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Geometry is Coming…



Applications of DDG: Geometry Processing



Applications of DDG: Shape Analysis



Applications of DDG: Machine Learning



Applications of DDG: Numerical Simulation



Applications of DDG: Architecture & Design



Applications of DDG: Discrete Models of Nature



• First and foremost: how to think about shape…

• …mathematically (differential geometry)

• …computationally (geometry processing)

• Central Theme: link these two perspectives

• Why? Shape is everywhere!

• Every time you have a constraint f (x) = 0, you have a manifold*

• computational biology, industrial design, computer vision, machine learning, 
architecture, computational mechanics, fashion, medical imaging…

• Flat images are old news :-)

What Will We Learn in This Class?

*Must be sufficiently regular, etc.



What won’t we learn in this class?
•We won’t learn everything!

•Many viewpoints on differential geometry we don’t have time to cover

•Huge number of algorithms we won’t be able to cover

•Depending on your goals & interests the specific set of algorithms we 
cover this semester may not be directly useful!

•e.g., you may care about point clouds and computer vision; we will 
focus mostly polygons and applications in geometry processing

•Recall main goal: learn how to think about shape!

•Fundamental knowledge you gain here will translate to other contexts



Assignments
• Derive geometric algorithms from first principles (pen-and-paper)

• Implement geometric algorithms (coding)

• Discrete surfaces
• Exterior calculus
• Curvature
• Smoothing
• Parameterization
• Distance computation
• Direction Field Design



• Language for talking about local properties of shape

• How fast are we traveling along a curve?

• How much does the surface bend at a point?

• etc.

• …and their connection to global properties of shape

• So-called “local-global” relationships.

• Modern language of geometry, physics, statistics, …

• Profound impact on scientific & industrial development in 20th century

What is Differential Geometry?

n=1
n=2



• Also a language describing local properties of shape

• Infinity no longer allowed!

• No longer talk about derivatives, infinitesimals…

• Everything expressed in terms of lengths, angles…

• Surprisingly little is lost!

• Faithfully captures many fundamental ideas

• Modern language for geometric computing

• Increasing impact on science & technology in 21st century

What is Discrete Differential Geometry?



Discrete Differential Geometry—Grand Vision

Translate differential geometry into 
language suitable for computation.

GRAND VISION



How can we get there?
A common “game” is played in DDG to obtain discrete definitions:

One often encounters a so-called “no free lunch” scenario: no single 
discrete definition captures all properties of its smooth counterpart.

1.Write down several equivalent definitions in the smooth setting.

2. Apply each smooth definition to an object in the discrete setting.

3. Determine which properties are captured by each resulting 
inequivalent discrete definition.



smooth

discrete

Example: Discrete Curvature of Plane Curves
• Toy example: curvature of plane curves

• Roughly speaking: “how much it bends”

• First review smooth definition

• Then play The Game to get discrete definition(s)

• Will discover that no single definition is “best”

• Pick the definition best suited to the application

• Today we will quickly cover a lot of ground…

• Will start more slowly from the basics next lecture



Curvature of a Curve—Motivation



Curves in the Plane
In the smooth setting, a parameterized curve is a map* taking each point 
in an interval [0,L] of the real line to some point in the plane       :

*Continuous, differentiable, smooth…



Curves in the Plane—Example
As an example, we can express a circle as a parameterized curve    :



Discrete Curves in the Plane
Special case: a discrete curve is a piecewise linear parameterized curve,
i.e., it is a sequence of vertices connected by straight line segments:

Shorthand:



Discrete Curves in the Plane—Example
A simple example is a curve comprised of two segments:



• Informally, a vector is tangent to a curve if it 
“just barely grazes” the curve.

• More formally, the unit tangent (or just 
tangent) of a parameterized curve is the map 
obtained by normalizing its first derivative*:

Tangent of a Curve

• If the derivative already has unit length, then we say the curve is 
arc-length parameterized and can write the tangent as just

*Assuming curve never slows to a stop, i.e., assuming it’s “regular”



Tangent of a Curve—Example
Let’s compute the unit tangent of a circle:



• Informally, a vector is normal to a curve if it 
“sticks straight out” of the curve.

• More formally, the unit normal (or just normal) 
can be expressed as a quarter-rotation      of the 
unit tangent in the counter-clockwise direction:

Normal of a Curve

• In coordinates (x,y), a quarter-turn can be achieved by* 
simply exchanging x and y, and then negating y:

*Why does this work?



Normal of a Curve—Example
Let’s compute the unit normal of a circle:

Note: could also adopt the 
convention                    .
(Just remain consistent!)



Curvature of a Plane Curve
• Informally, curvature describes “how much a curve bends”

• More formally, the curvature of an arc-length parameterized plane 
curve can be expressed as the rate of change in the tangent*

more
curvature

less
curvature



Curvature of a Plane Curve
• Informally, curvature describes “how much a curve bends”

• More formally, the curvature of an arc-length parameterized plane 
curve can be expressed as the rate of change in the tangent*

*Here, angle brackets denote the usual dot product:

KEY IDEA I
Curvature is a second derivative.

KEY IDEA II
Curvature is a signed quantity.

more
curvature

less
curvature



Curvature: From Smooth to Discrete

KEY IDEA

Curvature is a second derivative.

SMOOTH DISCRETE

Can we directly apply this definition to a discrete curve?



Curvature: From Smooth to Discrete

KEY IDEA

Curvature is a second derivative.

SMOOTH DISCRETE

No! Will get either zero or “∞”.
Can we directly apply this definition to a discrete curve?

 Need to think about it another way…



When is a Discrete Definition “Good?”
• How will we know if we came up with a good definition?

• Many different criteria for “good”:

• satisfies (some of the) same properties/theorems as smooth curvature

• converges to smooth value as we refine our curve

• efficient to compute / solve equations

• …

Complex Ta = gamma[i] - gamma[i-1];
Complex Tb = gamma[i+1] - gamma[i];
double kappa = (Tb*Ta.inv()).arg();

n=1
n=2



TURNING ANGLE

Playing the Game

• In the smooth setting, there 
are several other equivalent 
definitions of curvature.

• IDEA: perhaps some of these 
definitions can be applied 
directly to our discrete curve!

• Actually, all four can—and 
will have different 
consequences…

LENGTH VARIATION

STEINER FORMULA OSCULATING CIRCLE



Turning Angle
• Our initial definition of curvature was the rate 

of change of the tangent in the normal direction.

• Equivalently, we can measure the rate of change 
of the angle the tangent makes with the horizontal:



Integrated Curvature
• Still can’t evaluate curvature at vertices of a 

discrete curve (at what rate does the angle change?)

• But let’s consider the integral of curvature along 
a short segment:

• Instead of derivative of angle, we now just have 
a difference of angles.

• This definition works for our discrete curve!



Discrete Curvature (Turning Angle)
• This formula gives us our first definition of discrete curvature, as just 

the turning angle at the vertex of each curve*:

• Common theme: most natural discrete quantities are often 
integrated rather than pointwise values.

• Here: total change in angle, rather than derivative of angle.

(turning angle)



Length Variation
• Are there other ways to get a definition for discrete curvature?
• Well, here’s a useful fact about curvature from the smooth setting:

The fastest way to decrease the length of a curve is to move it 
in the normal direction, with speed proportional to curvature.

• Intuition: in flat regions, normal motion doesn’t change curve length;
in curved regions, the change in length (per unit length) is large:



Length Variation
• More formally, consider an arbitrary change in the curve γ, given by a 

function                                with                                  .



Length Variation

• Therefore, the motion that most quickly decreases length is                .

• More formally, consider an arbitrary change in the curve γ, given by a 
function                                with                                  .
Then

normal
of γ

curvature
of γ

variation



Gradient of Length for a Line Segment
• This all becomes much easier in the discrete setting: just take the 

gradient of length with respect to vertex positions.

• First, a warm-up exercise.  Suppose we have a single line segment:

• Which motion of b most quickly increases this length?



Gradient of Length for a Discrete Curve
• To find the motion that most quickly increases the total length L, 

we now just sum the contributions of each segment:

• Using some simple trigonometry, we can 
also express the length gradient in terms of 
the exterior angle 𝜃i and the angle bisector Ni:



Discrete Curvature (Length Variation)
• How does this help us define discrete curvature?

• Recall that in the smooth setting, the gradient of 
length is equal to the curvature times the normal.

• Hence, our expression for the discrete length 
variation provides a definition for the discrete 
curvature times the discrete normal.

(length variation)



A Tale of Two Curvatures
• To recap what we’ve done so far: we considered two 

equivalent definitions in the smooth setting:
1. turning angle
2. length variation

• These perspectives led to two inequivalent 
definitions of curvature in the discrete setting:
1.  
2.

• For small angles, both definitions agree (sin(ε) ≈ ε).
• Is one “better”?  Are there more possibilities?  Let’s keep going…



Steiner Formula

• The intuition is the same as before: for a constant-distance normal 
offset, length will change in curved regions but not flat regions:

• Steiner’s formula is closely related to our last approach: it says that if 
we move at a constant speed in the normal direction, then the change 
in length is proportional to curvature:



Discrete Normal Offsets
• How do we apply normal offsets in the discrete case?
• The first problem is that normals are not defined at vertices!
• We can at very least offset individual edges along their normals:

• Question: how should we connect the normal-offset segments to get 
the final normal-offset curve?



• There are several natural ways to connect offset segments:
(A) along a circular arc of radius ε
(B)  along a straight line
(C) extend edges until they intersect

Discrete Normal Offsets

• If we now compute the total length of the 
connected curves, we get (after some work…):



Discrete Curvature (Steiner Formula)
• Steiner’s formula says change in length is proportional to curvature
• Hence, we get yet another definition for curvature by comparing the 

original and normal-offset lengths.

• In fact, we get three definitions—two we’ve seen and one we haven’t:



Osculating Circle

• One final idea is to consider the 
osculating circle, which is the 
circle that best approximates a 
curve at a point p

• More precisely, if we consider a circle passing through p and two 
equidistant neighbors to the “left” and “right” (resp.), the osculating 
circle is the limiting circle as these neighbors approach  p.

• The curvature is then the reciprocal of the radius:

p

r

p



Discrete Curvature (Osculating Circle)
• A natural idea, then, is to consider the circumcircle passing through 

three consecutive vertices of a discrete curve:

• Our fourth discrete curvature is then the reciprocal of the radius:



A Tale of Four Curvatures
• Starting with four equivalent definitions of smooth curvature, we ended 

up with four inequivalent definitions for discrete curvature:

So… which one should we use?

TURNING ANGLE LENGTH VARIATION

STEINER FORMULA OSCULATING CIRCLE



Pick the Right Tool for the Job!
• Answer: pick the right tool for the job!

• For a given application, which properties 
are most important to us?  How much 
computation are we willing to do?  Etc.

• E.g., for one physical simulation you might 
care most about energy; for another you 
might care about vorticity.

• What kind of trade offs do we have in 
geometric problems?

image: NASA Ames/Dominic Hart

image: Sandia National Laboratories



Curvature Flow



Toy Example: Curve Shortening Flow
• A simple version is curve shortening flow, where a closed 

curve moves in the normal direction with speed 
proportional to curvature:

• Some key properties:
• (TOTAL) Total curvature remains constant throughout the flow.
• (DRIFT) The center of mass does not drift from the origin.
• (ROUND) Up to rescaling, the flow is stationary for circular curves.



TOTAL DRIFT ROUND

Discrete Curvature Flow—No Free Lunch
• We can approximate curvature flow by repeatedly 

moving each vertex a little bit in the direction of the 
discrete curvature normal:

• But no choice of discrete curvature simultaneously 
captures all three properties of the smooth flow*:

*In fact, it’s impossible!
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No Free Lunch—Other Examples
• Beyond this “toy” problem, the no free lunch scenario is quite common 

when we try to find finite/computational versions of smooth objects.

• Many examples (physics: conservation of energy, momentum, & 
symplectic form for conservative time integrators; geometry: discrete 
Laplace operators)

• At a more practical level: The Game played in DDG often leads to 
new & unexpected approaches to geometric algorithms (simpler, 
faster, stronger guarantees, …)

• Will see much more of this as the course continues!



Course Roadmap

Exterior Calculus

Exterior Algebra (linear algebra)

Differential Forms (3D calculus)

Discrete Exterior Calculus

Combinatorial Surfaces

Curves (2D & 3D)

Smooth Discrete

Surfaces

Smooth Discrete

Curvature

Laplace-Beltrami

Geodesics

Conformal Geometry

Homology & Cohomology

(Additional Topics)

…don’t worry if these words sound intimidating right now!



Applications & Hands-On Exercises



Thanks!
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