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Integration and Differentiation

* Two big ideas in calculus:
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* integration

e linked by fundamental theorem of calculus

e Exterior calculus generalizes these ideas

do = / o
e integration of k-forms (measure volume) / M oM

e linked by Stokes” theorem

e Goal: integrate differential forms over meshes to get discrete exterior calculus (DEC)



Integration of Differential k-Forms



Review — Integration of Area

Key idea: sums converge to integrals as we refine.



Review — Integration of Scalar Functions
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Key idea: integrals of functions are weighted sums of area.



Integration of a 2-Form

w — differential 2-form on ()
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Key idea: integration always involves differential forms!



Integration of Differential 2-forms—Example

e Consider a differential 2-form on the unit square in the plane:
w = (x +xy)dx N\ dy
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e In this case, no different from usual “double
integration” ot a scalar function.




Integration on Curves

o — differential 1-form on IR
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Integration on Curves — Example

e Consider for instance integrating a constant 1-form over the unit circle:
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(Why does this result make sense geometrically?) . . 0,271) — R%;s — (cos(s), sin(s))
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Boundary
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Basic idea: at an interior point p of a k-dimensional set the intersection of an open
ball around p with the set looks like* an open k-ball; at a boundary point it doesn’t.

*...is homeomorphic to, in the subspace topology.



Boundary of a Boundary

Q: Which points are in the boundary of the boundary?

A: No points! Boundary of a boundary is always empty.




Boundary of a Boundary

Q: Which points are in the boundary of the boundary?
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A: No points! Boundary of a boundary is always empty.
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Review: Fundamental Theorem of Calculus




Stokes” Theorem
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Analogy: fundamental theorem of calculus



Divergence Theorem

Example
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Example: Green’s Theorem
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What goes around comes around!




Stokes” Theorem
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Fundamental Theorem of Calculus & Stokes’

/ ad)dx = ¢(a)
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..for any Q) (no matter how small!)




Whyisded=0?

Unique linear map d : OF — QFF1 such that

0 0
differential d¢ = a;l)l dx' + - 4 Hj; dx"

Stokes’ theorem / dou = / X
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Integration & Stokes” Theorem - Summary

* Integration
* break domain into small pieces
e measure each piece with k-form

¢ Stokes’ theorem

e convert region integral to boundary integral v dx =
e super useful—Ilets us “skip” a derivative

e special cases: divergence theorem, Green’s theorem, SN R
fundamental theorem of calculus, Cauchy’s integral NN SRS
theorem... and many more! NN

NN k| }
* Gets used over and over again in geometric computing A ;Qi
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Inner Product on Differential k-Forms



Inner Product — Review

e Recall that a vector space V is any collection of “arrows” that can be added, scaled, ...
* Q: What's an inner product on a vector space?

* A: Loosely speaking, a way to talk about lengths, angles, etc., in a vector space

* More formally, a symmetric positive-definite bilinear map: \u
(«,-): VXV =R \\

(u,v) = (v, u) e

(u+ov,w) = (u,w) + (v, w) (u,v) = |u||v|cos@

(au,v) = alu,v) U
(u,u) >0; (u,u) =0 <= u=20

for all vectors u,v,w in V and scalars a. (Geometric interpretation of these rules?)



Euclidean Inner Product — Review

e Most basic inner product: inner product of two vectors in Euclidean IR"

¢ Just sum up the product of components:

1 n
Uu=ue-—+---+ue LI
1 n <u,v> - ZUZUZ
1=1

v =ole; +--- + v,

Example. g
u = 3eq + 2e»
v = 2e1 + 4e- €1

(u,v) =3.24+2-4=14

(Does this operation satisfy all the requirements of an inner product?)



L2 Inner Product of Functions | O-forms

e Collections of functions are also vector spaces (e.g., real integrable functions on [0,1])

e What does it mean to measure the inner product between functions?

e Want some notion of how well two functions “line up”

e One idea: just mimic the Euclidean dot product
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0,1

0,1
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e Called the L? inner product. (Note: defined on space of sqguare-integrable functions)

* Does this capture notion of “lining up”? Does it obey rules of inner product?



Inner Product on k-Forms

Definition. Let a, f € OF be any two differential k-forms. Their (L?) inner
product is defined as®
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Q: What happens when k=07

A: We just get the usual L2 inner product on functions.
Q: What's the degree (k) of the integrand? Why is that important?

A: Integrand is always an n-form—which is the only thing we can integrate in n-D!

*Some authors define the integrand as « A xf; our convention is consistent with
the convention that in 2D the 1-form Hodge star is a counter-clockwise rotation.



Inner Product of 1-Forms — Example
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= Example. Consider two 1-forms on the unit square

e 0,1 x1|0,1 given by
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Exterior Calculus: Flat vs. Curved

e For simplicity, we introduced exterior
calculus in flat spaces (R")

e Took care to make distinction between
vectors and covectors, even though they
often looked the same!

* But on curved spaces things will get more
interesting, because the inner product is no
longer just the ordinary “dot product”

e For instance, suppose we have two
different parameterizations of a surtace:

e 2D Euclidean dot product is the wrong way
to measure angle between vectors!

e Will return to this perspective when we
study smooth surfaces...
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Exterior Calculus— Summary

* What we’ve seen so far: vector differential k-form
o Exterior algebra: language of volumes (k-vectors) §§
e
* k-form: measures a k-dimensional volume Eg
e Differential forms: k-form at each point of space | o -
ditferentiation integration

e Exterior calculus: differentiate/integrate forms

e Simplicial complex: mesh of k-simplices

* Next up:

e Put all this machinery together

o [ntegrate to get discrete exterior calculus (DEC) ¢

oriented simplicial complex



Thanks!
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