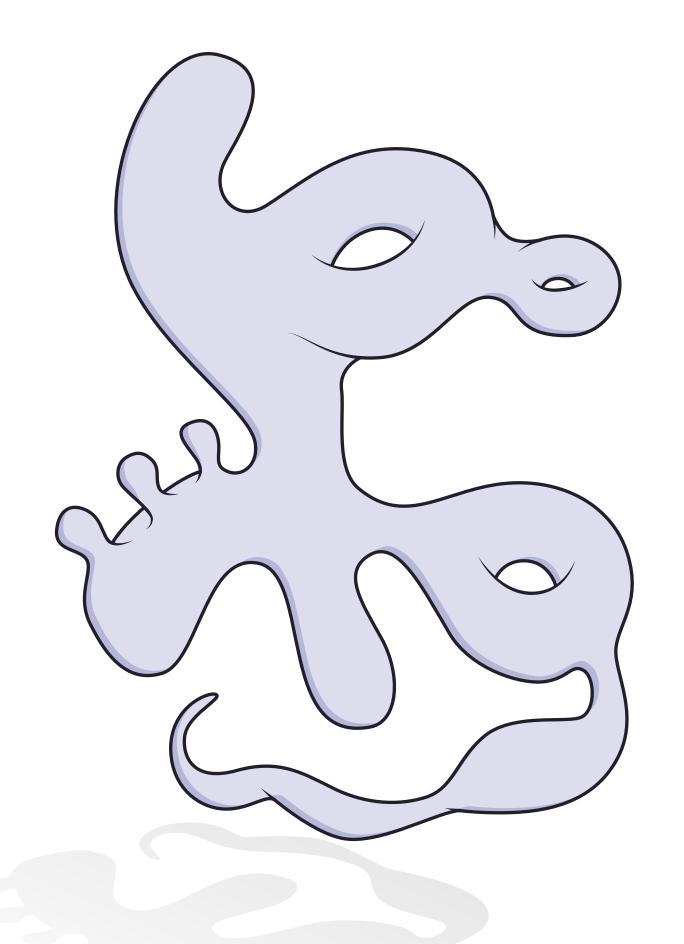
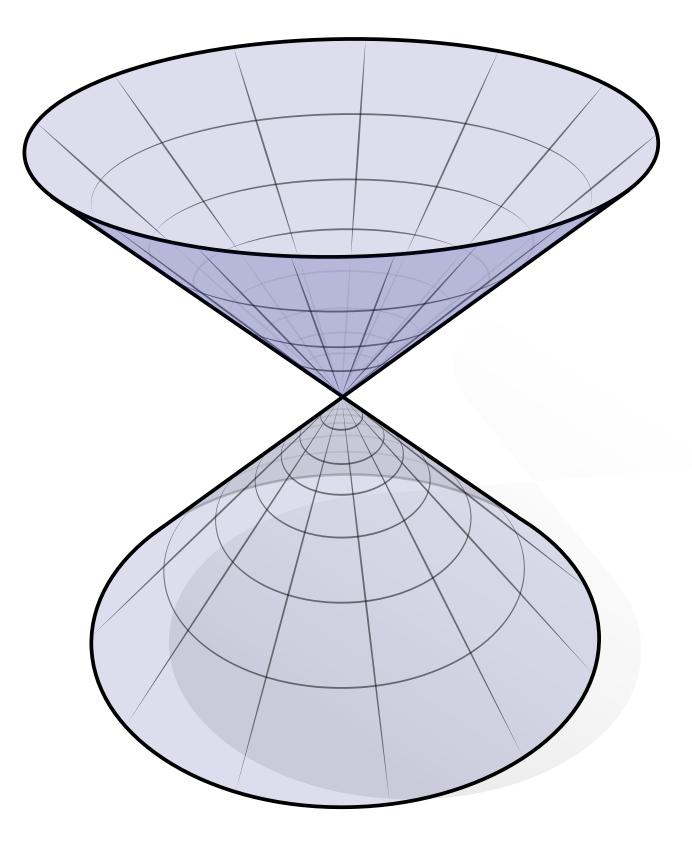
Simplicial Manifold

Manifold—First Glimpse

<u>Very rough idea: notion of "nice" space in geometry.</u>

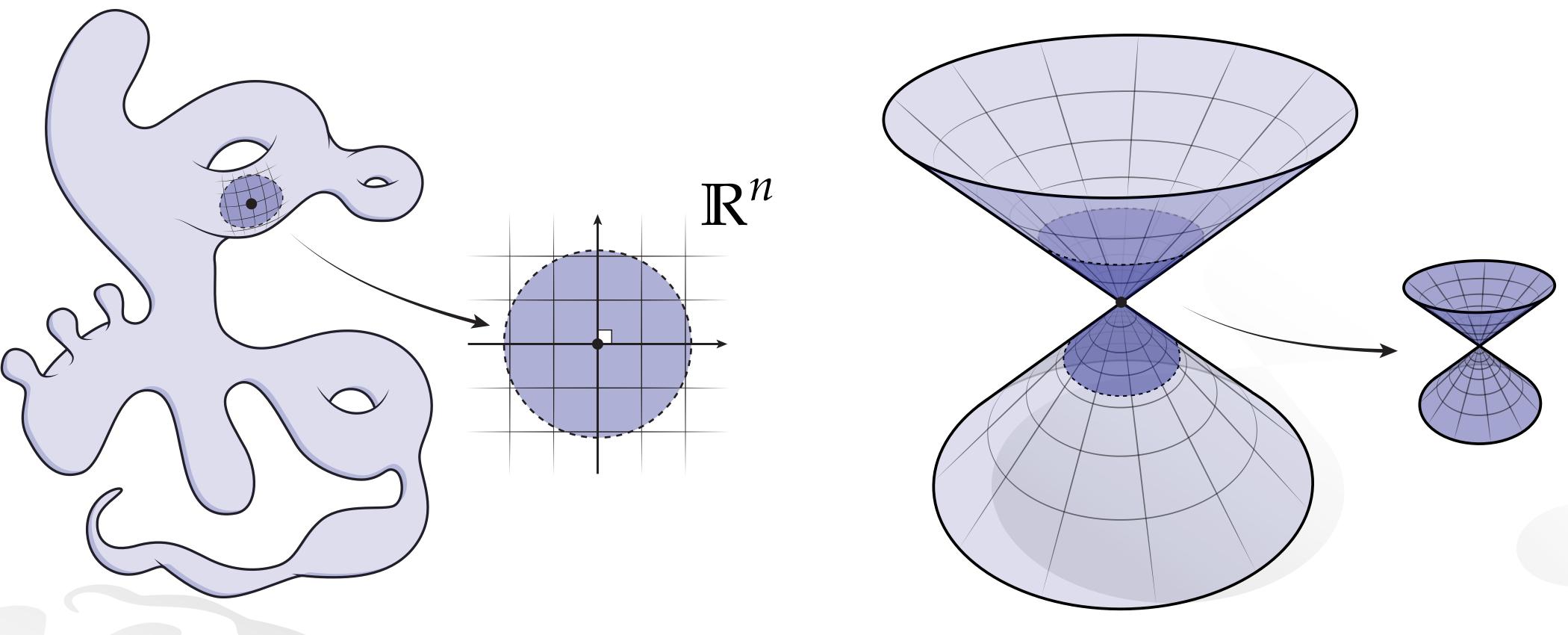




(Which one is "nice"?)

Manifold—First Glimpse

Key idea: manifold locally "looks like" \mathbb{R}^n

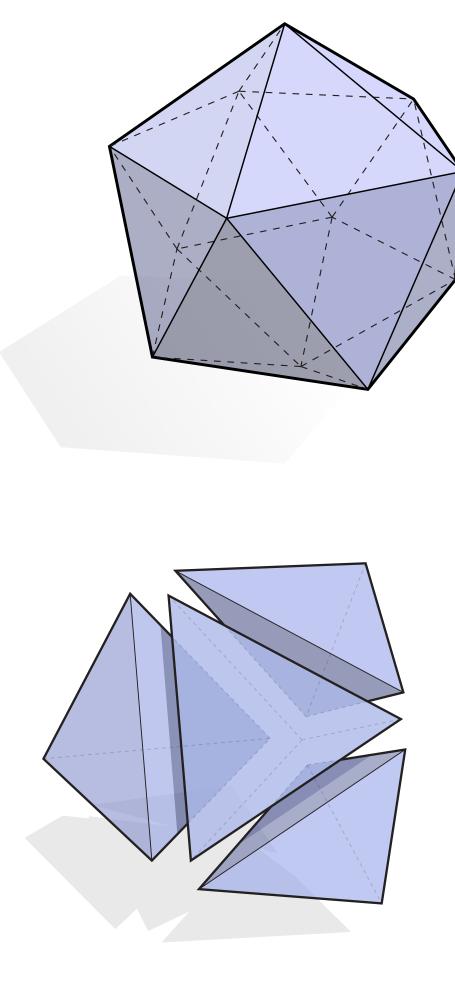


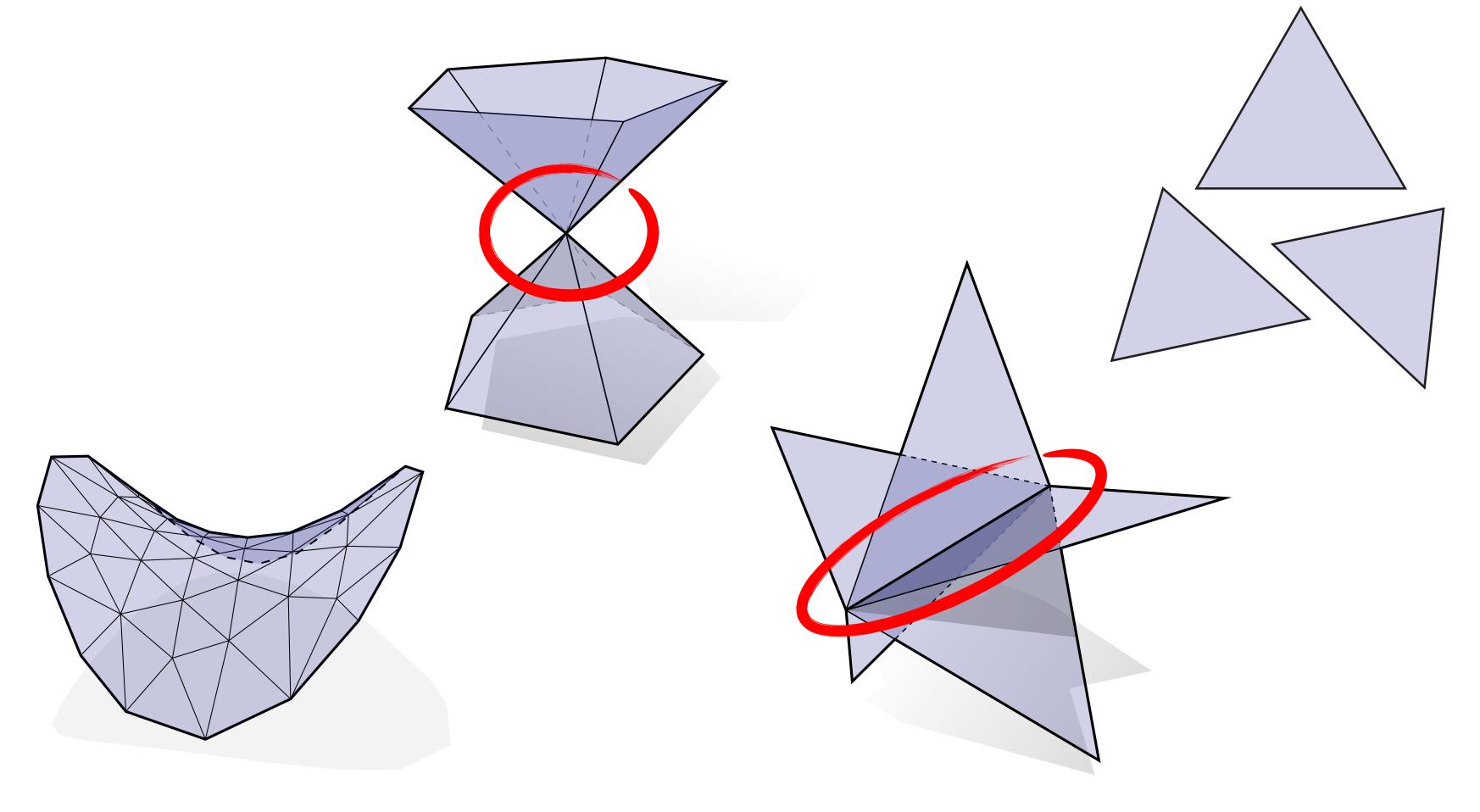
manifold

nonmanifold

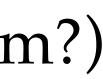
Simplicial Manifold – Visualized

Which of these simplicial complexes look "manifold?"



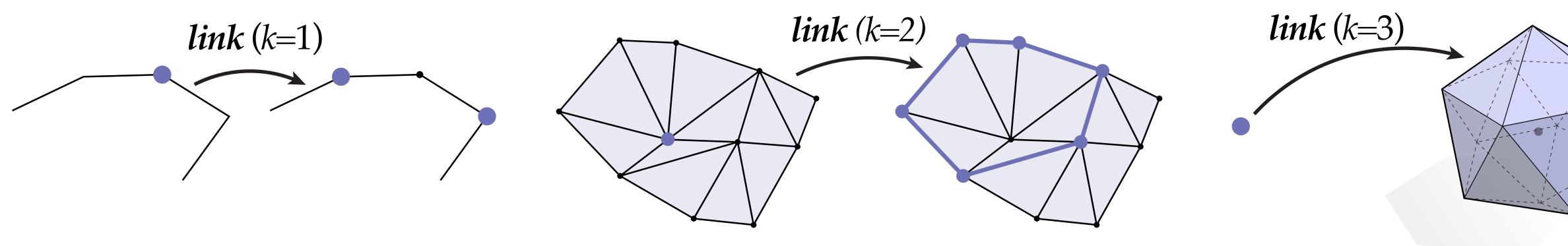


(*E.g.*, where might it be hard to put a little *xy*-coordinate system?)



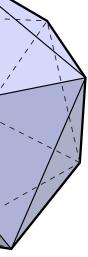
Simplicial Manifold – Definition

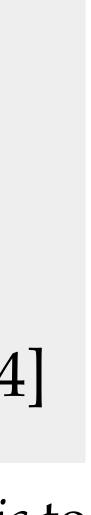
Definition. A simplicial *k*-complex is *manifold* if the **link** of every vertex looks like* a (*k*-1)-dimensional sphere.



<u>Aside:</u> How hard is it to check if a given simplicial complex is manifold? • (*k*=1) *easy*—is the whole complex just a collection of closed loops? •(*k*=2) *easy*—is the link of every vertex a closed loop? • (k=3) easy—is each link a 2-sphere? Just check if V-E+F = 2 (Euler's formula) • (k=4) is each link a 3-sphere? ... Well, it's known to be in NP! [S. Schleimer 2004]

*i.e., is *homeomorphic* to.

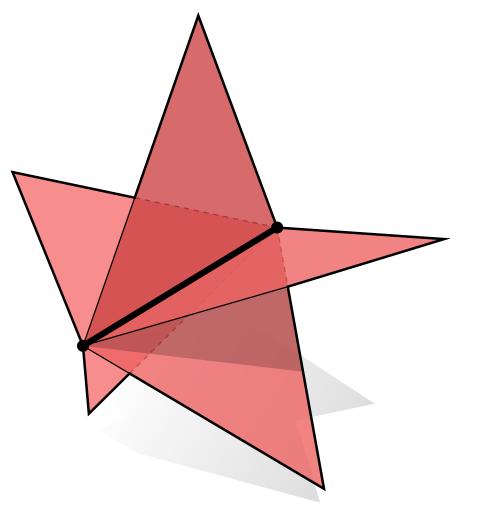


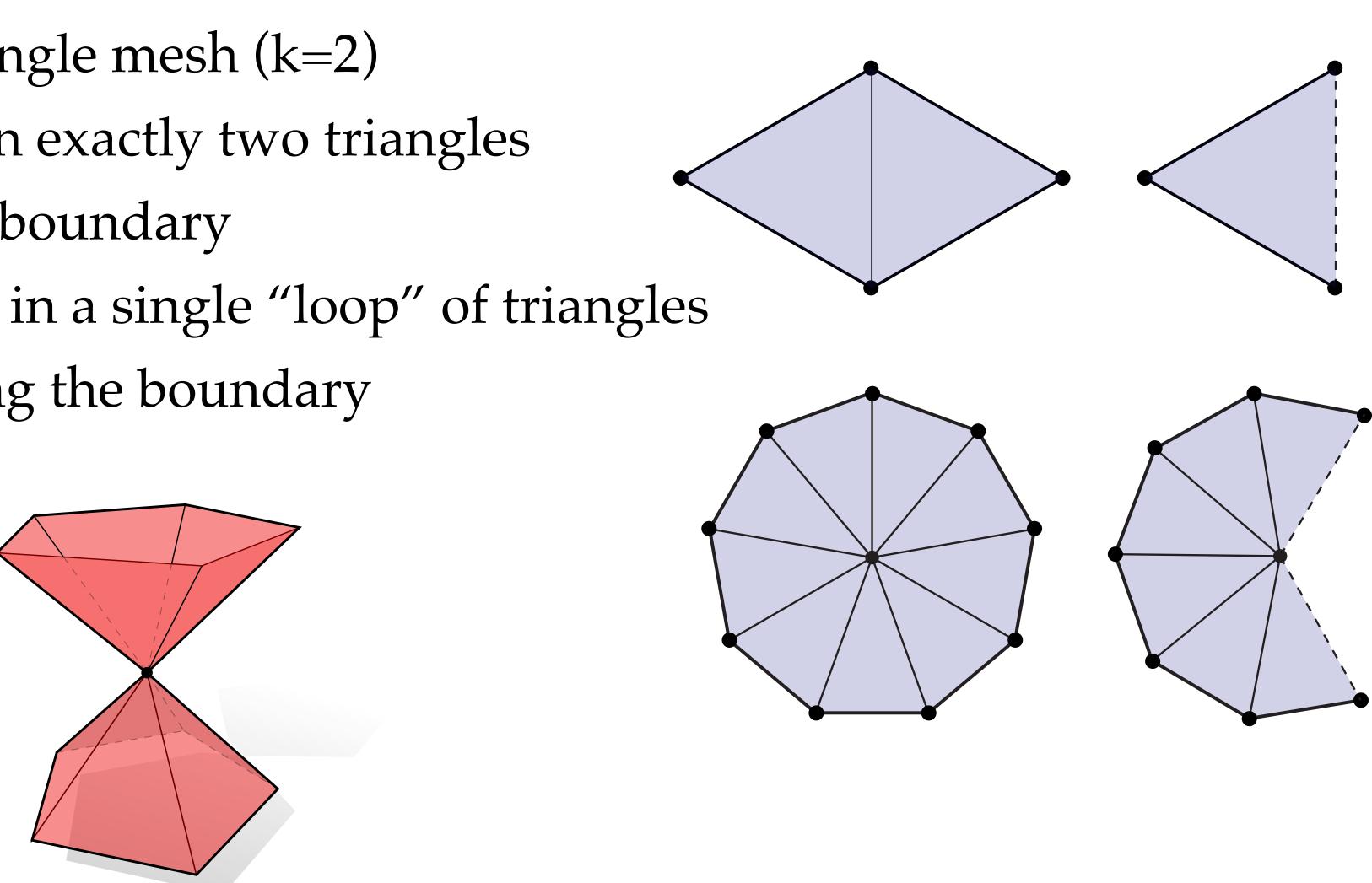


Manifold Triangle Mesh

Key example: manifold triangle mesh (k=2)

- every edge is contained in exactly two triangles
 - ... or just one along the boundary
- every vertex is contained in a single "loop" of triangles
 - ... or a single "fan" along the boundary





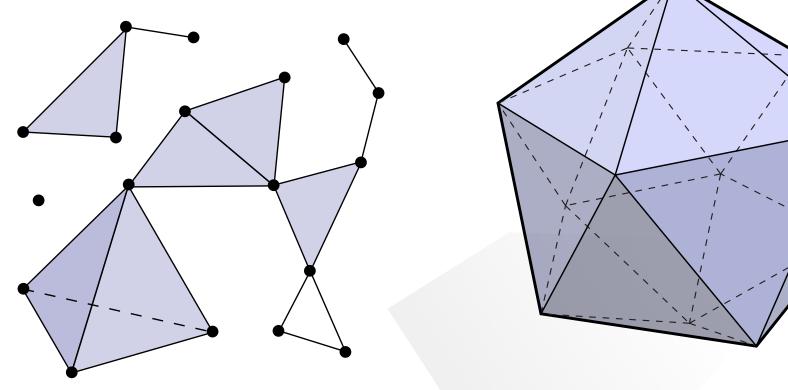
nonmanifold vertex

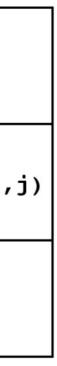
nonmanifold edge

Manifold Meshes – Motivation

- Why might it be preferable to work with a *manifold* mesh?
- Analogy: 2D images
 - Lots of ways you *could* arrange pixels...
 - A regular grid does everything you need
 - Very simple (always have 4 neighbors)
- Same deal with manifold meshes
 - *Could* allow arbitrary meshes...
 - Manifold mesh often does everything you need
 - Very simple (predictable neighborhoods)
 - *E.g.*, leads to nice **data structures**

	(i,j-1)	
(i-1,j)	(i,j)	(i+1
	(i,j+1)	

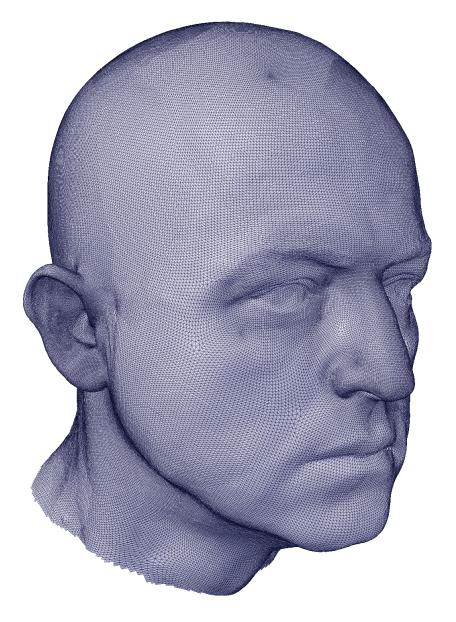


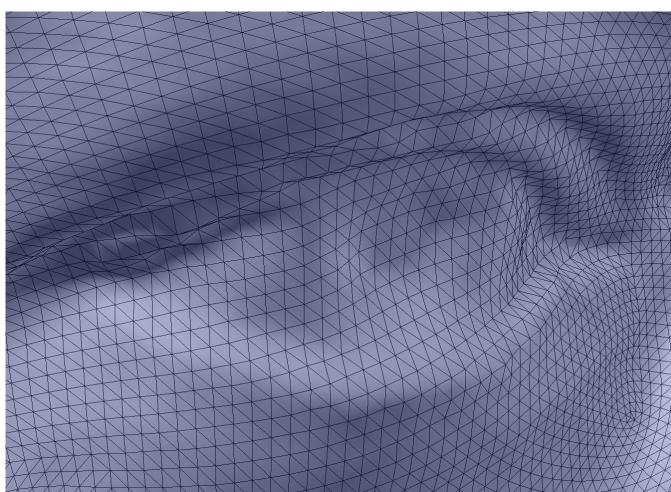


Topological Data Structures

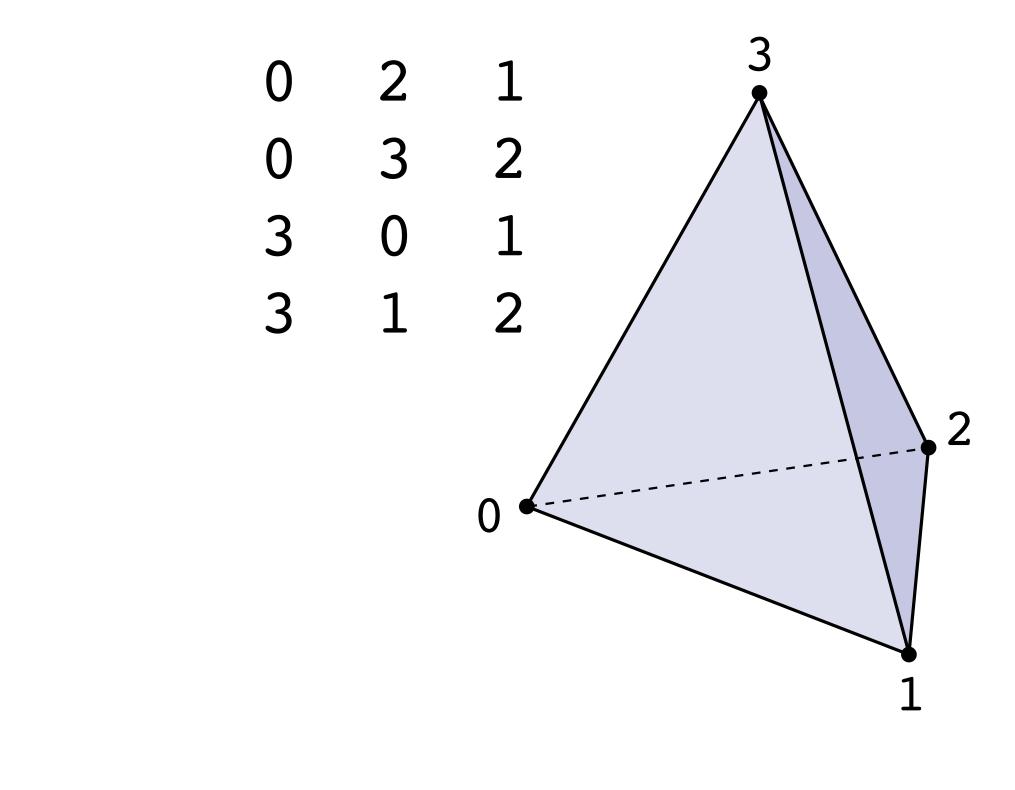
Topological Data Structures—Adjacency List

- Store only top-dimensional simplices
- Pros: simple, small storage cost
- Cons: hard to iterate over, *e.g.*, edges; expensive to access neighbors



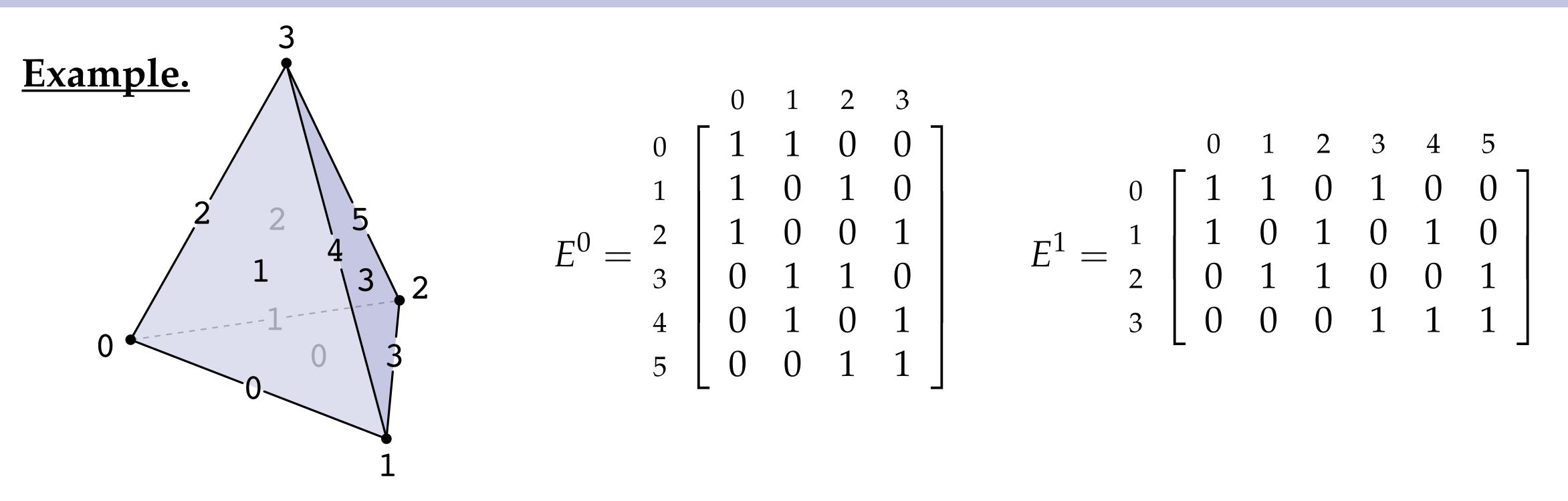


Example. ("hollow" tetrahedron)



Q: How might you list all edges touching a given vertex? *What's the cost?*

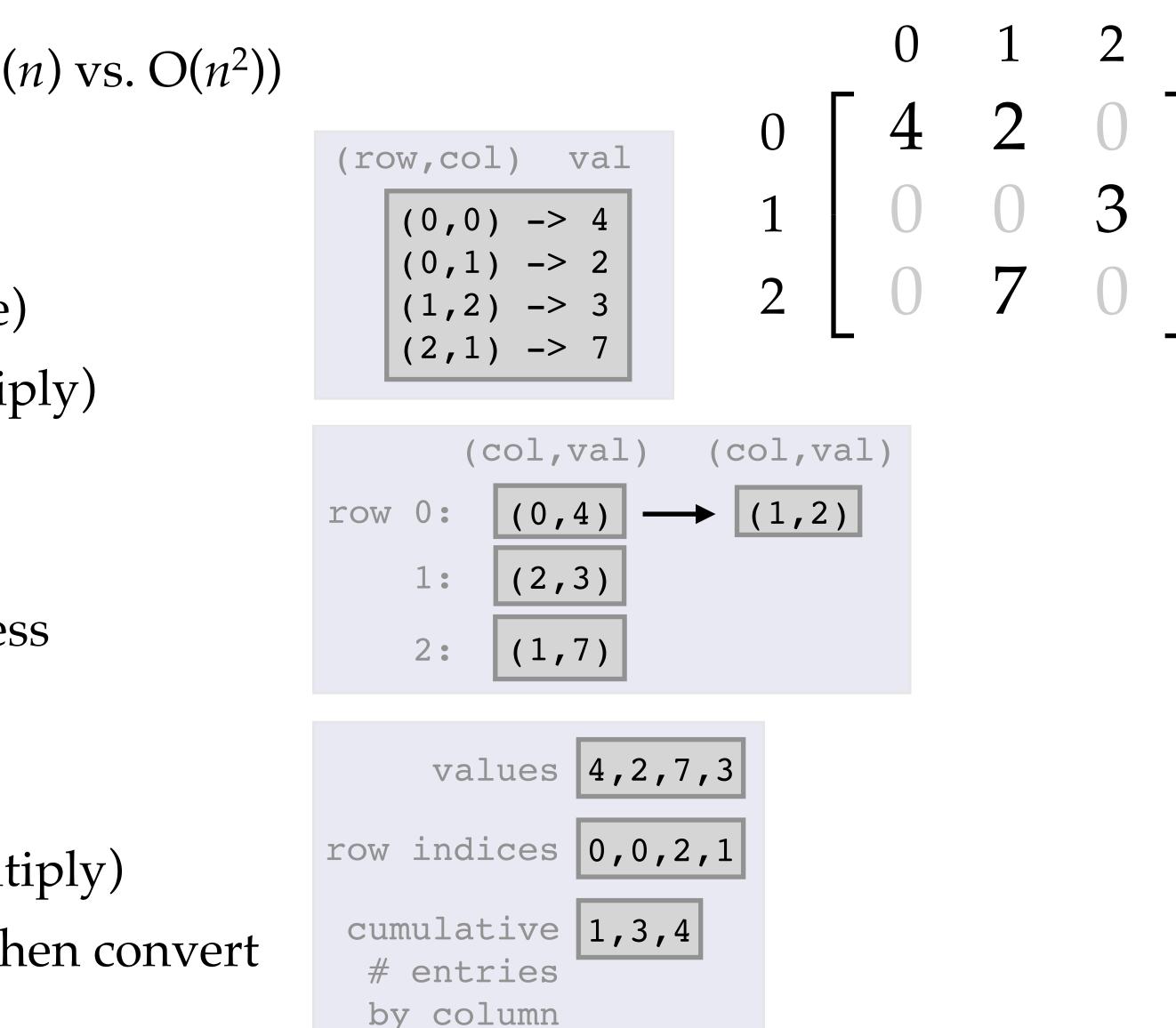
Topological Data Structures—Incidence Matrix



Definition. Let *K* be a simplicial complex, let *n_k* denote the number of *k*-simplices in *K*, and suppose that for each *k* we give the *k*-simplices a canonical ordering so that they can be specified via indices $1, \ldots, n_k$. The *k*th *incidence matrix* is then a $n_{k+1} \times n_k$ matrix \overline{E}^k with entries $E_{ij}^k = 1$ if the *j*th *k*-simplex is contained in the *i*th (k+1)-simplex, and $E_{ij}^k = 0$ otherwise.

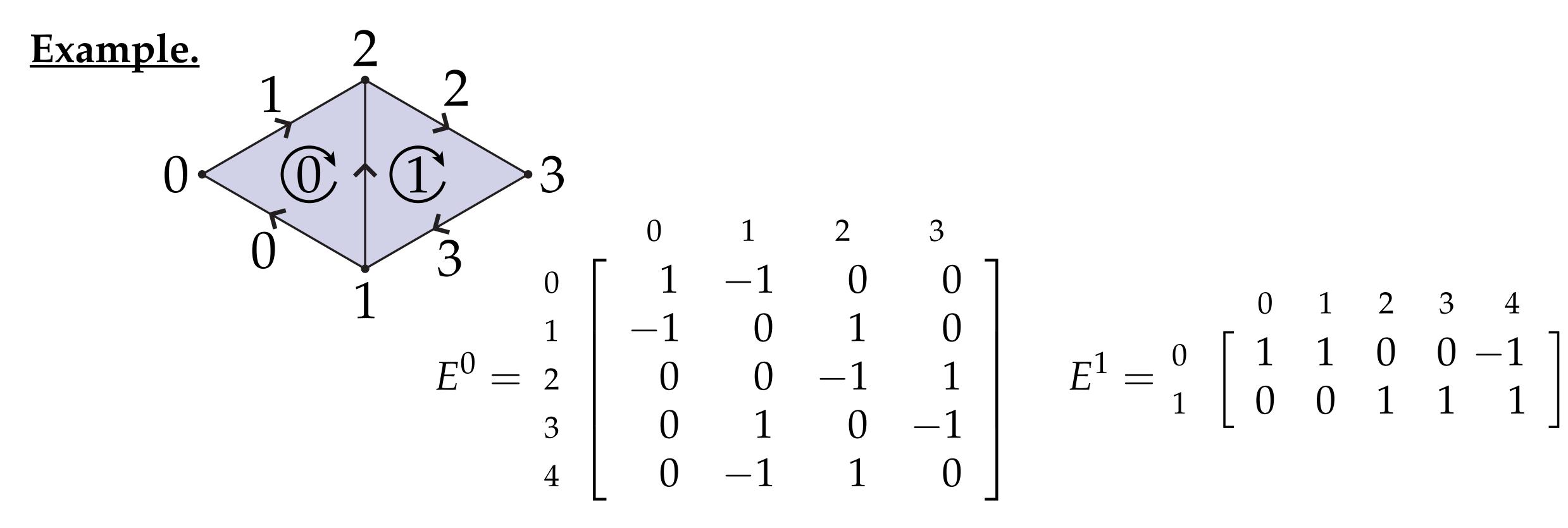
Aside: Sparse Matrix Data Structures

- **Enormous** waste to explicitly store zeros (O(n) vs. $O(n^2)$)
- Instead use a *sparse matrix* data structure
- **Associative array** from (row, col) to value
 - easy to lookup/set entries (e.g., hash table)
 - harder to do matrix operations (e.g., multiply)
- Array of linked lists
 - conceptually simple
 - slow access time; incoherent memory access
- <u>Compressed column format</u>
 - hard to add/remove entries
 - fast for actual matrix operations (e.g., multiply)
- In practice: build "raw" list of entries first, then convert to final (e.g., compressed) data structure



Data Structures – Signed Incidence Matrix

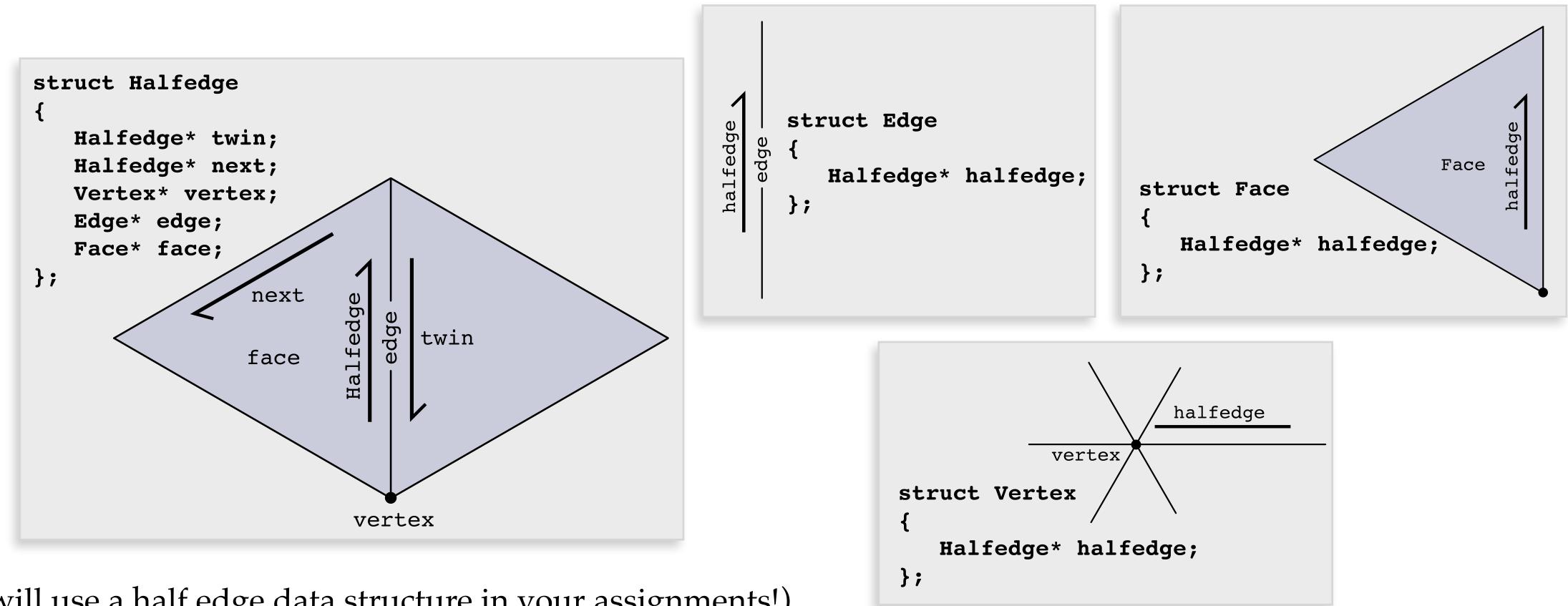
A *signed incidence matrix* is an incidence matrix where the sign of each nonzero entry is determined by the relative orientation of the two simplices corresponding to that row/column.



(Closely related to *discrete exterior calculus*.)

Basic idea: each edge gets split into two oppositely-oriented *half edges*.

- Half edges act as "glue" between mesh elements.
- All other elements know only about a single half edge.



(You will use a half edge data structure in your assignments!)

Topological Data Structures—Half Edge Mesh

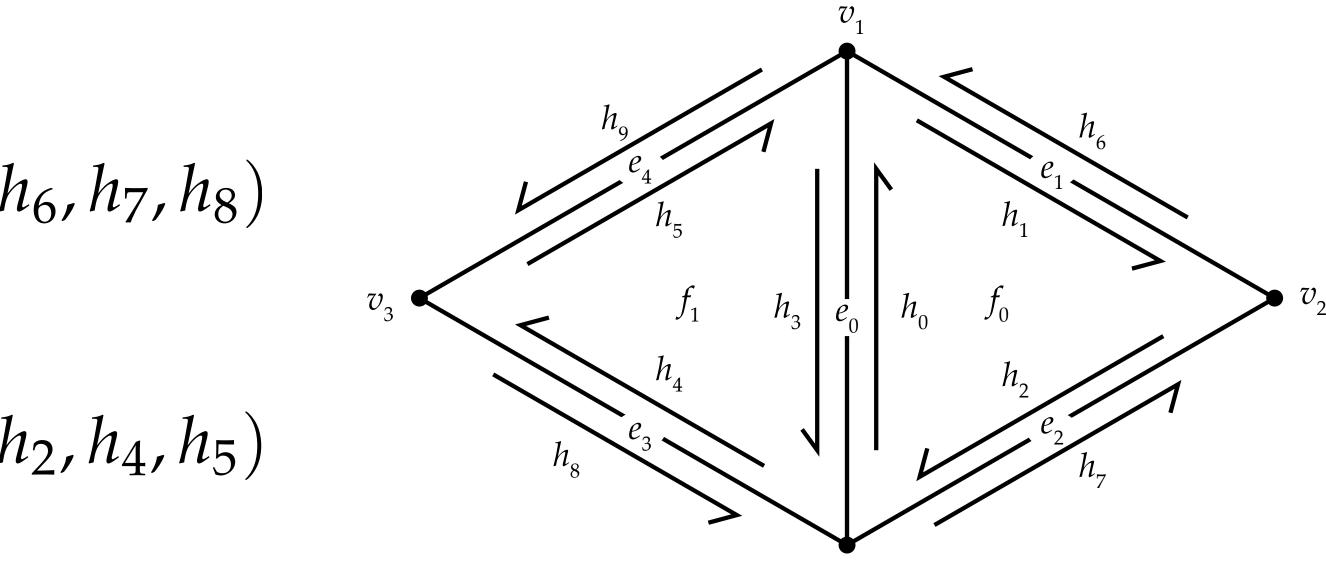
Half Edge—Algebraic Definition

Definition. Let *H* be any set with an even number of elements, let $\rho : H \to H$ be any permutation of *H*, and let $\eta : H \to H$ be an involution without any fixed points, *i.e.*, $\eta \circ \eta = \text{id}$ and $\eta(h) \neq h$ for any $h \in H$. Then (H, ρ, η) is a *half edge mesh*, the elements of *H* are called *half edges*, the orbits of η are *edges*, the orbits of ρ are *faces*, and the orbits of $\eta \circ \rho$ are *vertices*.

Fact. Every half edge mesh describes a compact oriented topological surface (without boundary). v_1

$$(h_0,\ldots,h_9) \stackrel{\rho}{\mapsto} (h_1,h_2,h_0,h_4,h_5,h_3,h_9,k_9)$$

"next"

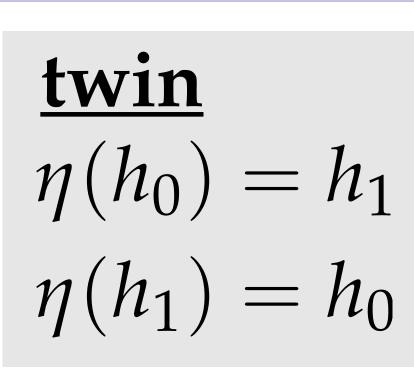


 \mathcal{U}_0

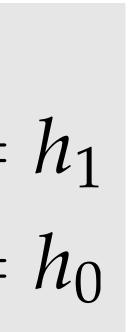
Half Edge—Smallest Example

Example. Consider just two half edges *h*₀, *h*₁

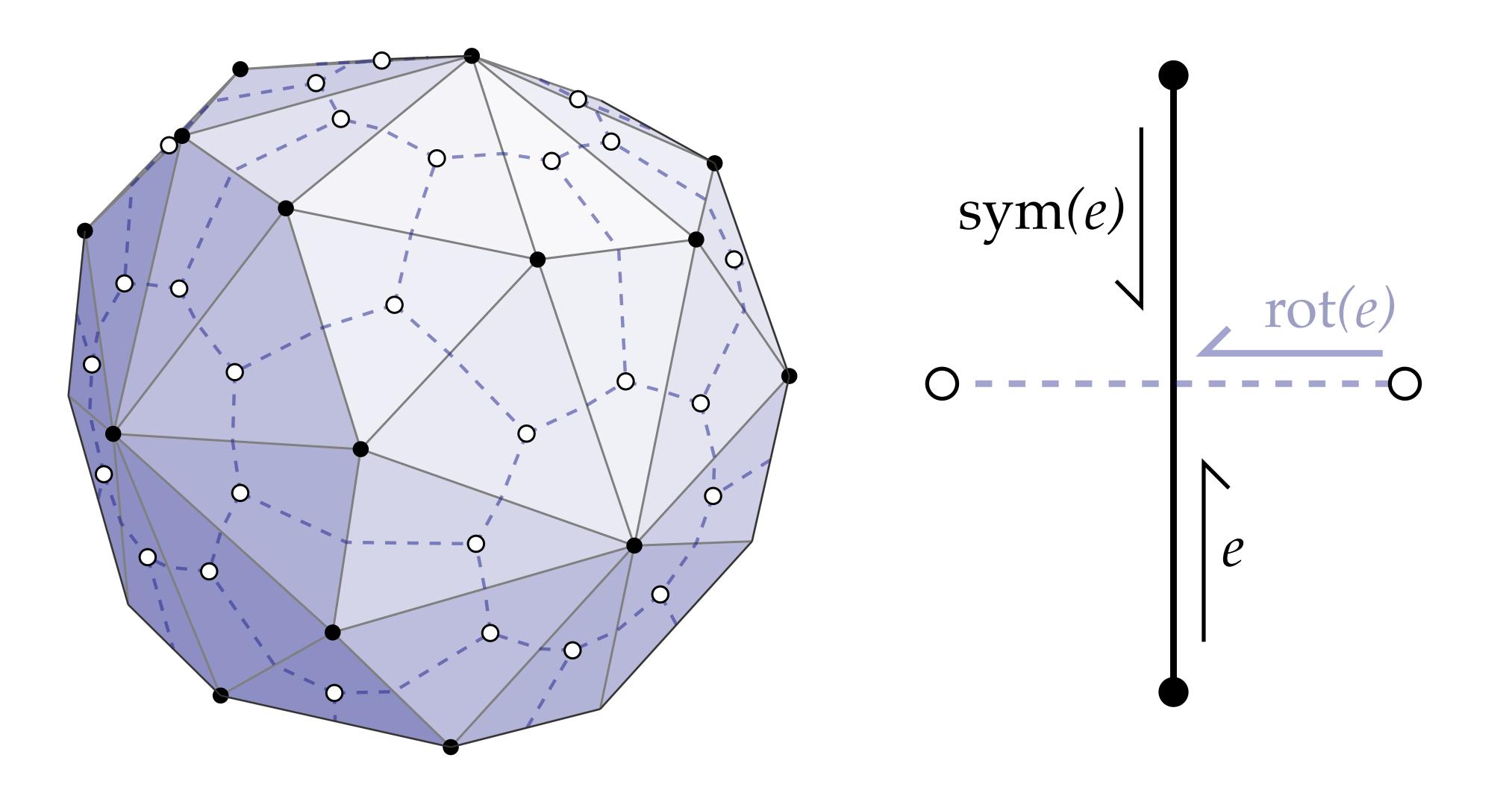




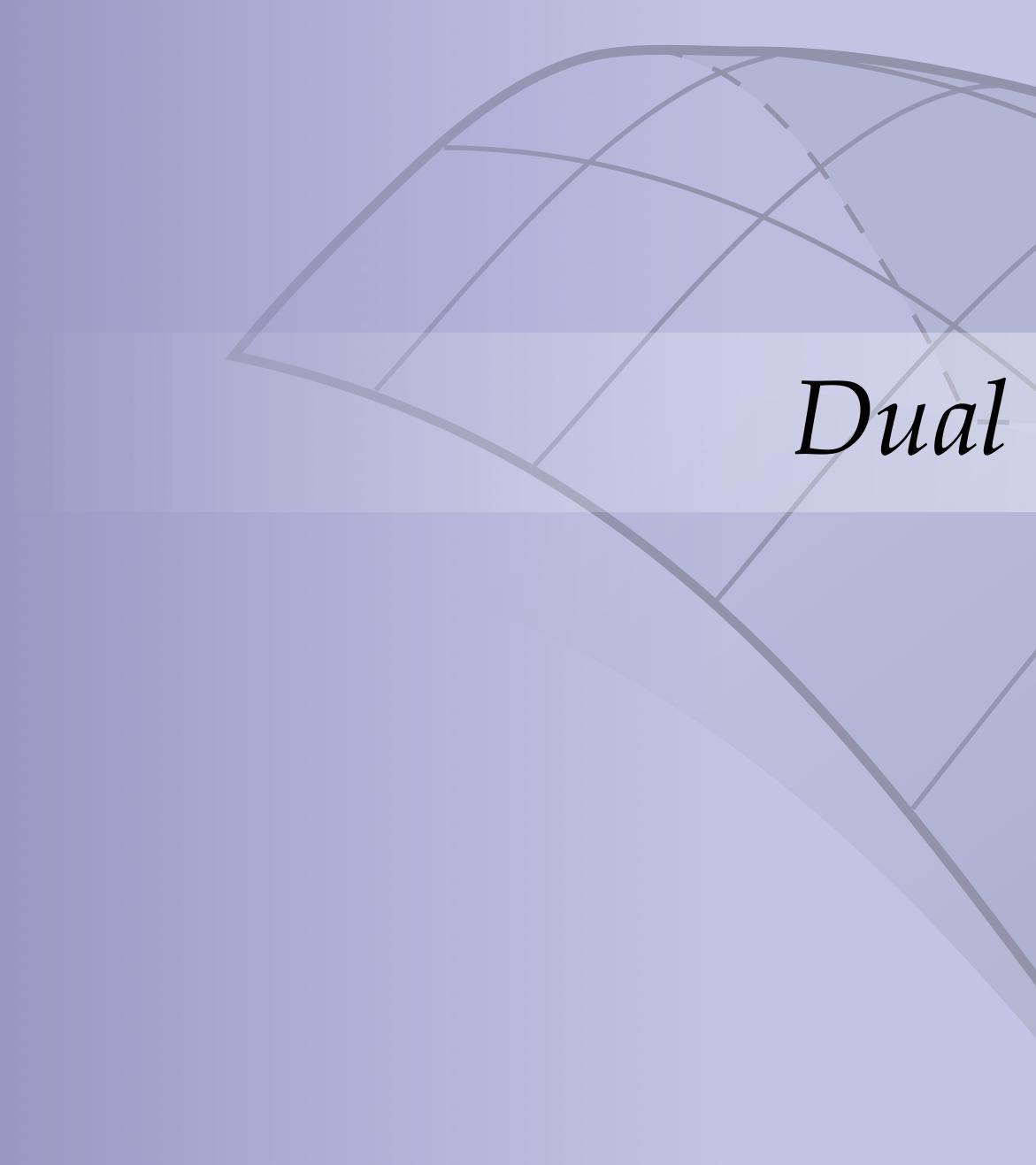
<u>next</u> $\rho(h_0) = h_0$ $\rho(h_1) = h_1$



Other Data Structures – Quad Edge

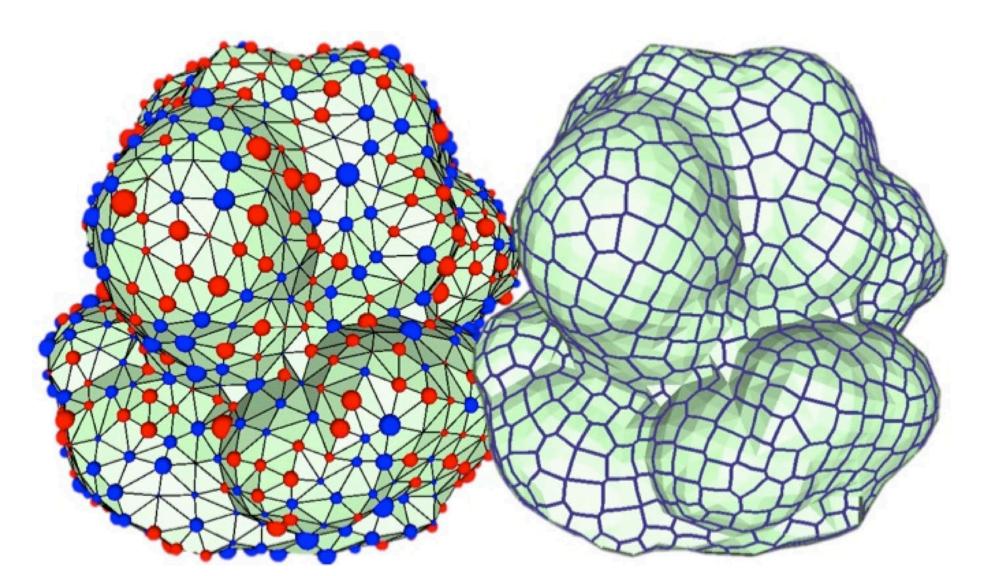


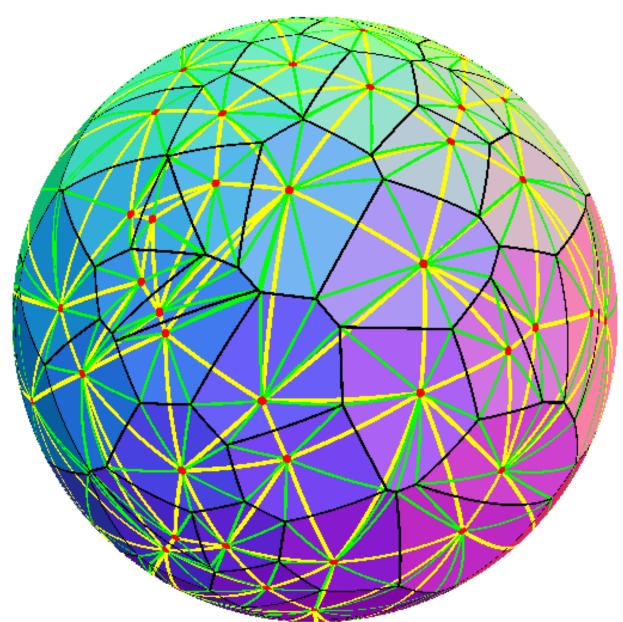
(L. Guibas & J. Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams")

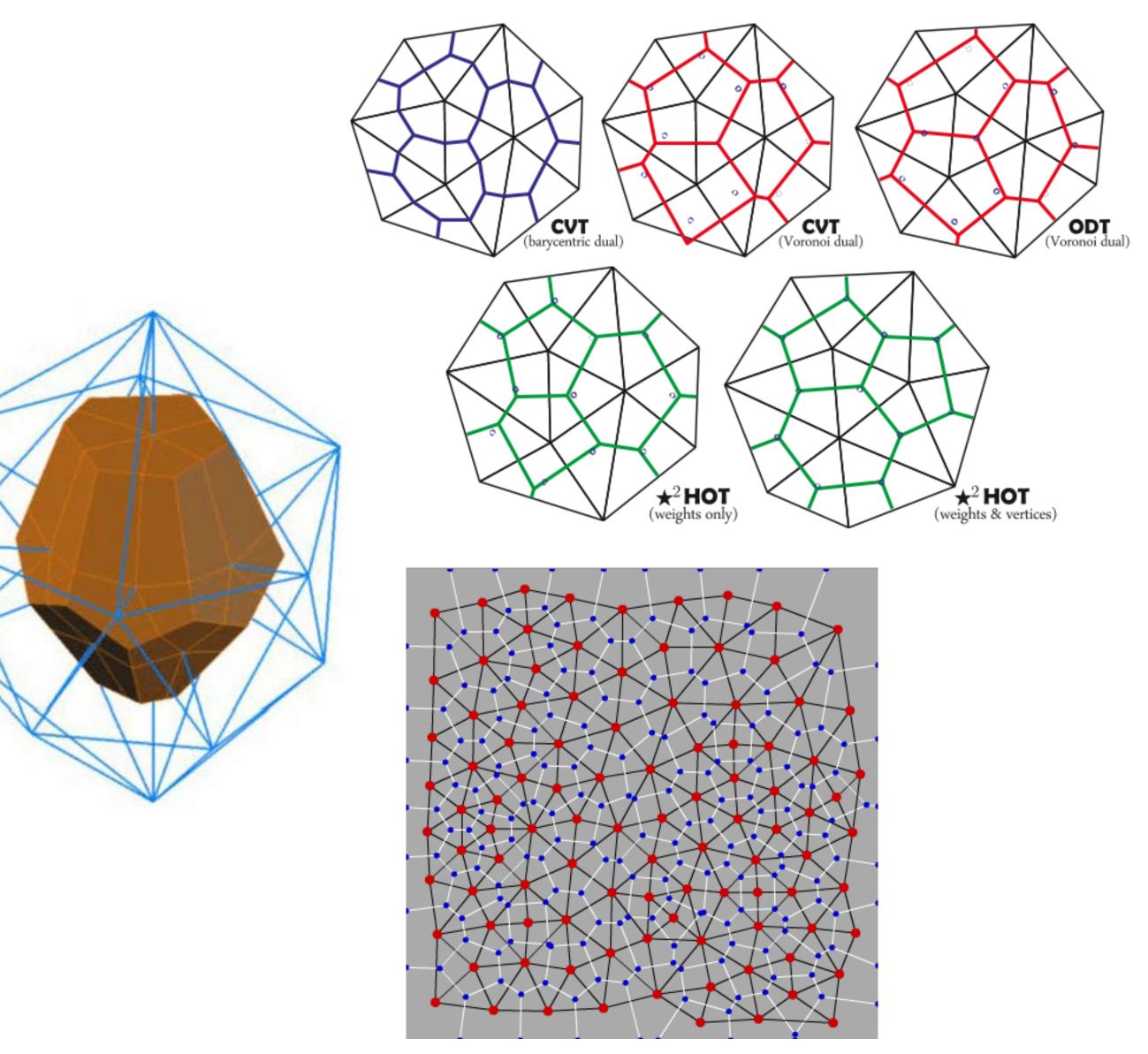


Dual Complex

Dual Mesh – Visualized

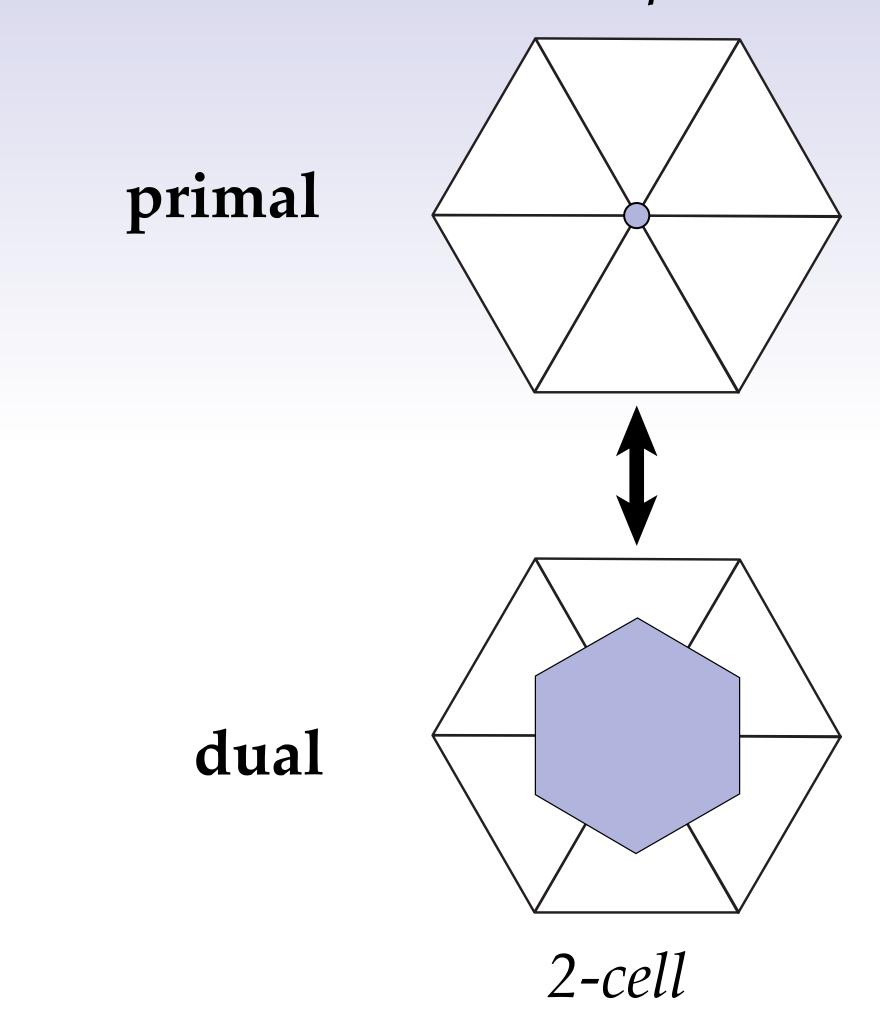




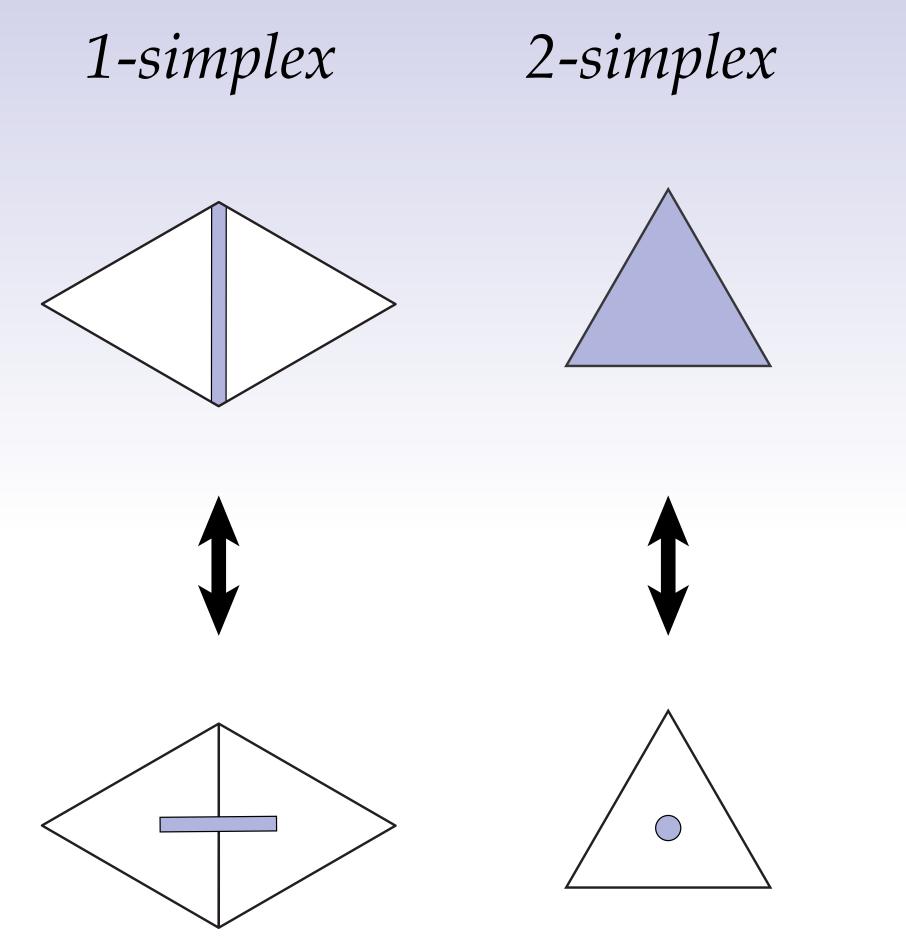


Primal vs. Dual

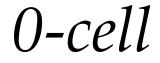
0-simplex



Motivation: record measurements of flux *through* vs. circulation *along* elements.

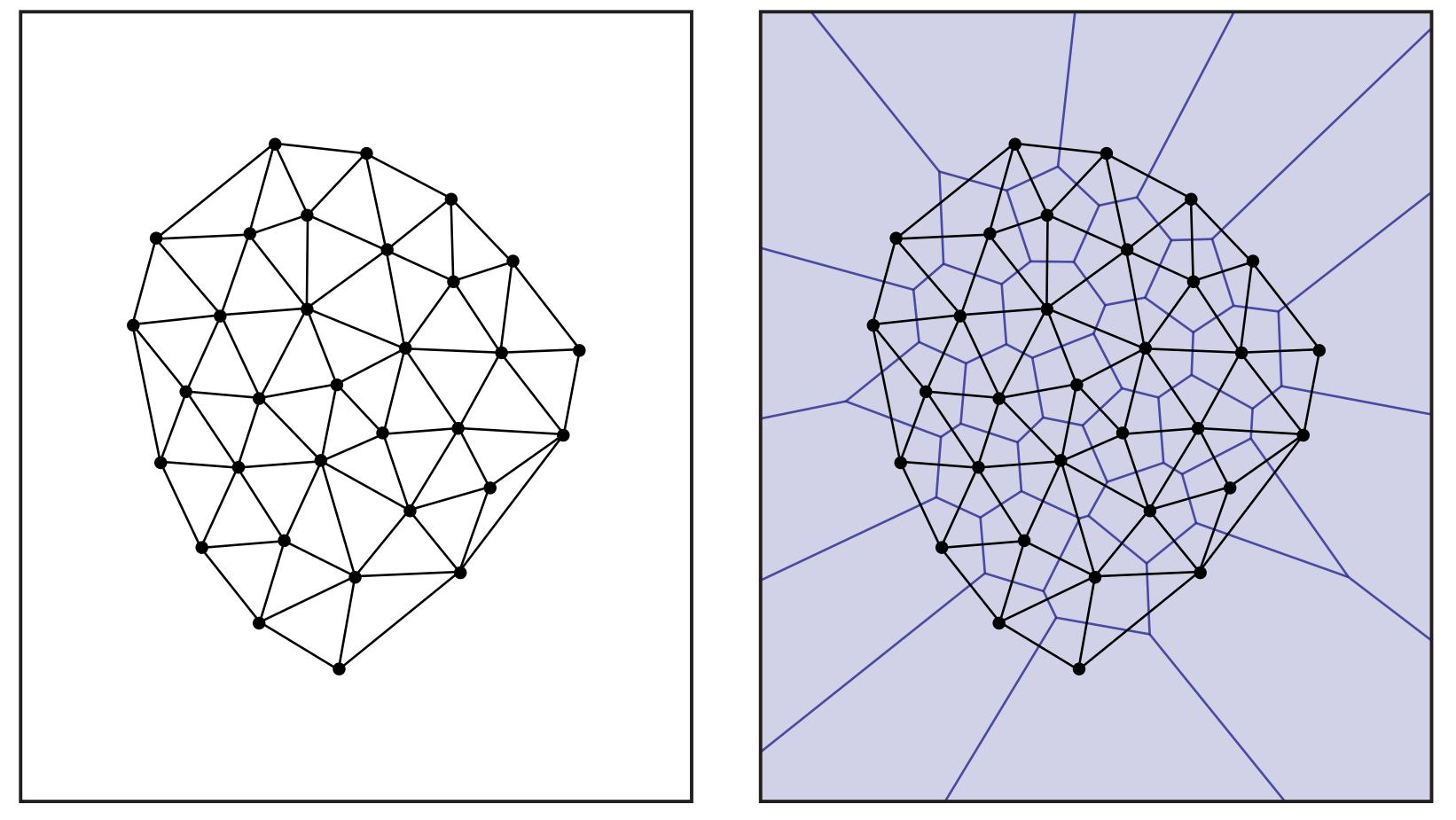


1-cell

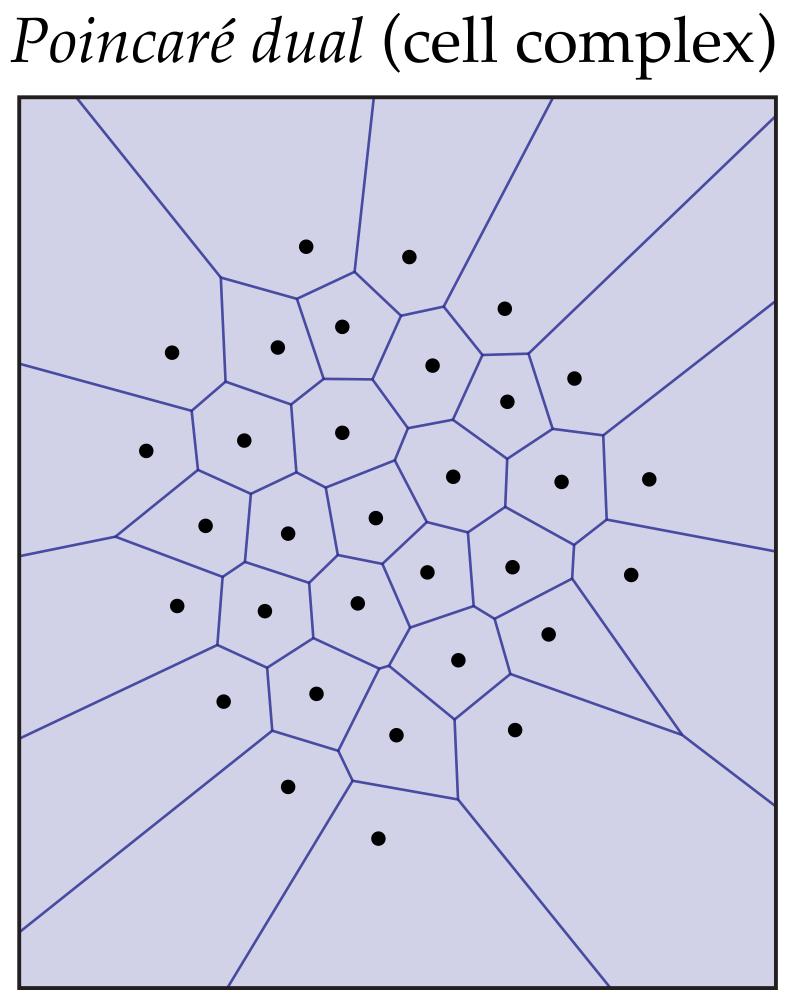


Poincaré Duality

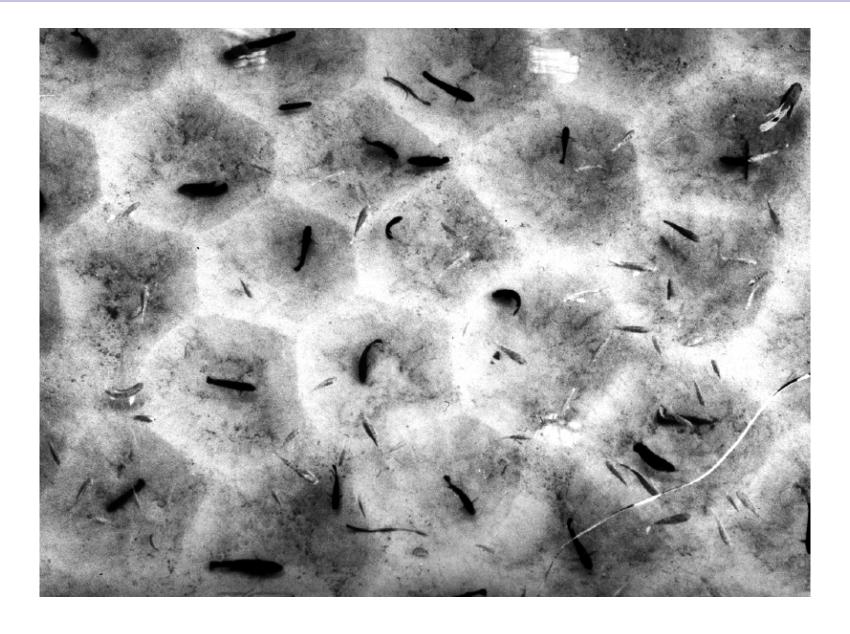
simplicial complex

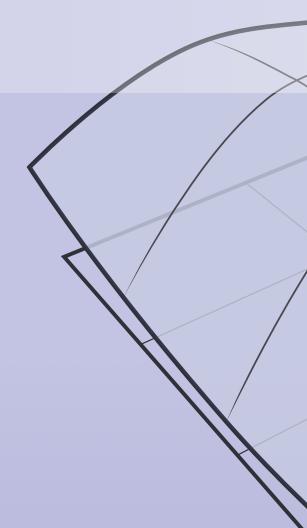


Note: we have said nothing (so far) about *where* the dual vertices are—only *connectivity*.



Poincaré Duality in Nature





DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858

