ag
& <Y = o

A\

N; = X C = 03+041+07+08

ST



Discrete Differential Form

Definition. Let M be a manifold simplicial complex. A (primal) discrete differential
k-form is a simplicial k-cochain on M. We will use () to denote the set of k-forms.
SMOOTH DISCRETE
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Interpolation —0-Forms

On any simplicial complex K, the hat function a.k.a. Lagrange basis ¢; is a real-valued
function that is linear over each simplex and satisties

¢i(vj) = dij,

for each vertex v, 1.e., it equals 1 at vertex 1 and 0O at vertex j. Given a (primal)
discrete O-form u : V' — IR, we can construct an interpolating 1-form via

Z Ui,

x/iW?\V/V\zﬁ/%% ,

1.e., we simply weight the hat functions by S S <AL —
j PAVANE e S

values at vertices. A VAVASNE

Note: result is a continuous O-form. hat function ¢,



Barycentric Coordinates — Reuvisited

e Recall that any point in a k-simplex can be
expressed as a weighted combination of
the vertices, where the weights sum to 1.

e The weights t; are called the barycentric

coordinates.

1

J

e The Lagrange basis for a vertex i is given by — (0,0,1)

explicitly by the barycentric coordina

1 in each triangle containing i.

k
= {Z Lipi
i=0

k
Y ti=1,1t>0Vi

1=0

|
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P1 = 010
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Interpolation —k-Forms (Whitney Map)

Definition. Let ¢; be the hat functions on a simplicial complex. The Whitney 1-forms
are differential 1-forms associated with each oriented edge ij, given by

Gij == ¢; dp; — ¢; d¢;

(Note that ¢;; = —¢;;). The Whitney 1-forms can be used to interpolate a discrete
1-form @ (value per edge) via
) Wijij. ]
]

More generally, the Whitney k-form associated with an
oriented k-simplex (ig, ..., i) is given by 0AE

k

p;)( ) Pip@Pi % Pi x ~ Whitney 1-form ¢;;




Discretization & Interpolation

* Fact: Suppose we have a discrete differential k-form. If we interpolate by Whitney
bases, then discretize via the de Rham map (i.e., by integration), then we recover the
exact same discrete k-form.

() (smooth differential k-forms)

(discretize) / ¢ (interpolate)

ﬁk (discrete differential k-forms)

Q: What about the other direction? If we discretize a continuous k-form then
interpolate, will we always recover the same continuous k-form?






Discrete Differential Forms —Summary

* A discrete differential k-form amounts to a value stored on
each oriented k-simplex

e Discretization: given a smooth differential k-form, can
approximate by a discrete differential k-form by
integrating over each k-simplex

* Interpolation: given a discrete differential k-form, .-~
construct a continuous one by taking a weighted sum of ¥ &=
basis k-forms ‘

® [n practice, almost never comes from direct integration.
More typically, values start at vertices (samples of some
function); 1-forms, 2-forms, etc., arise from applying
operators like the (discrete) exterior derivative.

e Next lecture: develop these operators!



Thanks!
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