DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

LECTURE 11: DISCRETE CURVES

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

Recap—Smooth Curves

- Last time: introduced parameterized curves
 - every curve has *many* possibleparameterizations
 - express important <u>local</u> quantities via derivatives of parameterization
 - -tangent, normal, binormal (*Frenet frame*),
 curvature, torsion
- Embedded vs. immersed/regular
- *Turning number*—degree of tangent map
- Winding number—degree of map around point
- Fundamental theorem: recover from curvatures
- Today: discrete point of view!

Discrete Curves

Discrete Curves in the Plane

a sequence of points connected by straight line segments:

We'll define a **discrete curve** as a *piecewise linear* parameterized curve, *i.e.*,

Discrete Curves in the Plane—Example

A simple example is a curve comprised of two segments:

$$\gamma(s) := \begin{cases} (s,0), & 0 \le s \le \\ (1,s-1), & 1 \le s \le \end{cases}$$

Key idea: a "discrete curve" is also a continuous map... but fairly atypical to write it this way.

Discrete Curves and Discrete Differential Forms

- Equivalently, a discrete curve is determined by a discrete, \mathbb{R}^n -valued 0-form γ on a (manifold, oriented) abstract simplicial 1-complex
- The 0-form values give the location of the vertices; interpolation by Whitney bases (hat functions) gives the map from each edge to \mathbb{R}^n

$K = \{ (v_0, v_1), (v_1, v_2), (v_2, v_3), \}$ $(v_0), (v_1), (v_2), (v_3), \emptyset$

$\gamma(v_0)$	 (33,66)
$\gamma(v_1)$	(79,36)
$\gamma(v_2)$	(118, 58)
$\gamma(v_3)$	 (134, 47)

Differential of a Discrete Curve

- •We can now directly translate statements about **smooth** curves expressed via **smooth** exterior calculus into statements about **discrete** curves expressed using **discrete** exterior calculus
- •Simple example: the *differential* just becomes the edge vectors:

Discrete Tangent

As in smooth setting, can simply normalize differential to obtain tangents, yielding a vector per edge*

 $T(s) := d\gamma(\frac{d}{ds}) / |d\gamma(\frac{d}{ds})|$

*And no definition of the tangent at vertices!

 $T_{ij} := (d\gamma)_{ij} / |(d\gamma)_{ij}|$

Discrete Normal

planar curve as a 90-degree rotation of the (discrete) tangent:

As in the smooth setting, we can express the (discrete) normals of a

 $N_{ij} = \mathcal{J}T_{ij}$

Regular Discrete Curve / Discrete Immersion

- Recall that a smooth curve is *regular* if its differential is nonzero; this condition helps avoid "bad behavior" like sharp cusps
 - -equivalently: parameterization is *locally injective*
- Discrete case: nonzero differential prevents zero edge lengths, but not zero angles
 - -"regular motion" can change turning number!
 - –need something stronger…
- In particular, will say a *regular discrete curve* or *discrete immersion* is a discrete curve that is a locally injective map
 - -rules out zero edge lengths *and* zero angles

Discrete Regularity—Examples

Discrete Curvature

Recall that discrete curvature has several definitions:

determined by its edge lengths and turning angles.

Q: Given only this data, how can we recover the curve?

 $\varphi_{i+1,i+2}$ **A:** Mimic the procedure from the smooth setting: Sum curvatures to get angles: $\varphi_{i,i+1} := \sum \theta_k$ Evaluate unit tangents: $T_{ij} := (\cos(\varphi_{ij}), \sin(\varphi_{ij}))$ Sum tangents to get curve: $\gamma_i := \sum \ell_{k,k+1} T_{k,k+1}$ k=1

Q: Rigid motions?

Fundamental Theorem of Discrete Plane Curves

- Fact. Up to rigid motions, a regular discrete plane curve is uniquely

Discrete Whitney Graustein

- If we adopt the definition of a discrete regular curve as one that is *locally injective*, then there is a discrete version of Whitney-Graustein that exactly mirrors the smooth one
- Has been carefully studied from several perspectives:
 - Constructive algorithm (case analysis) by Mehlhorn & Yap (1991)
 - Simpler argument in Pinkall, "The Discrete Whitney *Graustein Theorem*" via convex polyhedra
- Both use central strategy from differential geometry: to find a "path" connecting two objects, find path from both objects to a canonical one, then compose... (uniformization, Delaunay, ...)

SIAM J. COMPUT. Vol. 20, No. 4, pp. 603-621, August 1991

© 1991 Society for Industrial and Applied Mathematics

<u>Leave a reply</u>

CONSTRUCTIVE WHITNEY-GRAUSTEIN TI The Discrete Whitney-Graustein Theorem OR HOW TO UNTANGLE CLOSED PLANAL

KURT MEHLHORN[†] AND CHEE-KENG YA

Abstract. The classification of polygons is considered in which two pol if one can be continuously transformed into the other such that for each adjacent edges overlap. A discrete analogue of the classic Whitney-Graustein that the winding number of polygons is a complete invariant for this classific constructive in that for any pair of equivalent polygons, it produces some sequ taking one polygon to the other. Although this sequence has a quadratic num be described and computed in real time.

Key words. polygons, computational algebraic topology, computational theorem, winding number

Let us consider regular closed discrete plane curves γ with n vertices and tangent winding number m. We assume that the length of γ is normalized to some arbitrary (but henceforth fixed) constant L. Up to orientation-preserving rigid motions such a γ is uniquely determined by a point

$$(\ell_1,\ldots,\ell_n,\kappa_1,\ldots,\kappa_n)\in (0,\infty)^n imes(-\pi,\pi)^n$$

satisfying

$$\ell_1+\ldots+\ell_n=L$$
 $\kappa_1+\ldots+\kappa_n=2\pi m$
 $\ell_1e^{ilpha_1}+\ldots+\ell_ne^{ilpha_n}=0$

where

$$\alpha_j = \kappa_1 + \ldots + \kappa_j.$$

fixed $(\kappa_1,\ldots,\kappa_n)\in imes(-\pi,\pi)^n$ satisfying Consider а $\kappa_1 + \ldots + \kappa_n = 2\pi m$ for some $m \in \mathbb{Z}$ and define $\alpha_1, \ldots, \alpha_n$ as above. Then the set of $(\ell_1,\ldots,\ell_n)\in (0,\infty)^n$ satisfying

Discrete Space Curves

- The *fundamental theorem of space curves* tells that given the curvature $\kappa(s)$ and torsion $\tau(s)$ of an arc-length parameterized space curve, we can recover the curve itself
- Formally: integrate the *Frenet-Serret equations*; intuitively: start drawing a curve, bend & twist at prescribed rate.

$$\frac{d}{ds} \begin{bmatrix} T \\ N \\ B \end{bmatrix} = \begin{bmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{bmatrix}$$

Review: Fundamental Theorem of Space Curves

Discrete Space Curve

i.e., a piecewise linear parameterized curve $\gamma : [0, L] \rightarrow \mathbb{R}^3$

A **discrete space curve** is simply a discrete curve in \mathbb{R}^3 rather than \mathbb{R}^2 ,

 $\gamma_i := \gamma(s_i)$

- **Q**: How can we discretize the fundamental theorem for space curves?
- A: One possibility ("reduced coordinates"):
 - arc length \Rightarrow lengths ℓ_{ij} at edges ij
 - curvature \Rightarrow exterior angles κ_i at vertices *i*
 - torsion \Rightarrow angles τ_{ij} at edges ij
- **Theorem.** Discrete space curve is determined by this data, up to rigid motion.

Notice: curve is determined by curvature, torsion, and parameterization.

Fundamental Theorem of Discrete Space Curves

Discrete Space Curve—Reconstruction

Given:

• edge lengths ℓ_{ij} , curvatures κ_i , torsions τ_{ij} • initial point, tangent, and normal $\gamma_0, T, N \in \mathbb{R}^3$ **<u>Find:</u>** vertex positions γ_i

<u>Algorithm:</u> for i = 1, ..., n: • $\gamma_i \leftarrow \gamma_{i-1} + \ell_{i-1,i}T$ move to the next vertex • $T \leftarrow R(N, \kappa_i)T$ rotate tangent in-plane • $N \leftarrow R(T, \tau_{i,i+1})N$ rotate normal to new plane

Note: much easier than solving Frenet-Serret equations!

rotate by θ around axis u $\hat{u} := \begin{bmatrix} 0 & u_z & -u_y \\ -u_z & 0 & u_x \\ u_y & -u_x & 0 \end{bmatrix}$ $R(u,\theta) := \exp(\theta \hat{u})$

Curvature Flow & Dynamics

Curvature Flow on Curves

- A *curvature flow* is a time evolution of a curve (or surface) driven by some function of its curvature
- Such flows model physical *elastic rods*, can be used to find shortest curves (geodesics) on surfaces, or might be used to smooth noisy data (e.g., image contours)
- Basic idea: energy $E(\gamma)$ assigns a "cost" to each curve (*e.g.*, total length); follow the gradient so that the energy becomes smaller
- Two simple examples: *length-shortening flow* and *elastic flow*

gradient flow $\frac{d}{d t} \gamma = -\nabla_{\gamma} E(\gamma)$

Discretizing a Gradient Flow

- Two possible paths for discretizing any gradient flow:
 - 1. **First** derive the gradient of the energy in the smooth setting, then discretize the resulting evolution equation.
 - 2. **First** discretize the energy itself, then take the gradient of the resulting discrete objective.
- •In general, *will not* lead to the same numerical scheme/algorithm!

(In general, does **NOT** commute.)

Length Shortening Flow

- The energy for length shortening flow is simply the total length of the curve
- Recall that length gradient is curvature normal—hence, curve shortening moves faster where there are small bumps
- For closed curves, several interesting features (Gage-Grayson-Hamilton):
 - -center of mass is preserved
 - -curves flow to "round points"
 - -embedded curves remain embedded

 $\operatorname{length}(\gamma) := \int_{0}^{L} \left| \frac{d}{ds} \gamma \right| \, ds$ $\frac{d}{dt}\gamma = -\nabla_{\gamma} \text{length}(\gamma)$ $\frac{d}{dt}\gamma = -\kappa N$ 00000 S

Length Shortening Flow—Discretized

- At each moment in time, move curve in normal direction with speed proportional to curvature
- "Smooths out" curve (e.g., noise), eventually becoming circular
- Discrete version:
 - replace time derivative with difference in time
 - replace smooth curvature with one (of many) curvatures

• "Repeatedly add a little bit of κN "

 $\frac{d}{dt}\gamma(s,t) = -\kappa(s,t)N(s,t)$ $\frac{\gamma^{k+1}(s) - \gamma^k(s)}{k} = -\kappa^k(s)N^k(s)$ $\implies \gamma_i^{k+1} = \gamma_i^k - \tau \kappa_i^k N_i^k$ time discrete discrete

Elastic Flow

- Basic idea: rather than shrinking *leng* to reduce *bending* (*i.e.*, curvature)
- Energy is integral of squared curvature; elastic flow is then gradient flow on this objective
- Minimizers are called *elastic curves* or *Euler elastica*—model real elastic strips
- **Discrete:** express energy via *turning angles* -discrete minimizers converge to smooth ones under refinement

Scholtes, Schumacher, Wardetzky, "Variational Convergence of Discrete Elasticae"

Euler-Bernoulli energy $E(\gamma) := \int_0^L \kappa(s)^2 \, ds$

Isometric Elastic Flow

- Different way to smooth out a curve is to directly "shrink" curvature
- Discrete case: scale down turning angles κ_i , then use the **fundamental** theorem of discrete plane curves to reconstruct
- •Numerically stable; exactly preserves edge lengths
- Challenge: how do we make sure closed curves remain closed?

Crane, Pinkall, Schröder, "Robust Fairing via Conformal Curvature Flow"

Elastic Rods

- For space curves, can also try to minimize both curvature *κ* and torsion τ
- Both in some sense measure "non-straightness" of curve
- Provides rich model of *elastic rods*
- Lots of interesting applications (simulating hair, laying cable, ...)

Bergou, Wardetzky, Robinson, Audoly, Grinspun, "Discrete Elastic Rods"

Viscous Threads

elastic rods

Bergou, Audoly, Vouga, Wardetzky, Grinspun, "Discrete Viscous Threads"

viscous threads

Untangling Knots

- Is a given curve "knotted?"
- Minimize bending *and* penalize self-collision
- *Might* go to smoothest curve in same isotopy class

 $\int_0^L \int_0^L \frac{1}{|\gamma(s) - \gamma(t)|^2} - \frac{1}{d(s,t)^2} \, ds \, dt$ Möbius energy

videos: Henrik Schumacher

Repulsive Curves

Smoke Ring Flow

- Roughly speaking, a *vortex filament* in a fluid isa curve along which the fluid is rapidly spinning (smoke rings, bubble rings, ...)
- Evolution captured by *Hashimoto flow*
 - easy to express for discrete curve via discrete binormal, curvature (as defined before)
 - take explicit time steps (as with curvature flow)
- More sophisticated discretization via special transformations (*Bäcklund*, *Darboux*) exactly preserves invariants of smooth flow

Hoffmann, "Discrete Hashimoto Surfaces and a Doubly Discrete Smoke-Ring Flow" Pinkall, Springborn, Weißmann, "A New Doubly Discrete Analogue of Smoke Ring Flow"

 $\frac{d}{dt}\gamma = \gamma' \times \gamma'' \\ = T \times \kappa N$ $= \kappa B$

Bubble Rings and Ink Chandeliers

Padilla, Chern, Knöppel, Pinkall, Schröder "On Bubble Rings and Ink Chandeliers" (2019)

Real footage

Simulation

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

