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Recap—Smooth Curves
•Last time: introduced parameterized curves

– every curve has many possible 
parameterizations

– express important local quantities via 
derivatives of parameterization

– tangent, normal, binormal (Frenet frame), 
curvature, torsion

•Embedded vs. immersed/regular
•Turning number—degree of tangent map
•Winding number—degree of map around point
•Fundamental theorem: recover from curvatures
•Today: discrete point of view!

T
N

B

embedded
immersed

turning
winding



Discrete Curves



Discrete Curves in the Plane
We’ll define a discrete curve as a piecewise linear parameterized curve, i.e., 
a sequence of points connected by straight line segments:

Shorthand:



Discrete Curves in the Plane—Example
A simple example is a curve comprised of two segments:

Key idea: a “discrete curve” is also a continuous map… but fairly atypical to write it this way.



Discrete Curves and Discrete Differential Forms
•Equivalently, a discrete curve 

is determined by a discrete, 
-valued 0-form γ on a 

(manifold, oriented) abstract 
simplicial 1-complex

•The 0-form values give the 
location of the vertices; 
interpolation by Whitney 
bases (hat functions) gives the 
map from each edge to 

K = { (v0,v1), (v1,v2), (v2,v3), 
(v0), (v1), (v2), (v3),  }



Differential of a Discrete Curve
•We can now directly translate statements about smooth curves 

expressed via smooth exterior calculus into statements about 
discrete curves expressed using discrete exterior calculus

•Simple example: the differential just becomes the edge vectors:



Discrete Tangent
As in smooth setting, can simply normalize differential to obtain 
tangents, yielding a vector per edge*

*And no definition of the tangent at vertices!



Discrete Normal
As in the smooth setting, we can express the (discrete) normals of a 
planar curve as a 90-degree rotation of the (discrete) tangent:



Regular Discrete Curve / Discrete Immersion
•Recall that a smooth curve is regular if its 

differential is nonzero; this condition helps avoid 
“bad behavior” like sharp cusps
–equivalently: parameterization is locally injective

•Discrete case: nonzero differential prevents zero 
edge lengths, but not zero angles
–“regular motion” can change turning number!
–need something stronger…

•In particular, will say a regular discrete curve or 
discrete immersion is a discrete curve that is a 
locally injective map
–rules out zero edge lengths and zero angles

regular

not regular



Discrete Regularity—Examples

locally injective not locally injective



Discrete Curvature
Recall that discrete curvature has several definitions:

TURNING ANGLE LENGTH VARIATION

STEINER FORMULA OSCULATING CIRCLE



Fundamental Theorem of Discrete Plane Curves
Fact. Up to rigid motions, a regular discrete plane curve is uniquely 
determined by its edge lengths and turning angles.

Q: Given only this data, how can we recover the curve?

A: Mimic the procedure from the smooth setting:

Evaluate unit tangents:

Sum tangents to get curve:

Sum curvatures to get angles:

Q: Rigid motions?



Discrete Whitney Graustein
• If we adopt the definition of a discrete regular curve 

as one that is locally injective, then there is a discrete 
version of Whitney-Graustein that exactly mirrors 
the smooth one

• Has been carefully studied from several 
perspectives:

• Constructive algorithm (case analysis) by 
Mehlhorn & Yap (1991)

• Simpler argument in Pinkall, “The Discrete Whitney 
Graustein Theorem” via convex polyhedra 

• Both use central strategy from differential geometry: 
to find a “path” connecting two objects, find path 
from both objects to a canonical one, then compose… 
(uniformization, Delaunay, …)



Discrete Space Curves



Review: Fundamental Theorem of Space Curves
•The fundamental theorem of space curves tells that given the 

curvature κ(s)  and torsion τ(s) of an arc-length 
parameterized space curve, we can recover the curve itself

•Formally: integrate the Frenet-Serret equations; intuitively: 
start drawing a curve, bend & twist at prescribed rate.
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Discrete Space Curve
A discrete space curve is simply a discrete curve in  rather than , 
i.e., a piecewise linear parameterized curve 



Q: How can we discretize the fundamental theorem for space curves?
A: One possibility (“reduced coordinates”):

– arc length ⇒ lengths  at edges ij
– curvature ⇒ exterior angles κi at vertices i
– torsion ⇒ angles τij at edges ij

Fundamental Theorem of Discrete Space Curves

Notice: curve is determined by curvature, 
torsion, and parameterization.

Theorem.  Discrete space curve is determined 
by this data, up to rigid motion.



Discrete Space Curve—Reconstruction
Given:

•edge lengths , curvatures κi, torsions τij

•initial point, tangent, and normal 
Find: vertex positions γi

move to the next vertex
rotate tangent in-plane
rotate normal to new plane

Note: much easier than solving Frenet-Serret equations!

rotate by θ around axis u

Algorithm:



Curvature Flow & Dynamics



Curvature Flow on Curves
•A curvature flow is a time evolution of a 

curve (or surface) driven by some function 
of its curvature

•Such flows model physical elastic rods, can 
be used to find shortest curves (geodesics) on 
surfaces, or might be used to smooth noisy 
data (e.g., image contours)

•Basic idea: energy E(γ) assigns a “cost” to 
each curve (e.g., total length); follow the 
gradient so that the energy becomes smaller

•Two simple examples: length-shortening flow 
and elastic flow

gradient flow



Discretizing a Gradient Flow
•Two possible paths for discretizing 

any gradient flow:

1. First derive the gradient of the 
energy in the smooth setting, 
then discretize the resulting 
evolution equation.

2. First discretize the energy itself, 
then take the gradient of the 
resulting discrete objective.

•In general, will not lead to the same 
numerical scheme/algorithm!
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(In general, does NOT commute.)



Length Shortening Flow
•The energy for length shortening flow is 

simply the total length of the curve

•Recall that length gradient is curvature 
normal—hence, curve shortening moves 
faster where there are small bumps

•For closed curves, several interesting 
features (Gage-Grayson-Hamilton):

–center of mass is preserved

–curves flow to “round points”

–embedded curves remain embedded



Length Shortening Flow—Discretized
•At each moment in time, move 

curve in normal direction with 
speed proportional to curvature

•“Smooths out” curve (e.g., noise), 
eventually becoming circular

•Discrete version:
– replace time derivative with 

difference in time
– replace smooth curvature with one 

(of many) curvatures
•“Repeatedly add a little bit of 𝜅N” time discrete discrete



Elastic Flow
•Basic idea: rather than shrinking length, try 

to reduce bending (i.e., curvature)

•Energy is integral of squared curvature; 
elastic flow is then gradient flow on this 
objective

•Minimizers are called elastic curves or Euler 
elastica—model real elastic strips

•Discrete: express energy via turning angles
– discrete minimizers converge to smooth 

ones under refinement

Euler-Bernoulli energy

Scholtes, Schumacher, Wardetzky, “Variational Convergence of Discrete Elasticae”



Isometric Elastic Flow
•Different way to smooth out a curve 

is to directly “shrink” curvature

•Discrete case: scale down turning 
angles κi, then use the fundamental 
theorem of discrete plane curves to 
reconstruct

•Numerically stable; exactly 
preserves edge lengths

•Challenge: how do we make sure 
closed curves remain closed?

Crane, Pinkall, Schröder, “Robust Fairing via Conformal Curvature Flow”



Elastic Rods
•For space curves, can also try to 

minimize both curvature κ and 
torsion τ

•Both in some sense measure 
“non-straightness” of curve

•Provides rich model of elastic rods

•Lots of interesting applications 
(simulating hair, laying cable, …)

Bergou, Wardetzky, Robinson, Audoly, Grinspun, “Discrete Elastic Rods”



Viscous Threads

elastic rods viscous threads

Bergou, Audoly, Vouga, Wardetzky, Grinspun, “Discrete Viscous Threads”



Untangling Knots
•Is a given curve “knotted?”
•Minimize bending and penalize self-collision
• Might go to smoothest curve in same isotopy class

videos: Henrik Schumacher

Möbius energy



Repulsive Curves

Yu, Schumacher, Crane, “Repulsive Curves”



Smoke Ring Flow
•Roughly speaking, a vortex filament in a fluid isa 

curve along which the fluid is rapidly spinning 
(smoke rings, bubble rings, …)

•Evolution captured by Hashimoto flow

– easy to express for discrete curve via discrete 
binormal, curvature (as defined before)

– take explicit time steps (as with curvature flow)

•More sophisticated discretization via special 
transformations (Bäcklund, Darboux) exactly 
preserves invariants of smooth flow

Pinkall, Springborn, Weißmann, “A New Doubly Discrete Analogue of Smoke Ring Flow”
Hoffmann, “Discrete Hashimoto Surfaces and a Doubly Discrete Smoke-Ring Flow”



Bubble Rings and Ink Chandeliers

Padilla, Chern, Knöppel, Pinkall, Schröder
“On Bubble Rings and Ink Chandeliers” (2019)



Thanks!
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