

DISCRETE DIFFERENTIAL GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

LECTURE 1: OVERVIEW

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION

CMU 15-458/858 • Keenan Crane

Geometry is Coming...

Applications of DDG: Geometry Processing

Applications of DDG: Shape Analysis

Applications of DDG: Machine Learning

Applications of DDG: Numerical Simulation

Applications of DDG: Architecture & Design

Applications of DDG: Discrete Models of Nature

What Will We Learn in This Class?

- First and foremost: *how to think about shape*...
 - ...mathematically (differential geometry)
 - ...computationally (geometry processing)
 - Central Theme: link these two perspectives
- Why? Shape is everywhere!
 - Every time you have a constraint f(x) = 0, you have a manifold*
 - computational biology, industrial design, computer vision, machine learning, architecture, computational mechanics, fashion, medical imaging...

What won't we learn in this class?

- We won't learn everything!
 - Many viewpoints on differential geometry we don't have time to cover
 - Huge number of algorithms we won't be able to cover
- •Depending on your goals & interests the specific set of algorithms we cover this semester <u>may not be directly useful!</u>
 - *e.g.*, you may care about point clouds and computer vision; we will focus mostly polygons and applications in geometry processing
- Recall main goal: learn how to think about shape!
 - Fundamental knowledge you gain here will translate to other contexts

Assignments

• Derive geometric algorithms from first principles (pen-and-paper)

• Implement geometric algorithms (coding)

- Discrete surfaces
- Exterior calculus
- Curvature
- Smoothing
- Parameterization
- Distance computation
- Direction Field Design

What is Differential Geometry?

• Language for talking about local properties of shape

- How fast are we traveling along a curve?
- How much does the surface bend at a point?
- etc.
- ...and their connection to global properties of shape
 - So-called "local-global" relationships.
- Modern language of geometry, physics, statistics, ...
- Profound impact on scientific & industrial development in 20th century

What is Discrete Differential Geometry?

- Also a language describing local properties of shape
 - Infinity no longer allowed!
 - No longer talk about derivatives, infinitesimals...
 - Everything expressed in terms of lengths, angles...
- Surprisingly little is lost!
 - Faithfully captures many fundamental ideas
- Modern language for geometric computing
- Increasing impact on science & technology in 21st century

Discrete Differential Geometry—Grand Vision

GRAND VISION

Translate differential geometry into language suitable for *computation*.

How can we get there?

A common "game" is played in DDG to obtain discrete definitions:

- 1. Write down several equivalent definitions in the smooth setting.
- 2. Apply each smooth definition to an object in the discrete setting.
- 3. Determine which properties are captured by each resulting **inequivalent** discrete definition.

One often encounters a so-called "no free lunch" scenario: no single discrete definition captures *all* properties of its smooth counterpart.

Example: Discrete Curvature of Plane Curves

- Toy example: curvature of plane curves
 - Roughly speaking: "how much it bends"
 - First review smooth definition
 - Then play The Game to get discrete definition(s)
 - Will discover that no single definition is "best"
 - Pick the definition best suited to the application
- Today we will quickly cover a lot of ground...
- Will start more slowly from the basics next lecture

Curvature of a Curve—Motivation

Curves in the Plane

In the smooth setting, a **parameterized curve** is a map* taking each point in an interval [0,L] of the real line to some point in the plane \mathbb{R}^2 :

*Continuous, differentiable, smooth...

 $\gamma:[0,L]\to\mathbb{R}^2$

Curves in the Plane—Example

As an example, we can express a circle as a parameterized curve γ :

Discrete Curves in the Plane

Special case: a **discrete curve** is a *piecewise linear* parameterized curve, *i.e.*, it is a sequence of **vertices** connected by straight line segments:

Discrete Curves in the Plane—Example

A simple example is a curve comprised of two segments:

Tangent of a Curve

- Informally, a vector is *tangent* to a curve if it "just barely grazes" the curve.
- More formally, the unit tangent (or just tangent) of a parameterized curve is the map obtained by normalizing its first derivative*:

$$T(s) := \frac{d}{ds} \gamma(s) / \left| \frac{d}{ds} \gamma(s) \right|$$

• If the derivative already has unit length, then we say the curve is arc-length parameterized and can write the tangent as just

$$T(s) := \frac{d}{ds}\gamma(s)$$

^{*}Assuming curve never slows to a stop, i.e., assuming it's "regular"

Tangent of a Curve—Example

Let's compute the unit tangent of a circle:

Normal of a Curve

- Informally, a vector is *normal* to a curve if it "sticks straight out" of the curve.
- More formally, the **unit normal** (or just **normal**) can be expressed as a quarter-rotation $\mathcal J$ of the unit tangent in the counter-clockwise direction:

$$N(s) := \mathcal{J}T(s)$$

• In coordinates (*x*,*y*), a quarter-turn can be achieved by* simply exchanging *x* and *y*, and then negating *y*:

$$(x,y) \stackrel{\mathcal{J}}{\mapsto} (-y,x)$$

Normal of a Curve—Example

Let's compute the unit normal of a circle:

$$\gamma:[0,2\pi)\to\mathbb{R}^2;\,s\mapsto(\cos(s),\sin(s))$$

$$T(s) = (-\sin(s), \cos(s))$$

$$N(s) = \mathcal{J}T(s) = (-\cos(s), -\sin(s))$$

Note: could also adopt the convention $N = -\mathcal{J}T$. (Just remain consistent!)

Curvature of a Plane Curve

- Informally, curvature describes "how much a curve bends"
- More formally, the **curvature** of an arc-length parameterized plane curve can be expressed as the rate of change in the tangent*

Curvature of a Plane Curve

- Informally, curvature describes "how much a curve bends"
- More formally, the **curvature** of an arc-length parameterized plane curve can be expressed as the rate of change in the tangent* N(c)

$$\kappa(s) := \langle N(s), \frac{d}{ds}T(s) \rangle$$

$$= \langle N(s), \frac{d^2}{ds^2}\gamma(s) \rangle$$

KEY IDEA I

Curvature is a second derivative.

KEY IDEA II

Curvature is a signed quantity.

*Here, angle brackets denote the usual dot product: $\langle (a,b), (x,y) \rangle := ax + by$

Curvature: From Smooth to Discrete

KEY IDEA

Curvature is a second derivative.

$$\kappa = \langle \mathcal{J} \frac{d}{ds} \gamma, \frac{d^2}{ds^2} \gamma \rangle$$

Can we directly apply this definition to a discrete curve?

Curvature: From Smooth to Discrete

Can we directly apply this definition to a discrete curve?

No! Will get either zero or "∞". Need to think about it another way...

When is a Discrete Definition "Good?"

- How will we know if we came up with a good definition?
- Many different criteria for "good":
 - satisfies (some of the) same properties/theorems as smooth curvature
 - converges to smooth value as we refine our curve
 - efficient to compute / solve equations
 - •


```
Complex Ta = gamma[i] - gamma[i-1];
Complex Tb = gamma[i+1] - gamma[i];
double kappa = (Tb*Ta.inv()).arg();
```

Playing the Game

- In the **smooth** setting, there are several other **equivalent** definitions of curvature.
- IDEA: perhaps some of these definitions can be applied directly to our discrete curve!
- Actually, all four can—and will have different consequences...

Turning Angle

• Our initial definition of curvature was the *rate* of change of the tangent in the normal direction.

$$\kappa(s) = \langle N(s), \frac{d}{ds}\gamma(s) \rangle$$

• Equivalently, we can measure the rate of change of the angle the tangent makes with the horizontal:

$$\kappa(s) = \frac{d}{ds}\varphi(s)$$

Integrated Curvature

- Still can't evaluate curvature at vertices of a discrete curve (at what rate does the angle change?)
- But let's consider the *integral* of curvature along a short segment:

$$\int_a^b \kappa(s) \, ds = \int_a^b \frac{d}{ds} \varphi(s) \, ds = \varphi(b) - \varphi(a)$$

- Instead of *derivative* of angle, we now just have a *difference* of angles.
- This definition works for our discrete curve!

Discrete Curvature (Turning Angle)

• This formula gives us our first definition of discrete curvature, as just the *turning angle* at the vertex of each curve*:

- Common theme: most natural discrete quantities are often *integrated* rather than *pointwise* values.
- Here: total change in angle, rather than derivative of angle.

Length Variation

- Are there other ways to get a definition for discrete curvature?
- Well, here's a useful fact about curvature from the smooth setting:

The fastest way to decrease the length of a curve is to move it in the normal direction, with speed proportional to curvature.

• **Intuition**: in flat regions, normal motion doesn't change curve length; in curved regions, the change in length (*per unit length*) is large:

Length Variation

• More formally, consider an *arbitrary* change in the curve γ , given by a function $\eta:[0,L]\to\mathbb{R}^2$ with $\eta(0)=\eta(L)=0$.

Length Variation

• More formally, consider an *arbitrary* change in the curve γ , given by a function $\eta:[0,L]\to\mathbb{R}^2$ with $\eta(0)=\eta(L)=0$. Then

$$\frac{d}{d\varepsilon}|_{\varepsilon=0} \operatorname{length}(\gamma+\varepsilon\eta) = -\int_0^L \langle \eta(s), \kappa(s)N(s) \rangle ds$$
normal of γ

$$\gamma + \varepsilon\eta$$

• Therefore, the motion that most quickly decreases length is $\eta = \kappa N$.

Gradient of Length for a Line Segment

- This all becomes much easier in the discrete setting: just take the gradient of length with respect to vertex positions.
- First, a warm-up exercise. Suppose we have a single line segment:

• Which motion of *b* most quickly increases this length?

Gradient of Length for a Discrete Curve

• To find the motion that most quickly increases the *total* length *L*, we now just sum the contributions of each segment:

• Using some simple trigonometry, we can also express the length gradient in terms of the exterior angle θ_i and the angle bisector N_i :

$$\nabla_{\gamma_i} L = 2\sin(\theta_i/2)N_i$$

Discrete Curvature (Length Variation)

- How does this help us define discrete curvature?
- Recall that in the smooth setting, the gradient of length is equal to the curvature times the normal.
- Hence, our expression for the *discrete* length variation provides a definition for the *discrete* curvature times the *discrete* normal.

 $\kappa_i^B N_i := 2\sin(\theta_i/2)N_i$ (length variation)

A Tale of Two Curvatures

- To recap what we've done so far: we considered two equivalent definitions in the smooth setting:
 - 1. turning angle
 - 2. length variation
- These perspectives led to two **inequivalent** definitions of curvature in the discrete setting:

1.
$$\kappa_i^A := \theta_i$$

2.
$$\kappa_i^B := 2 \sin(\theta_i/2)$$

- For *small* angles, both definitions agree ($sin(\varepsilon) \approx \varepsilon$).
- Is one "better"? Are there more possibilities? Let's keep going...

Steiner Formula

• Steiner's formula is closely related to our last approach: it says that if we move at a *constant* speed in the normal direction, then the change in length is proportional to curvature: $\gamma + \varepsilon N$

$$length(\gamma + \varepsilon N) = length(\gamma) - \varepsilon \int_0^L \kappa(s) ds$$

• The intuition is the same as before: for a constant-distance normal offset, length will change in curved regions but not flat regions:

Discrete Normal Offsets

- How do we apply normal offsets in the discrete case?
- The first problem is that *normals* are not defined at vertices!
- We can at very least offset individual edges along their normals:

• Question: how should we connect the normal-offset segments to get the final normal-offset curve?

Discrete Normal Offsets

- There are several natural ways to connect offset segments:
 - (A) along a circular arc of radius ε
 - (B) along a straight line
 - (C) extend edges until they intersect
- If we now compute the total length of the connected curves, we get (after some work...):

```
\begin{array}{ll} \operatorname{length}_A &= \operatorname{length}(\gamma) - \varepsilon \sum_i \theta_i \\ \operatorname{length}_B &= \operatorname{length}(\gamma) - \varepsilon \sum_i 2 \sin(\theta_i/2) \\ \operatorname{length}_C &= \operatorname{length}(\gamma) - \varepsilon \sum_i 2 \tan(\theta_i/2) \end{array}
```


Discrete Curvature (Steiner Formula)

- Steiner's formula says change in length is proportional to curvature
- Hence, we get yet another definition for curvature by comparing the original and normal-offset lengths.
- In fact, we get three definitions—two we've seen and one we haven't:

$$\kappa_i^B := 2\sin(\theta_i/2)$$

$$\kappa_i^C := 2 \tan(\theta_i/2)$$

Osculating Circle

• One final idea is to consider the **osculating circle**, which is the circle that best approximates a curve at a point *p*

- More precisely, if we consider a circle passing through p and two equidistant neighbors to the "left" and "right" (resp.), the osculating circle is the limiting circle as these neighbors approach p.
- The curvature is then the reciprocal of the radius: $\kappa(p) = \frac{1}{r(p)}$

Discrete Curvature (Osculating Circle)

• A natural idea, then, is to consider the *circumcircle* passing through three consecutive vertices of a discrete curve:

• Our fourth discrete curvature is then the reciprocal of the radius:

$$\kappa_i^D := \frac{1}{r_i} = 2\sin(\theta_i)/w_i$$

A Tale of Four Curvatures

• Starting with four **equivalent** definitions of smooth curvature, we ended up with four **inequivalent** definitions for discrete curvature:

So... which one should we use?

Pick the Right Tool for the Job!

- Answer: pick the right tool for the job!
- For a given application, which properties are most important to us? How much computation are we willing to do? *Etc.*
- *E.g.*, for one physical simulation you might care most about energy; for another you might care about vorticity.
- What kind of trade offs do we have in geometric problems?

image: NASA Ames/Dominic Hart

Curvature Flow

Toy Example: Curve Shortening Flow

• A simple version is *curve shortening flow*, where a closed curve moves in the normal direction with speed proportional to curvature:

$$\frac{d}{dt}\gamma(s,t) = \kappa(s,t)N(s,t)$$

- Some key properties:
 - (Total) Total curvature remains constant throughout the flow.
 - (Drift) The center of mass does not drift from the origin.
 - (ROUND) Up to rescaling, the flow is stationary for circular curves.

Discrete Curvature Flow—No Free Lunch

- We can approximate curvature flow by repeatedly moving each vertex a little bit in the direction of the discrete curvature normal: $\gamma_i^{t+1} = \gamma_i^t + \tau \kappa_i N_i$
- But **no** choice of discrete curvature simultaneously captures all three properties of the smooth flow*:

	Total	DRIFT	Round
κ^A	✓	×	×
κ^B	X	\checkmark	X
κ^D	X	X	√

*In fact, it's impossible!

No Free Lunch—Other Examples

- Beyond this "toy" problem, the *no free lunch* scenario is quite common when we try to find finite/computational versions of smooth objects.
- <u>Many</u> examples (**physics:** conservation of energy, momentum, & symplectic form for conservative time integrators; **geometry:** discrete Laplace operators)
- At a more practical level: **The Game** played in DDG often leads to new & unexpected approaches to geometric algorithms (simpler, faster, stronger guarantees, ...)
- Will see *much* more of this as the course continues!

Course Roadmap

Combinatorial Surfaces

Exterior Calculus

Exterior Algebra (linear algebra)

Differential Forms (3D calculus)

Discrete Exterior Calculus

Curves (2D & 3D)

Smooth

Discrete

Surfaces

Smooth | Dis

Discrete

Curvature

Laplace-Beltrami

Geodesics

Conformal Geometry

Homology & Cohomology

(Additional Topics)

...don't worry if these words sound intimidating right now!

Applications & Hands-On Exercises

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858B • Fall 2017