
Discrete Differential
Geometry:

An Applied Introduction
Original slides by Mark Gillespie • Updated by Nicole Feng & Ethan Lu

Recitation

Outline

Outline

• Halfedge data structure

• Sparse matrices

• Solving linear systems (direct methods)

• Intro to either C++ or JS

The Halfedge Data Structure

The Halfedge Data Structure

The Halfedge Data Structure

How would I find the faces adjacent to an edge?
Given:

e.halfedge

Edge e

The Halfedge Data Structure

How would I find the faces adjacent to an edge?

Halfedge he = e.halfedge;

Face left_face = he.face;

Face right_face = he.twin.face;

Edge eGiven:

The Halfedge Data Structure

How would I find the edges adjacent to a triangle?
Face triGiven:

tri.halfedge

The Halfedge Data Structure

How would I find the edges adjacent to a triangle?

Halfedge he = tri.halfedge;

Edge e1 = he.edge;

Edge e2 = he.next.edge;

Edge e3 = he.next.next.edge;

Face triGiven:

The Halfedge Data Structure
How would I loop over the edges adjacent to a polygon?
Given:

f.halfedge

Face f

The Halfedge Data Structure
How would I loop over the edges adjacent to a polygon?

Halfedge start = f.halfedge;

Halfedge he = start;

do {

 Edge e = he.edge;

 /* Some code */

 he = he.next;

} while (he != start);

Face fGiven:

The Halfedge Data Structure

How would I loop over the edges adjacent to a vertex?

v.halfedge

Given: Vertex v

The Halfedge Data Structure

How would I loop over the edges adjacent to a vertex?
Vertex vGiven:
Halfedge start = v.halfedge;

Halfedge he = start;

do {

 Edge e = he.edge;

 /* Some code */

 he = he.twin.next;

} while (he != start);

Many convenience functions in both JS and C++!

See individual documentation for library-specific usage

f.adjacentVertices() → iterator over vertices adjacent to face f

v.adjacentVertices() → iterator over vertices adjacent to vertex v

v.adjacentHalfedges()
v.outgoingHalfedges() → iterator over halfedges whose tail is vertex v

… etc.

Storing Matrices

Matrices
How can I write down a matrix?

• Option 2: 2D array

• If your matrix doesn’t have much structure, this might be the best
you can do

• But it can take a lot of space to write down an entire matrix

• And working with (really) big matrices is slow

• What matrices do we care about?

• It turns out that adjacency matrices are very important

Matrices

• Most entries are 0!

• We can improve our lives by only storing nonzero entries →
sparse matrices

Matrices

• Important format: Compressed Sparse Row (CSR)

• Store the nonzero entries in row-major order, and some
information about spacing

• Row-major order => matrix-vector products are fast

Aside: Sparse Matrix Formats

 A[i]= entries
IA[i]= total number of nonzero entries before row i
JA[i]= column of the ith entry of A

Aside: Sparse Matrix Formats
 A[i]= entries
IA[i]= total number of nonzero entries before row i
JA[i]= column of the ith entry of A

 A = [5 8 3 6]

IA = [0 0 2 3 4]

JA = [0 1 2 1]

Aside: Sparse Matrix Formats
• There’s also Compressed Sparse Column (CSC)

• Fast to multiply CSC by row vectors

• Both are slow to add elements to

• Usually you build the matrix in another format, then
convert before doing computation

Solving Linear Systems

Linear Systems of Equations

Linear algebra review

A x b

Linear Systems of Equations

• How do we solve Ax = b?

• Compute the inverse / Gaussian Elimination

• Not good for sparse matrices

Linear Systems of Equations

• Some special cases are easy

• What if A is diagonal?

Linear Systems of Equations

• What if A is lower-triangular?

• (Same trick works if A is upper-triangular)

Linear Systems of Equations

• Can this help us with arbitrary linear systems?

• Yes!

• Given an invertible matrix A, we can factor it as a
lower-triangular matrix times an upper triangular matrix*

LU Decomposition

LU Decomposition
• How do we compute LU decomposition?
• Simple solution - run Gaussian Elimination half way

• Problem - still not good for sparse matrices
• We’ll use a fancier implementation

Cholesky Decomposition

• If A is symmetric and positive-semidefinite, then the LU
decomposition is really nice

• Called Cholesky or LLT decomposition

QR Decomposition

• LU and Cholesky decompositions take advantage of the fact that
it’s easy to solve triangular systems

• It’s also easy to solve systems given by rotation matrices

QR Decomposition

• Any square matrix can be decomposed as QR for Q a rotation
and R upper triangular

• There are also versions for rectangular matrices

QR Decomposition

• Also available in framework
• Not as fast as Cholesky but more widely applicable

ddg-exercises-js

• Repository on Github
• https://github.com/cmu-geo

metry/ddg-exercises-js
• Contains all assignments for

the semester

ddg-exercises-js

https://github.com/cmu-geometry/ddg-exercises-js
https://github.com/cmu-geometry/ddg-exercises-js

• Feels similar to C, C++, Java, …. Really any language with braces

• Runs in your browser, so there isn’t too much setup

• You probably won’t need to use any fancy features particular to
Javascript - just need some functions, conditionals, loops, etc

Javascript

• Documentation included
 ddg-exercises-js/docs/index.html

• Coding assignments
 ddg-exercises-js/projects

• Tests
 ddg-exercises-js/tests

ddg-exercises-js

Documentation

• Viewers
 ddg-exercises-js/projects/simplicial-complex-operators/index.html

Coding Assignments

• Write code in project folder or one of the
modules

• Graphics programming often involves a lot of
boilerplate before getting started drawing -
We’ve mostly done that for you. You just have
to fill in the interesting bits

• Test scripts
 ddg-exercises-js/tests/simplicial-complex-operators/test.html

Tests

• As you write your code, you should
see it pass more tests

Navigating halfedges

In ddg-exercises-js

In ddg-exercises-js
Includes many convenience functions

Linear algebra in ddg-exercises-js

• Build from Triplet
• Modified version of CSC/CSR
• Eigen

Sparse Matrices in ddg-exercises-js

•How do you represent a vector?

Warning

•LinearAlgebra.Vector only
represents 3D vectors

•Instead, construct a matrix with n
rows and 1 column

•Multiply matrices by vectors using
timesDense or timesSparse

Solving linear systems

Cholesky

LU

QR

Print statements
Print using console.log()

Console is usually under “Developer
tools” - might be different in your
browser

ddg-exercises (C++)

ddg-exercises
Uses Geometry Central and Polyscope (C++)

• Repository on Github:
https://github.com/Geometry
Collective/ddg-exercises

• Clone recursively!

ddg-exercises

https://github.com/GeometryCollective/ddg-exercises
https://github.com/GeometryCollective/ddg-exercises

ddg-exercises

• All coding assignments
 ddg-exercises/projects

• Additional READMEs per assignment
• Unit tests included

- built in separate executable

Documentation
• Detailed documentation at

https://geometry-central.net/!

 • The sections most relevant to us are:
- For vertex, edge, face objects, etc:

Surface → Surface Mesh → Elements
- For traversing the mesh:

Surface → Surface Mesh →
Navigation and Iteration

- To get quantities associated with mesh elements (edge
length, edge vector, face area, etc.):

Geometry → Quantities
- Sparse matrices:

Numerical → Linear Algebra Utilities
- Solving sparse linear systems:

Numerical → Linear Solvers

https://geometry-central.net/

Tests

• Tests are built along with
everything else when you compile

• Run bin/test-*
• As you write your code, you

should see it pass more tests

……

Assignments

• Write code in project folder or core/, in
one or more of the source (.cpp) files

• We’ve handled visualization in Polyscope
• Generate Makefile using cmake
• make and bin/main to run program!
• Additional meshes provided in inputs/

(up a few directories relative to
projects/)

https://docs.google.com/file/d/1QO1yE-05dxpZcDh6I0gq6qFaXIylg_p8/preview

Navigating halfedges

In Geometry Central

In Geometry Central
Includes many convenience functions

(see Navigation and Iteration documentation)

https://geometry-central.net/surface/surface_mesh/navigation/

Linear algebra in Geometry Central

Sparse Matrices in Geometry Central
• Geometry Central provides convenient

functions for initialization
• G-C sparse matrices are Eigen matrices

under the hood, so you can also initialize
from Eigen sparse matrix

• Can also initialize from triplets,
following Eigen tutorial:

https://eigen.tuxfamily.org/dox/group__TutorialSparse.html

Solving linear systems

Geometry Central conveniently
provides functions for solving
square or SPD matrices, that use
LU or Cholesky decomposition

Discrete Differential
Geometry:

An Applied Introduction

Thanks!

